最新2018届山西省对口升学考试数学考试大纲考试说明及模拟试题样题

合集下载

山西省对口升学仿真模拟试题数学(四)

山西省对口升学仿真模拟试题数学(四)

山西省对口升学仿真模拟试题数学(四)一、单项选择题。

(共10小题,每小题四分,共计40分)1.已知集合A={x|—1x3},B={x|0<x5},则A B=()A.{ x|—1x<0} B{x|—1x5}C{x|—1x<3} D{x|0<x4}2.函数f(x)=+2(x>=4)的值域为()A[2,B(3,) C[3,) D(—,)3.函数f(x)在区间(—2,3)上是增函数,则y=f(x+5)的递增区间是()A(3,8) B(-2,3) C(-7,-2) D(0,5)4.已知a=,那么 -2用a表示是()A.5a-2 B.a-2 C.3a-( D.3a--15.已知平面向量m=(3,1),n=(x,-3)且m⊥n,则x=()A.-3B.-1C.1D.36.角a的终边过点P(4,-3),则的值为()A.4B.-3C.D.-7直线x-y+1=0与圆+=相交于A.B两点,且AB的长为2,则圆的半径为()A. B. C.1 D.28.在等差数列{}中,前13项的和=65,则的值为()A.5B.10C.12D.39.已知函数f(x)=+b+1,满足f(5)=7,则f(-5)的值为()A.5B.-5C.6D.-610.若a、b为异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交二.填空题(共5小题,每小题4分,共计20分)11.函数f(x)=1-在[2,3]上的最大值为。

12.等于。

13.已知f(x)=+1,则f(x+1)= 。

14.4名男生和3名女生排成一排,要求男女相间的排法有种。

15.已知=2,则。

三.解答题(共6小题,共计40分)16.(6分)已知{}为等差数列,且,,求{}的通项公式。

17.(6分)已知非零向量a,b满足|a+b|=|a-b|,求证a⊥b。

18.(6分)化简:().19.(8分)求过点P(-3,2)且与椭圆有相同的焦点椭圆的标准方程。

山西省2018届高三第二次模拟考试数学(理)试题(解析版)

山西省2018届高三第二次模拟考试数学(理)试题(解析版)

理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】A【解析】分析:先化简集合B,再求A∩B,即得解.详解:由题得,学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...学¥科¥网...∴.故选A.点睛:本题主要考查集合的交集运算,属于基础题.2. 已知复数(为虚数单位),则的共轭复数在复平面对应的点的坐标是()A. B. C. D.【答案】D【解析】分析:先化简复数z,再求z的共轭复数,再判断的共轭复数在复平面对应的点的坐标.详解:由题得,∴,所以的共轭复数在复平面对应的点的坐标是(-1,-3).故选D.点睛:本题主要考查复数的运算、共轭复数和复数的几何意义,属于基础题.3. 一次考试中,某班学生的数学成绩近似服从正态分布,则该班数学成绩的及格率可估计为(成绩达到分为及格)(参考数据:)()A. B. C. D.【答案】D【解析】分析:先求出,再求出,最后根据正态分布求出该班数学成绩的及格率.详解:由题得∵∴.∴∵,∴该班数学成绩的及格率可估计为0.34+0.5=0.84.故选D.点睛:本题主要考查正态分布及其计算,对于这些计算,千万不要死记硬背,要结合正态分布的图像理解掌握,就能融会贯通.4. 若函数为奇函数,则()A. B. C. D.【答案】B【解析】函数为奇函数,所以可得,,故选D.5. 已知点是直线上的动点,由点向圆引切线,切点分别为,,且,若满足以上条件的点有且只有一个,则()A. B. C. D.【答案】B【解析】分析:先分析得到四边形PMON是正方形,再分析出,再根据点到直线的距离求出b的值. 详解:由题得,∴四边形PMON是正方形,∴|PO|=,∵满足以上条件的点有且只有一个,∴,∴.故选B.点睛:本题的关键是对已知条件的分析转化,首先要分析出四边形PMON是正方形,再分析出,再根据点到直线的距离求出b的值.6. 已知不等式组表示的平面区域为,若函数的图象上存在区域上的点,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:作出可行域,由y=|x﹣1|的图象特点,平移图象可得.详解:作出不等式组表示的平面区域D(如图阴影),函数y=|x﹣1|的图象为直线y=x﹣1保留x轴上方的并把x轴下方的上翻得到,其图象为关于直线x=1对称的折线(图中红色虚线),沿x=1上下平移y=|x﹣1|的图象,当经过点B时m取最小值,过点D时m取最大值,由可解得,即B(2,﹣1)此时有﹣1=|2﹣1|+m,解得m=﹣2;由可解得,即B(1,1)此时有1=|1﹣1|+m,解得m=1;故实数m的取值范围为[﹣2,1],故答案为[﹣2,1].故选C.点睛:本题考查简单线性规划,数形结合分析是解决问题的关键.7. 某几何体的三视图如图所示,若图中小正方形的边长均为,则该几何体的体积是()A. B. C. D.【答案】A【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为,其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.8. 设,若,则()A. B. C. D.【答案】A【解析】分析:先根据计算出n的值,再利用二项式展开式的通项求.详解:由题得二项式展开式的通项为,∵0,∴.∴n=5.∴.故选A.点睛:本题主要考查二项式展开式的通项和二项式展开式的系数,属于基础题.9. 执行如图所示的程序框图,输出的值是()A. B. C. D.【答案】D【解析】分析:直接按照程序框图运行程序,找到函数的周期,即可求出输出值.详解:当n=1,S=0时,S=;执行第一次循环可得n=2,S=;执行第二次循环可得n=3,S=;执行第三次循环可得n=4,S=;执行第四次循环可得n=5,S=;执行第五次循环可得n=6,S=; 执行第六次循环可得n=7,S=,归纳可知,其周期为6,所以.所以输出S=. 点睛:本题主要考查程序框图和数列的周期性,属于基础题.10. 设为双曲线上的点,,分别为的左、右焦点,且,与轴交于点,为坐标原点,若四边形有内切圆,则的离心率为()A. B. C. D.【答案】C【解析】分析:求出圆的圆心、半径和直线PF1的方程,根据切线的性质列方程求出a,b,c的关系,得出离心率.详解:F1(﹣c,0),F2(c,0),P(c,),直线PF1的方程为y=x+,即b2x﹣2acy+b2c=0,四边形OF2PQ的内切圆的圆心为M(,),半径为,∴M到直线PF1的距离d==,化简得:9b2﹣12abc﹣b4=0,令b=1可得ac=,又c2﹣a2=1,∴a=,c=.∴e==2.故选C.点睛:求离心率的取值,一般是找到关于离心率的方程,再解方程.关键是找方程,本题是根据直线和圆相切得到圆心到直线的距离等于半径找到的方程.11. 在四面体中,,,底面,为的重心,且直线与平面所成的角是,若该四面体的顶点均在球的表面上,则球的表面积是()A. B. C. D.【答案】D【解析】分析:求出△ABC外接圆的直径,利用勾股定理求出球O的半径,即可求出球O的表面积.详解:取的中点为E,由题意,AE=,AD=,cos∠BAC==﹣,∴sin∠BAC=,∴△ABC外接圆的直径为2r==,设球O的半径为R,∴R==∴球O的表面积为,点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设等差数列的公差为,前项和为,记,则数列的前项和是()A. B. C. D.【答案】C【解析】分析:由等差数列的求和公式可得首项,tana n tana n+1=﹣1=﹣1,运用裂项相消求和,结合两角和差的正切公式,即可得到所求和.详解:等差数列{a n}的公差d为,前8项和为6π,可得8a1+×8×7×=6π,解得a1=,tana n tana n+1=﹣1=﹣1,则数列{tana n tana n+1}的前7项和为(tana8﹣tana7+tana7﹣tana6+…+tana2﹣tana1)﹣7=(tana8﹣tana7)﹣7=(tan﹣tan)﹣7=(tan﹣tan)﹣7=(tan()﹣tan())﹣7=()﹣7=.故选C.点睛:解答本题的关键是化简,求和首先要看通项的特征, tana n tana n+1=﹣1=﹣1,化简到这里之后,就可以再利用裂项相消求和了.化简时要注意观察已知条件,看到要联想到差角的正切公式,再化简.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是__________.【答案】尺【解析】分析:先确定等差数列的首项和末项,再利用等差数列的求和公式求和.详解:由题得三十日的织布数组成一个首项是5尺末项为1尺的等差数列,所以三十日的总的织布数为.故填90尺.点睛:本题主要考查等差数列的求和公式,属于基础题.14. 已知向量与的夹角是,且,则向量与的夹角是__________.【答案】【解析】分析:根据平面向量的数量积与夹角、模长公式,计算即可.详解:向量与的夹角是,且||=|+|,∴=+2•+,∴2•+=0,即2||×||×cos+=0,化简得||=||,∴cosθ====﹣,∴向量与+的夹角是120°.故答案为:120°.点睛:本题考查了利用平面向量的数量积求夹角、模长的问题,考查了运算能力及逻辑推理能力.15. 已知函数的周期为,当时,函数恰有两个不同的零点,则实数的取值范围是__________.【答案】【解析】分析:先根据已知条件求出函数f(x)的解析式,再把函数恰有两个不同的零点转化为y=f(x)的图像与直线y=-m恰有两个交点,再画图分析得到实数m的取值范围.详解:由题得.∴.∵,∴由得f(x)=-m,即y=f(x)的图像与直线y=-m恰有两个交点,结合图像可知-2≤-m<3,即-3<m≤-2.故填点睛:本题的关键是转化,把函数恰有两个不同的零点转化为y=f(x)的图像与直线y=-m 恰有两个交点,后面问题就迎刃而解了.处理零点问题常用数形结合分析解答.16. 当,不等式恒成立,则实数的取值范围是__________.【答案】【解析】分析:先分离参数得到a,构造函数f(x)=.利用导数求出函数的最值即可求解实数a的取值范围.详解:∵x>1时,不等式(x﹣1)e x+1>ax2恒成立∴(x﹣1)e x﹣ax2+1>0恒成立,∴a,在(1,+∞)恒成立,设f(x)=,f′(x)=∵x2e x﹣2(x﹣1)e x+2=e x(x2﹣2x+2)+2=e x[(x﹣1)2+1]+2>0恒成立,∴f′(x)>0,在(1,+∞)恒成立,∴f(x)在(1,+∞)单调递增,∴f(x)min>f(1)=1,∴a≤1.故填(﹣∞,1].点睛:本题的关键是分离参数得到a,再构造函数f(x)=.利用导数求出函数的最小值即可求解实数a的取值范围.处理参数问题常用分离参数的方法,可以提高解题效率,优化解题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对边分别为,,,且.(1)求;(2)若,,为边上一点,且,求的长.【答案】(1);(2).【解析】分析:(1)利用正弦定理边化角,再利用三角恒等变换公式化简,即得A的值. (2)先利用已知条件和余弦定理得到,,,再利用余弦定理求AD的值.详解:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵,,∴.由,得,∴,又,∴.则为等边三角形,且边长为,∴.在中,,,,由余弦定理可得.点睛:本题主要考查利用正弦定理和余弦定理解三角形,考查三角恒等变换能力和计算能力,属于基础题.18. 如图,三棱柱中,,平面.(1)证明:;(2)若,,求二面角的余弦值.【答案】(1)见解析;(2)余弦值为.【解析】分析: (1)先证明平面,即证.(2)先证明,,再建立空间直角坐标系,利用向量法求二面角的余弦值.详解:(1)证明:∵平面,∴.∵,∴,∴平面,∴.(2)解:∵平面,∴,∴四边形为菱形,∴.又,∴与均为正三角形.取的中点,连接,则.由(1)知,则可建立如图所示的空间直角坐标系.设,则,,,,.∴,,.设平面的法向量为,则,∴∴取,则为平面的一个法向量.又为平面的一个法向量,∴.又二面角的平面角为钝角,所以其余弦值为.点睛:本题主要考查空间位置关系的证明和二面角的平面角的计算,主要考查学生的空间想象能力和计算能力.属于中档题.19. 某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:由于工作人员失误,后两栏数据无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场计划在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次.抽奖规则为:从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出个小球,并记录两种颜色小球的数量差的绝对值,当时,消费者可分别获得价值元、元和元的购物券.求参与抽奖的消费者获得购物券的价值的数学期望.【答案】(1) ;(2)见解析.【解析】分析:(1)设所求概率为根据每单消费额的中位数与平均数恰好相等得到p的方程,再解方程即得解. (2)先求、和的概率,再列出分布列,最后计算出数学期望.详解:(1)因消费额在区间的频率为,故中位数估计值为.设所求概率为,而消费额在的概率为.故消费额在区间内的概率为.因此消费额的平均值可估计为.令其与中位数相等,解得.(2)根据题意,,.设抽奖顾客获得的购物券价值为,则的分布列为故(元).点睛:本题主要考查频率分布直方图和随机变量的分布列和数学期望等知识,考查学生的分析能力和计算能力,属于中档题.20. 已知抛物线的焦点为,为轴上的点.(1)当时,过点作直线与相切,求切线的方程;(2)存在过点且倾斜角互补的两条直线,,若,与分别交于,和,四点,且与的面积相等,求实数的取值范围.【答案】(1) 切线的方程为或;(2) 的取值范围为或或. 【解析】分析:(1)设切点为,再求切线的斜率和切点,最后写出直线的点斜式方程化简即得解. (2)先求出的面积为,的面积为.再令它们想到得到找到a的范围.详解:(1)设切点为,则∴点处的切线方程为.∵过点,∴,解得或.当时,切线的方程为或.(2)设直线的方程为,代入得,①,得,②由题意得,直线的方程为,同理可得,即,③②×③得,∴. ④设,,则,.∴.点到的距离为,∴的面积为.同理的面积为.由已知得,化简得,⑤欲使⑤有解:则,∴.又,得,∴.综上,的取值范围为或或.点睛:本题的难点在第(2)问,首先要求出与的面积,涉及到较复杂的字符运算,其次是求出,要想到函数,分析出a的范围,最后是不要漏掉了,其中也包含了a的范围.所以在解答数学问题时,要学会分析数学问题,同时要严谨.21. 已知函数.(1)讨论函数的单调性;(2)定义:“对于在区域上有定义的函数和,若满足恒成立,则称曲线为曲线在区域上的紧邻曲线”.试问曲线与曲线是否存在相同的紧邻直线,若存在,请求出实数的值;若不存在,请说明理由.【答案】(1) 当时,在上单调递减;当时,在上单调递减,在上单调递增;(2)见解析.【解析】分析:(1)先求导,再对m分类讨论,求出函数的单调性.(2)先把命题等价转化为曲线与曲线是否相同的外公切线,再去求两支曲线的外公切线令它们相等,最后转化为唯一解问题求出m的值.详解:(1).当时,,函数在上单调递减;当时,令,得,函数在上单调递减;令,得,函数在上单调递增.综上所述,当时,在上单调递减;当时,在上单调递减,在上单调递增.(2)原命题等价于曲线与曲线是否相同的外公切线.函数在点处的切线方程为,即,曲线在点处的切线方程为,即.曲线与的图象有且仅有一条外公切线,所以有唯一一对满足这个方程组,且,由(1)得代入(2)消去,整理得,关于的方程有唯一解.令,∴.当时,在上单调递减,在上单调递增;所以.因为,;,,只需.令,在为单减函数,且时,,即,所以时,关于的方程有唯一解,此时,外公切线的方程为.∴这两条曲线存在相同的紧邻直线,此时.点睛:(1)本题主要考查利用导数研究函数的单调性、极值、最值和导数的几何意义等知识,也考查了学生的分析问题的能力和计算能力,属于难题. (2)本题难点有二个地方,难点一是要把问题转化为为曲线与曲线是否相同的外公切线,难点二是得到两个切线重合后,如何分析有唯一一对满足这个方程组,且.这个唯一性的问题利用到了又用到了导数的知识.22. 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.(1)求线段中点的轨迹的参数方程;(2)若是(1)中点的轨迹上的动点,求面积的最大值.【答案】(1)点的轨迹的参数方程为(为参数);(2)面积的最大值为.【解析】试题分析:(1)将极坐标方程利用,化为直角坐标方程,利用其参数方程设,则,从而可得线段中点的轨迹的参数方程;(2)由(1)知点的轨迹的普通方程为,直线的方程为.设,利用点到直线距离公式、三角形面积公式以及辅助角公式,结合三角函数的有界性可得面积的最大值.试题解析:(1)由的方程可得,又,,∴的直角坐标方程为,即.设,则,∴点的轨迹的参数方程为(为参数).(2)由(1)知点的轨迹的普通方程为,,,,所以直线的方程为.设,则点到的距离为,∴面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23. 已知函数.(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.【答案】(1) 不等式的解集为{或};(2) .【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,∴.综上,不等式的解集为或.(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解,∴.。

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题

山西省中等职业学校对口升学考试数学试题本试卷分选择题和非选择题两部分。

满分100分,考试时间为90分钟。

选择题一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x |≤2,x ∈R }则P ∩Q 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列 ,12,7,5,3,1-n 则53是它的( )A.第22项B. 第23项C. 第24项D. 第28项 3.[]0)(log log log 543=a ,则 =a ( ) 5 B.25 C. 125 D.625 4.设向量a =(2,-1),b=(x,3)且a⊥b则x=( )A.21B.3C.23D.-25.下列四组函数中,表示同一函数的是( ) A .2)1(与1-=-=x y x yB .11与1--=-=x x y x yC .2lg 2与lg 4x y x y ==D .100lg与2lg xx y =-=6.函数x x ycos 4sin 3+=的最小正周期为( )A. πB. π2C. 2πD.5π7.若函数2()32(1)f x x a x b =+-+在(,1]-∞上为减函数,则 ( )A .2-=aB .2=aC .2-≥aD .2-≤a8.在ABC ∆中,已知222c bc b a ++=,则A ∠的度数为( )3π B. 6π C. 32πD. 3π或32π9.已知直线b a ,是异面直线,直线c a//,那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面10.顶点在原点,对换称轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( ) A.x y162= B. x y 122= C.x y 16-2= D. x y 12-2=非选择题二、填空题(本大题共8小题,每空4分,共计32分。

山西省太原市2018届高考第三次模拟考试数学试题(文)有答案

山西省太原市2018届高考第三次模拟考试数学试题(文)有答案

太原市2018年高三年级模拟试题(三)文科数学一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}22|10,|3A x x B x x ⎧⎫=-<=>⎨⎬⎩⎭,则A B =( ) A .()1,1- B .()1,+∞ C .21,3⎛⎫- ⎪⎝⎭ D .2,13⎛⎫ ⎪⎝⎭2.已知复数z 满足4312ii z i+=+,则复数z 在复平面内对应的点在( ) A . 第一象限 B .第二象限 C .第三象限 D .第四象限3. 设命题:p 函数sin 2y x =的最小正周期为π;命题:q 函数cos y x =的图象关于直线2x π=对称,则下列结论正确的是( )A .p 为假B .q ⌝为假C .p q ∨为假D .p q ∧为假 4. 若01a b <<<,则1,log ,log b b aa ab 的大小关系为( )A .1log log b b aa ab >> B .1log log b b aa b a >>C. 1log log b b aa b a >> D .1log log b b aa ab >>5. 中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数n 除以正整数m 后的余数为r ,则记为()mod n r m =,例如()112mod3=.现将该问题设计一个程序框图,执行该程序框图,则输出的n 等于( )A .21B . 22 C. 23 D .246. 已知等比数列{}n a 满足12233,6a a a a +=+=,则8a =( ) A .243 B .128 C. 81 D .647.设不等式组31036x y x y +≥⎧⎨+≤⎩表示的平面区域为D ,若在区域D 上存在函数()log 1a y x a =>图象上的点,则实数a 的取值范围是( )A .()3,+∞B .()1,3 C. [)3,+∞ D .(]1,3 8.已知函数()2cos 3x f x πϕ⎛⎫=+ ⎪⎝⎭的一个对称中心是()2,0,且()()13f f >,要得到函数()f x 的图象,可将函数2cos3xy π=的图像( )A . 向右平移12个单位长度 B . 向右平移6π个单位长度 C. 向左平移12个单位长度 D .向左平移6π个单位长度 9. 已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为16,左焦点为F ,M 是双曲线C 的一条渐近线上的点,且OM MF ⊥,O 为坐标原点,若16OMF S ∆=,则双曲线C 的离心率为( )A .2 B .210.如图是某几何体的三视图,则这个几何体的体积是( )A .22π+B .23π+C. 43π+D .42π+11. 已知抛物线24y x =的焦点为F ,准线为l ,P 是l 上一点,直线PF 与抛物线交于,M N 两点,若3PF MF =,则MN =( ) A .163B .8 C. 16 D.312.已知函数()()2ln x x t f x x+-=,若对任意的[]()()1,2,0x f x x f x '∈+>恒成立,则实数t 的取值范围是( )A .(-∞ B .3,2⎛⎫-∞ ⎪⎝⎭ C. 3,2⎛⎤-∞ ⎥⎝⎦ D .32,2⎫⎪⎭ 二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知函数()2,02,0x x a x f x x -⎧≥=⎨<⎩若()11f f -=-⎡⎤⎣⎦,则实数a =. 14.在ABC ∆中,若()274cos cos 222A B C -+=,则角A =. 15.已知,a b 是单位向量,0a b =,若向量c 满足1c a b --=,则c 的最大值是.16.已知圆22:210C x y x +--=,直线:34120l x y -+=,在圆C 内任取一点P ,则P 到直线的距离大于2的概率为.三、解答题 :共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n nnb a =,求数列{}n b 的前n 项和n S .18.按照我国《机动车交通事故责任强制保险条例》规定,交强险是车主必须为机动车购买的险种,若普通7座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是保费浮动机制,保费与上一、二、三个年度车辆发生道路交通事故的情况相关联,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:下一年续保时的情况,统计得到了下面的表格: 率;(2)某销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基准保费的车辆记为事故车.①若该销售商部门店内现有6辆该品牌二手车(车龄已满3年),其中两辆事故车,四辆非事故车.某顾客在店内随机挑选两辆车,求这两辆车中恰好有一辆事故车的概率;②以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率.该销售商一次购进120辆(车龄已满三年)该品牌二手车,若购进一辆事故车亏损4000元,一辆非事故车盈利8000元.试估计这批二手车一辆车获得利润的平均值.19.已知空间几何体ABCDE 中,BCD ∆与CDE ∆均为边长为2的等边三角形,ABC ∆为腰长为3的等腰三角形,平面CDE ⊥平面BCD ,平面ABC ⊥平面,,BCD M N 分别为,DB DC 的中点. (1)求证:平面//EMN 平面ABC ; (2)求三棱锥A ECB -的体积.20. 已知抛物线21:y 8C x =的焦点也是椭圆()22222:10x y C a b a b+=>>的一个焦点,点()0,2P 在椭圆短轴CD上,且1PC PD =-. (1)求椭圆2C 的方程;(2)设Q 为椭圆2C 上的一个不在x 轴上的动点,O 为坐标原点,过椭圆的右焦点2F 作OQ 的平行线,交曲线2C 于,M N 两点,求QMN ∆面积的最大值.21.已知函数()2ln x af x e x -=-.(1)当12a =时,求()f x 的单调区间; (2)当1a ≤时,证明:()0f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,圆C 的参数方程为3cos 33sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的普通方程;(2)直线l 的极坐标方程是2sin 6πρθ⎛⎫-= ⎪⎝⎭:6OM πθ5=与圆C 的交点为P ,与直线l 的交点为Q ,求线段PQ 的长. 23.选修4-5:不等式选讲 设函数()21f x x x =++-.(1)求()f x 的最小值及取得最小值时x 的取值范围;(2)若不等式()10f x ax +->的解集为R ,求实数a 的取值范围.试卷答案一、选择题1-5: DCDDC 6-10: BCAAA 11、12:CB 二、填空题13. 14-14. 3π1 16.324ππ+ 三、解答题 17.解:(1)∵121n n n a a a +=+,∴1112n na a +-=,∴1n a ⎧⎫⎨⎬⎩⎭是等差数列, ∴()111122n n n a a =+-=, 即12n a n=; (2)∵22n n n b =, ∴1221231222n n n nS b b b -=+++=++++, 则23112322222n n n S =++++, 两式相减得23111111112122222222n n n nn n nS -⎛⎫=+++++-=-- ⎪⎝⎭, ∴1242n n nS -+=-. 18.解:(1)所求概率为1551804+=; (2)①设两辆事故车为,A B ,四辆非事故车为,,,a b c d ,从这六辆车中随机挑取两辆车共有(),A B ,()()()()()()()()()(),,,,,,,,,,,,,,,,,,,A a A b A c A d B a B b B c B d a b a c ,()()()(),,,,,,,a d b c b d c d 共15种情况,其中两辆车中恰有一车事故车共有(),A a ,()()()()()()(),,,,,,,,,,,,,A b A c A d B a B b B c B d 8种情况,所以所求概率为815; ②由统计数据可知,若该销售商一次购进120辆(车龄已满三年)该品牌二手车中,有事故车30辆,非事故车90辆,所以一辆获得利润的平均值为()()13040009080005000120⨯-+⨯⨯=⎡⎤⎣⎦. 19.证明:(1)取BC 中点H ,连结AH , ∵ABC ∆为等腰三角形, ∴AH BC ⊥,又平面ABC ⊥平面,BCD AH ⊥平面ABC , ∴AH ⊥平面BCD ,同理可证EN ⊥平面BCD , ∴//EN AH ,∵EN ⊄平面,ABC AH ⊂平面ABC , ∴//EN 平面ABC ,又,M N 分别为,BD DC 中点,∴//MN BC , ∵MN ⊄平面,ABC BC ⊂平面ABC , ∴//MN 平面ABC , 又MNEN N =,∴平面//EMN 平面ABC ;(2)连结DH ,取CH 中点G ,连结NG ,则//NG DH , 由(1)知//EN 平面ABC ,所以点E 到平面ABC 的距离与点N 到平面ABC 的距离相等, 又BCD ∆是边长为2的等边三角形,∴DH BC ⊥, 又平面ABC BCD ⊥平面,平面ABC平面,BCD BC DH =⊂平面BCD ,∴DH ⊥平面ABC ,∴NG ⊥平面ABC ,∴DH =N 为CD 中点,∴NG =, 又3,2AC AB BC ===,∴122ABC S BC AH ∆== ∴1633E ABC N ABC ABC V V S NG --∆===. 20.解:(1)由21:8C y x =,知焦点坐标为()2,0,所以224a b -=,由已知,点,C D 的坐标分别为()()0,,0,b b -,又1PC PD =-,于是241b -=-, 解得225,9b a ==,所以椭圆2C 的方程为22195x y +=; (2)设()()()112233,,,,,M x y N x y Q x y ,直线MN 的方程为2x my =+,由222195x my x y =+⎧⎪⎨+=⎪⎩,可得()225920250m y my ++-=,则1212222025,5959m y y y y m m -+==-++, 所以()2230159m MN m +===+,t =,则()()222230303011,4545195t t m t t S t t t t=-≥===+-++, 所以()45f t t t=+在[)1,+∞上单调递增, 所以当1t =时,()f t 取得最小值,其值为9. 所以QMN ∆的面积的最大值为103. 21.解:(1)12a =时,()()()111ln ,0x x f x e x f x e x x--'=-=->, 因为()10f '=,故01x <<时,()0f x '<;1x >时,()0f x '>, 所以()f x 在()0,1上单调递减,在()1,+∞上单调递增; (2)当1a ≤时,()222,ln x x a x f x e x --≥-≥-,令()2ln x x ex ϕ-=-,则()21x x e xϕ-'=-, 显然()x ϕ'在()0,+∞上单调递增,且()()10,20ϕϕ''<>,所以()x ϕ'在()0,+∞上存在唯一零点()00,1,2x x ∈, 又00x x <<时,()00,x x x ϕ'<>时,()0x ϕ'>, 所以()0,x ∈+∞时,()()0200ln x x x e x ϕϕ-≥=-,由()00x ϕ'=,得0022001,x x e x e x --==, ∴()()02000000111ln 22220x x e x x x x x ϕ-=-=--=+->-=,综上,当1a ≤时,()0f x > . 22.解:(1)圆C 的参数方程为3cos 33sin x y ϕϕ=⎧⎨=+⎩,(ϕ为参数),∴圆C 的普通方程为()2239x y +-=;(2)化圆C 的普通方程为极坐标方程6sin ρθ=,设()11,P ρθ,则由6sin 6ρθπθ=⎧⎪5⎨=⎪⎩解得1153,6πρθ==, 设()22,Q ρθ,则由2sin 656πρθπθ⎧⎛⎫-= ⎪⎪⎪⎝⎭⎨⎪=⎪⎩,解得2254,6πρθ==,∴211PQ ρρ=-=.23.解:(1)∵函数()()21213f x x x x x =++-≥+--=, 故函数()21f x x x =++-的最小值为3, 此时21x -≤≤;(2)当不等式()10f x ax +->的解集为R ,函数()1f x ax >-+恒成立, 即()f x 的图象恒位于直线1y ax =-+的上方,函数()21,2213,2121,1x x f x x x x x x --<-⎧⎪=++-=-≤≤⎨⎪+>⎩,而函数1y ax =-+表示过点()0,1,斜率为a -的一条直线, 如图所示:当直线1y ax =-+过点()1,3A 时,31a =-+, ∴2a =-,当直线1y ax =-+过点()2,3B -时,321a =+,∴1a =, 数形结合可得a 的取值范围为()2,1-.。

山西省2018届高三第二次模拟考试数学(理)试题(解析版) (2)

山西省2018届高三第二次模拟考试数学(理)试题(解析版) (2)

1.A【解析】分析:先化简集合B,再求A∩B,即得解.详解:由题得,∴.故选A.点睛:本题主要考查集合的交集运算,属于基础题.2.D【解析】分析:先化简复数z,再求z的共轭复数,再判断的共轭复数在复平面对应的点的坐标.详解:由题得,∴,所以的共轭复数在复平面对应的点的坐标是(-1,-3).故选D.点睛:本题主要考查复数的运算、共轭复数和复数的几何意义,属于基础题.3.D点睛:本题主要考查正态分布及其计算,对于这些计算,千万不要死记硬背,要结合正态分布的图像理解掌握,就能融会贯通.4.B【解析】函数为奇函数,所以可得,,故选D.5.B【解析】分析:先分析得到四边形PMON是正方形,再分析出,再根据点到直线的距离求出b的值.详解:由题得,∴四边形PMON是正方形,∴|PO|=,∵满足以上条件的点有且只有一个,∴,∴.故选B.点睛:本题的关键是对已知条件的分析转化,首先要分析出四边形PMON是正方形,再分析出,再根据点到直线的距离求出b 的值. 6.C点睛:本题考查简单线性规划,数形结合分析是解决问题的关键.7.A 【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为, 其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状. 8.A点睛:本题主要考查二项式展开式的通项和二项式展开式的系数,属于基础题. 9.D 【解析】分析:直接按照程序框图运行程序,找到函数的周期,即可求出输出值.详解:当n=1,S=0时,S= sin3π=;执行第一次循环可得2sin 3π=;执行第二次循环可得sin π=执行第三次循环可得4sin3π=;执行第四次循环可得n=5,S=5sin 023π+=; 执行第五次循环可得n=6,S= 6sin03π=;执行第六次循环可得归纳可知,其周期为6,所以20182S S ==所以输出点睛:本题主要考查程序框图和数列的周期性,属于基础题. 10.C点睛:求离心率的取值,一般是找到关于离心率的方程,再解方程.关键是找方程,本题是根据直线和圆相切得到圆心到直线的距离等于半径找到的方程.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段PA ,PB ,PC 两两互相垂直,且PA =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.12.C 【解析】分析: 由等差数列的求和公式可得首项,tana n tana n+1=﹣1=﹣1,运用裂项相消求和,结合两角和差的正切公式,即可得到所求和. 详解: 等差数列{a n }的公差d 为,前8项和为6π, 11.D 12.C点睛:解答本题的关键是化简,求和首先要看通项的特征, tana n tana n+1=﹣1=﹣1,化简到这里之后,就可以再利用裂项相消求和了.化简时要注意观察已知条件,看到要联想到差角的正切公式,再化简.13.尺【解析】分析:先确定等差数列的首项和末项,再利用等差数列的求和公式求和.详解:由题得三十日的织布数组成一个首项是5尺末项为1尺的等差数列,所以三十日的总的织布数为.故填90尺.学@科网点睛:本题主要考查等差数列的求和公式,属于基础题.14.【解析】分析:根据平面向量的数量积与夹角、模长公式,计算即可.详解:向量与的夹角是,且||=|+|,∴=+2•+,∴2•+=0,即2||×||×cos+=0,化简得||=||,∴cosθ====﹣,∴向量与+的夹角是120°.故答案为:120°.点睛:本题考查了利用平面向量的数量积求夹角、模长的问题,考查了运算能力及逻辑推理能力.点睛:本题的关键是转化,把函数恰有两个不同的零点转化为y=f(x)的图像与直线y=-m恰有两个交点,后面问题就迎刃而解了.处理零点问题常用数形结合分析解答.16.【解析】分析:先分离参数得到a,构造函数f(x)=.利用导数求出函数的最值即可求解实数a的取值范围.详解:∵x>1时,不等式(x﹣1)e x+1>ax2恒成立∴(x﹣1)e x﹣ax2+1>0恒成立,∴a,在(1,+∞)恒成立,点睛:本题的关键是分离参数得到a,再构造函数f(x)=.利用导数求出函数的最小值即可求解实数a的取值范围.处理参数问题常用分离参数的方法,可以提高解题效率,优化解题.17.(1);(2).【解析】分析:(1)利用正弦定理边化角,再利用三角恒等变换公式化简,即得A的值. (2)先利用已知条件和余弦定理得到,,,再利用余弦定理求AD的值.详解:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵,,∴.由,得,∴,又,∴.则为等边三角形,且边长为,∴.在中,,,,由余弦定理可得.点睛:本题主要考查利用正弦定理和余弦定理解三角形,考查三角恒等变换能力和计算能力,属于基础题. 18.(1)见解析;(2)余弦值为.∴.又二面角的平面角为钝角,所以其余弦值为.点睛:本题主要考查空间位置关系的证明和二面角的平面角的计算,主要考查学生的空间想象能力和计算能力.属于中档题.19.(1) ;(2)见解析.设抽奖顾客获得的购物券价值为,则的分布列为故(元).点睛:本题主要考查频率分布直方图和随机变量的分布列和数学期望等知识,考查学生的分析能力和计算能力,属于中档题.20.(1) 切线的方程为或;(2) 的取值范围为或或.②×③得,∴. ④设,,则,.∴.点到的距离为,∴的面积为.同理的面积为.由已知得,化简得,⑤欲使⑤有解:则,∴.又,得,∴.综上,的取值范围为或或.点睛:本题的难点在第(2)问,首先要求出与的面积,涉及到较复杂的字符运算,其次是求出,要想到函数,分析出a的范围,最后是不要漏掉了,其中也包含了a的范围.所以在解答数学问题时,要学会分析数学问题,同时要严谨.21.(1) 当时,在上单调递减;当时,在上单调递减,在上单调递增;(2)见解析.曲线在点处的切线方程为,即.曲线与的图象有且仅有一条外公切线,所以点睛:(1)本题主要考查利用导数研究函数的单调性、极值、最值和导数的几何意义等知识,也考查了学生的分析问题的能力和计算能力,属于难题. (2)本题难点有二个地方,难点一是要把问题转化为为曲线与曲线是否相同的外公切线,难点二是得到两个切线重合后,如何分析有唯一一对满足这个方程组,且.这个唯一性的问题利用到了又用到了导数的知识. 22.(1)点的轨迹的参数方程为(为参数);(2)面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23.(1) 不等式的解集为{或};(2) .【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;。

(解析版)山西省2018届高三第二次模拟考试数学(文)试题

(解析版)山西省2018届高三第二次模拟考试数学(文)试题

文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,全集,则()A. B. C. D.【答案】A【解析】因为集合,,则,故选A.2. 已知平面向量,,则向量的模是()A. B. C. D.【答案】C【解析】因为向量,,,,故选C.3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】当时,满足,但不成立,当时,一定成立,所以是的必要不充分条件,故选B.4. 问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是()A. 尺 B. 尺 C. 尺 D. 尺【答案】A【解析】由已知可得该女子三十日每日织布数组成一个等差数列,设为,且,则,故选A.5. 若函数为奇函数,则()A. B. C. D.【答案】D【解析】分析:利用奇偶性,先求出,再求出的值即可.详解:设x>0,则﹣x<0,故f(﹣x)=2x﹣2=﹣f(x),故x>0时,f(x)=2﹣2x,由g(2)=f(2)=2﹣4=﹣2,故f(g(2))=f(﹣2)=﹣f(2)=2,故选:D.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6. 从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A. B. C. D.【答案】C【解析】记个红球分别为,个黑球分别为,则随机取出两个小球共有种可能:,其中两个小球同色共有种可能,,根据古典概型概率公式可得所求概率为,故选C.【方法点睛】本题主要考查古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.7. 已知为直线上的点,过点作圆的切线,切点为,,若,则这样的点有()A. 个B. 个C. 个D. 无数个【答案】B【解析】连接,则四边形为正方形,因为圆的半径为,,原点(圆心)到直线距离为符合条件的只有一个,故选B.8. 某几何体的三视图如图所示,若图中小正方形的边长均为,则该几何体的体积是()A. B. C. D.【答案】A【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为,其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9. 已知函数的周期为,当时,方程恰有两个不同的实数解,,则()A. B. C. D.【答案】B【解析】函数,由周期,可得,,,且的对称轴为,方程恰有两个不同的实数解,,则,故选B.10. 中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等?”意思是现有松树高尺,竹子高尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?如图是根据这一问题所编制的一个程序框图,若输入,,输出,则程序框图中的中应填入()A. ?B. ?C. ?D. ?【答案】C【解析】当时,;当时,;当时,;当时,,不满足运行条件,输出程序框图中,应填,故选C.11. 已知函数,若曲线上存在点使得,则实数的取值范围是()A. B.C. D.【答案】B【解析】因为曲线在上递增,所以曲线上存在点,可知,由,可得,而在上单调递减,,故选B.12. 在四面体中,,,底面,的面积是,若该四面体的顶点均在球的表面上,则球的表面积是()A. B. C. D.【答案】D【解析】四面体与球的位置关系如图所示,设为的中点,为外接球的圆心,因为,,由余弦定理可得,由正弦定理可得由勾股定理可得,又,,在四边形中,,,计算可得,则球的表面积是,故选D.【方法点晴】本题主要考查球的性质及圆内接三角形的性质、正弦定理与余弦定理法应用及球的表面积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 复数满足,则复数的共轭复数__________.【答案】【解析】由得,,故答案为.14. 已知实数,满足约束条件则的最大值是__________.【答案】8【解析】试题分析:要求目标函数的最大值,即求的最小值.首先画出可行域,由图知在直线和直线的交点处取得最小值,即,所以的最大值为.考点:线性规划;15. 是为双曲线上的点,,分别为的左、右焦点,且,与轴交于点,为坐标原点,若四边形有内切圆,则的离心率为__________.【答案】2【解析】设,可得,则四边形的内切圆的圆心为,半径为的方程为,圆心到直线的距离等于,即,化简得,,故答案为.【方法点睛】本题主要考查双曲线的方程与性质以及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.16. 数列满足若,则数列的前项的和是__________.【答案】450【解析】分析:根据递推关系求出数列的前几项,不难发现项的变化具有周期性,从而得到数列的前项的和.详解:∵数列{a n}满足,∵a1=34,∴a2==17,a3=3a2+1=3×17+1=52,a4==26,a5==13,a6=3a5+1=40,a7==20,a8==10,a9==5,a10=3a9+1=16,a11==8,a12==4,a13==2,a14==1,同理可得:a15=4,a16=2,a17=1,…….可得此数列从第12项开始为周期数列,周期为3.则数列{a n}的前100项的和=(a1+a2+……+a11)+a12+a13+29(a14+a15+a16)=(34+17+52+26+13+40+20+10+5+16+8)+4+2+29×(1+4+2)=450.故答案为:450.点睛:本题考查了分段形式的递推关系,数列的周期性.数列作为特殊的函数,从函数角度思考问题,也是解题的一个角度,比如利用数列的单调性、周期性、对称性、最值等等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对边分别为,,,且.(1)求;(2)若,且的面积为,求的周长.【答案】(1);(2)6.【解析】试题分析:(1)由根据正弦定理可得,利用两角和的正弦公式及诱导公式可得,∴;(2)由的面积为,可得,再利用余弦定理可得,从而可得的周长. 试题解析:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵的面积为,∴,∴.由,及,得,∴.又,∴.故其周长为.18. 如图,三棱柱中,,平面.(1)证明:平面平面;(2)若,,求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)由平面,可得.由,可得,由线面平行的判定定理可得平面,从而可得平面平面;(2)设点到平面的距离为.则,又,从而可得点到平面的距离为.试题解析:(1)证明:∵平面,∴.∵,∴,∴平面.又平面,∴平面平面.(2)解法一:取的中点,连接.∵,∴.又平面平面,且交线为,则平面.∵平面,∴,∴四边形为菱形,∴.又,∴是边长为正三角形,∴.∴.设点到平面的距离为.则.又,∴.所以点到平面的距离为.解法二:利用平面转化为求点到平面的距离,即.19. 某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量比去年同期增长,式预测商场今年国庆期间采办奖品的开销.【答案】(1) ;(2)580000.【解析】试题分析:(1)由消费在区间的频率为,可知中位数估计值为,设所求概率为,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和等于求解即可;(2)根据,解得,可得一等奖、二等奖、三等奖的中奖率分别为,,,从而可得一等奖、二等奖、三等奖中奖单数可估计为,,,进而可得结果......................试题解析:(1)因消费在区间的频率为,故中位数估计值即为.设所求概率为,而消费在的概率为.故消费在区间内的概率为.因此消费额的平均值可估计为.令其与中位数相等,解得.(2)设等比数列公比为,根据题意,即,解得.故一等奖、二等奖、三等奖的中奖率分别为,,.今年的购物单总数约为.其中具有抽奖资格的单数为,故一等奖、二等奖、三等奖中奖单数可估计为,,.于是,采购奖品的开销可估计为(元).20. 已知抛物线的焦点为,为轴上的点.(1)过点作直线与相切,求切线的方程;(2)如果存在过点的直线与抛物线交于,两点,且直线与的倾斜角互补,求实数的取值范围.【答案】(1) 切线的方程为或;(2) .【解析】试题分析:(1)设切点为,利用导数求出切线斜率,由点斜式求得切线方程,将代入切线方程,求出或,进而可得切线方程;(2)设直线的方程为,代入得,根据斜率公式可得,韦达定理得,利用判别式大于零可得结果.试题解析:(1)设切点为,则.∴点处的切线方程为.∵过点,∴,解得或.当时,切线的方程为,当时,切线的方程为或.(2)设直线的方程为,代入得.设,,则,.由已知得,即,∴.把①代入②得,③当时,显然成立,当时,方程③有解,∴,解得,且.综上,.21. 已知函数.(1)讨论函数的单调性;(2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1) 当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2) .【解析】试题分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;;(2)原命题等价于不等式在上恒成立,即,不等式恒成立,可化为恒成立,只需大于的最大值即可.试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.22. 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.(1)求线段中点的轨迹的参数方程;(2)若是(1)中点的轨迹上的动点,求面积的最大值.【答案】(1) 点的轨迹的参数方程为(为参数);(2) 面积的最大值为.【解析】试题分析:(1)将极坐标方程利用,化为直角坐标方程,利用其参数方程设,则,从而可得线段中点的轨迹的参数方程;(2)由(1)知点的轨迹的普通方程为,直线的方程为.设,利用点到直线距离公式、三角形面积公式以及辅助角公式,结合三角函数的有界性可得面积的最大值.试题解析:(1)由的方程可得,又,,∴的直角坐标方程为,即.设,则,∴点的轨迹的参数方程为(为参数).(2)由(1)知点的轨迹的普通方程为,,,,所以直线的方程为.设,则点到的距离为,∴面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23. 已知函数.(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.【答案】(1) 不等式的解集为;(2).【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,∴.综上,不等式的解集为或.(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解,∴.。

中职对口升学-2018年高考数学考试卷-修改版

第二部分 数学班级: 学号: 姓名: 一、单项选择:(每小题5分,共40分)1.下列关系正确的是( ).A.}{{0}φ≥B.{2,3}1∉C.0}4- x {x 22=∉ D.0}x 3∣{x 0>∈ 2.不等式42)(f -=x x 定义域是( ).A.),2[+∞B. ),2-[+∞C.]2,∞-( D. ]2-,∞-( 3.下列函数中,在),1[+∞是减函数是( ).A.)1(log )(2-=x x fB.1)(2+=x x fC. xx f 1)(= D.x x f 2)(= 4.已知向量),(3-4=→a ,)34-(,=→b ,则向量a 与向量b 的关系是( ). A.平行向量 B.相反向量 C.垂直向量 D.无法确定5.)13sin(2y 函数+=x 的周期可能是( ). A. 2πB. π2C. 25π D.π3 6.圆36)-()(22=++=b y a x y 的圆心坐标是( ).A. )(b a ,B. )(b a -,-C.)(b a -,D.)(b a ,-7.下列说法不正确的是( ).A.不在同一条直线上的三点一定能确定一个平面。

B.若两条直线同时垂直于同一条直线,那么这两条直线可能是异面直线。

C.两条直线一定能够确定一个平面。

D.一条直线与一个平面垂直,则这条直线垂直该平面内任意一条直线。

8.在一个不透明的袋子中,有10个黑球,8个红球,2个蓝球,某人从中任意取出一个球,那么取中蓝球的概率是( ). A.21 B.101 C.52 D.61 二、 填空题:(每题6分,共30分)9.)(67-cos 的值是 。

10. 直线x+y+2=0与2x-y-2=0的交点为(a ,b ),那么a-b 的值为 。

11. 某班有男生30人,女生20人,如果选男、女各1人作为学生代表参加梧州技能比赛,共有 种方法。

12.如右下图的一块正方体木料,若边长为a ,平面BCC ’B ’内的一点P 是B ’C 和BC ’的交点,则四棱锥P-ABCD 的体积为 。

2018届山西省全国普通高等学校招生全国统一考试模拟数学(文)试题-含答案

2018届山西省全国普通高等学校招生全国统一考试模拟数学(文)试题本试卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第I卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}2102420A B x N x x =-=∈-+≥,,,,,则 A .{}2A B ⋂=B .{}2,4A B ⋂=C .{}1,0,2,4A B ⋃=-D .{}1,0,1,2,4A B ⋃=- 2.已知复数z =其中i 为虚数单位),则z 在复平面内对应的点在A .第一象限B .第三象限C .直线y =上D .直线y 上3.A 地的天气预报显示,A 地在今后的三天中,每一天有强浓雾的概率为30%,现用随机模拟的方法估计这三天中至少有两天有强浓雾的概率:先利用计算器产生0—9之间整数值的随机数,并用0,1,2,3,4,5,6表示没有强浓雾,用7,8,9表示有强浓雾,再以每3个随机数作为一组,代表三天的天气情况,产生了如下20组随机数:402 978 191 925 273 842 812 479 569 683 231 357 394 027 506 588 730 113 537 779 则这三天中至少有两天有强浓雾的概率近似为 A .14B .25C .710D .154.已知直线210x y --=的倾斜角为α,则2sin 22cos αα-=A .25B .65-C .45-D .125-5.已知函数()()()21211012f x x a x a a ⎛⎫=--->≠+∞ ⎪⎝⎭其中,且在区间,上单调递增,则函数()g x =A .(),a -∞B .()0,aC .(]0,aD .(),a +∞6.已知抛物线()2:20C y px p =>的焦点为F ,准线为l ,过抛物线C 上的点()014,A y AA l ⊥作于点1123A A AF p π∠==,若,则 A.6 B.12 C.24 D.487.一个几何体的三视图如图所示,则该几何体的表面积为A .4+B .4+C .8+D .4+8.执行如图所示的程序框图,若输入的240a b ==,则输出的a 值为 A .3 B .16 C .48 D .649.中国古代数学著作《算法统宗》中有这样一个“九儿问甲歌”问题:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为3456719n a a a a a a a a ++++--=,则A .46B .69 C.92 D .13810.国庆期间,小张、小王、小李、小赵四人中恰有一人到香港旅游.小张说:“小王、小李、小赵三人中有一人去了香港旅游”;小王说:“小李去了香港旅游”;小李说:“去香港旅游的是小张和小王中的一个人”;小赵说:“小王说的是对的”.若这四人中恰有两人说的是对的,则去香港旅游的是 A .小张 B .小王 C .小李 D .小赵11.△ABC 的内角A ,B ,C 的对边分别是()()222,,.cos cos a b c a b c a B b A +-⋅+已知,2abc c ABC ==∆,则周长的取值范围为A .(0,6]B .(4,6)C .(4,6]D .(4,18]12.已知函数()()()ln 02mf x x m x m f x =-->,若恰有两个零点()1212,x x x x <,则有 A .1< x 1< x 2<mB .m< x 1< x 2<m 2C .1< x 1<m 2< x 2D .1< x 1<m< x 2<m2第Ⅱ卷本卷包括必考题和选考题两部分。

山西省2018届高三第二次模拟考试数学(文)试题(解析版)

文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,全集,则()A. B. C. D.【答案】A【解析】因为集合,,则,故选A.2. 已知平面向量,,则向量的模是()A. B. C. D.【答案】C【解析】因为向量,,,,故选C.3. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B【解析】当时,满足,但不成立,当时,一定成立,所以是的必要不充分条件,故选B.4. 问题“今有女子不善织布,逐日所织的布以同数递减,初日织五尺,末一日织一尺,计织三十日,问共织几何?”源自南北朝张邱建所著的《张邱建算经》,该问题的答案是()A. 尺B. 尺C. 尺D. 尺【答案】A【解析】由已知可得该女子三十日每日织布数组成一个等差数列,设为,且,则,故选A.5. 若函数为奇函数,则()A. B. C. D.【答案】D【解析】分析:利用奇偶性,先求出,再求出的值即可.详解:设x>0,则﹣x<0,故f(﹣x)=2x﹣2=﹣f(x),故x>0时,f(x)=2﹣2x,由g(2)=f(2)=2﹣4=﹣2,故f(g(2))=f(﹣2)=﹣f(2)=2,故选:D.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6. 从装有大小材质完全相同的个红球和个黑球的不透明口袋中,随机摸出两个小球,则两个小球同色的概率是()A. B. C. D.【答案】C【解析】记个红球分别为,个黑球分别为,则随机取出两个小球共有种可能:,其中两个小球同色共有种可能,,根据古典概型概率公式可得所求概率为,故选C.【方法点睛】本题主要考查古典概型概率公式的应用,属于难题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有(1)枚举法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,…. ,再,…..依次….… 这样才能避免多写、漏写现象的发生.7. 已知为直线上的点,过点作圆的切线,切点为,,若,则这样的点有()A. 个B. 个C. 个D. 无数个【答案】B【解析】连接,则四边形为正方形,因为圆的半径为,,原点(圆心)到直线距离为符合条件的只有一个,故选B.8. 某几何体的三视图如图所示,若图中小正方形的边长均为,则该几何体的体积是()A. B. C. D.【答案】A【解析】由三视图可知,该几何体是由半个圆柱与半个圆锥组合而成,其中圆柱的底面半径为,高为,圆锥的底面半径和高均为,其体积为,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题. 三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.9. 已知函数的周期为,当时,方程恰有两个不同的实数解,,则()A. B. C. D.【答案】B【解析】函数,由周期,可得,,,且的对称轴为,方程恰有两个不同的实数解,,则,故选B.10. 中国古代数学著作《算学启蒙》中有关于“松竹并生”的问题“松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等?”意思是现有松树高尺,竹子高尺,松树每天长自己高度的一半,竹子每天长自己高度的一倍,问在第几天会出现松树和竹子一般高?如图是根据这一问题所编制的一个程序框图,若输入,,输出,则程序框图中的中应填入()A. ?B. ?C. ?D. ?【答案】C【解析】当时,;当时,;当时,;当时,,不满足运行条件,输出程序框图中,应填,故选C.11. 已知函数,若曲线上存在点使得,则实数的取值范围是()A. B.C. D.【答案】B【解析】因为曲线在上递增,所以曲线上存在点,可知,由,可得,而在上单调递减,,故选B.12. 在四面体中,,,底面,的面积是,若该四面体的顶点均在球的表面上,则球的表面积是()A. B. C. D.【答案】D【解析】四面体与球的位置关系如图所示,设为的中点,为外接球的圆心,因为,,由余弦定理可得,由正弦定理可得由勾股定理可得,又,,在四边形中,,,计算可得,则球的表面积是,故选D.【方法点晴】本题主要考查球的性质及圆内接三角形的性质、正弦定理与余弦定理法应用及球的表面积公式,属于难题.球内接多面体问题是将多面体和旋转体相结合的题型,既能考查旋转体的对称形又能考查多面体的各种位置关系,做题过程中主要注意以下两点:①多面体每个面都分别在一个圆面上,圆心是多边形外接圆圆心;②注意运用性质.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 复数满足,则复数的共轭复数__________.【答案】【解析】由得,,故答案为.14. 已知实数,满足约束条件则的最大值是__________.【答案】8【解析】试题分析:要求目标函数的最大值,即求的最小值.首先画出可行域,由图知在直线和直线的交点处取得最小值,即,所以的最大值为.考点:线性规划;15. 是为双曲线上的点,,分别为的左、右焦点,且,与轴交于点,为坐标原点,若四边形有内切圆,则的离心率为__________.【答案】2【解析】设,可得,则四边形的内切圆的圆心为,半径为的方程为,圆心到直线的距离等于,即,化简得,,故答案为.【方法点睛】本题主要考查双曲线的方程与性质以及离心率,属于难题. 离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.16. 数列满足若,则数列的前项的和是__________.【答案】450【解析】分析:根据递推关系求出数列的前几项,不难发现项的变化具有周期性,从而得到数列的前项的和.详解:∵数列{a n}满足,∵a1=34,∴a2==17,a3=3a2+1=3×17+1=52,a4==26,a5==13,a6=3a5+1=40,a7==20,a8==10,a9==5,a10=3a9+1=16,a11==8,a12==4,a13==2,a14==1,同理可得:a15=4,a16=2,a17=1,…….可得此数列从第12项开始为周期数列,周期为3.则数列{a n}的前100项的和=(a1+a2+……+a11)+a12+a13+29(a14+a15+a16)=(34+17+52+26+13+40+20+10+5+16+8)+4+2+29×(1+4+2)=450.故答案为:450.点睛:本题考查了分段形式的递推关系,数列的周期性.数列作为特殊的函数,从函数角度思考问题,也是解题的一个角度,比如利用数列的单调性、周期性、对称性、最值等等.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,内角,,的对边分别为,,,且.(1)求;(2)若,且的面积为,求的周长.【答案】(1);(2)6.【解析】试题分析:(1)由根据正弦定理可得,利用两角和的正弦公式及诱导公式可得,∴;(2)由的面积为,可得,再利用余弦定理可得,从而可得的周长.试题解析:(1)∵,∴.∴,∴.∵,∴,∴,∴.(2)∵的面积为,∴,∴.由,及,得,∴.又,∴.故其周长为.18. 如图,三棱柱中,,平面.(1)证明:平面平面;(2)若,,求点到平面的距离.【答案】(1)见解析;(2).【解析】试题分析:(1)由平面,可得.由,可得,由线面平行的判定定理可得平面,从而可得平面平面;(2)设点到平面的距离为.则,又,从而可得点到平面的距离为.试题解析:(1)证明:∵平面,∴.∵,∴,∴平面.又平面,∴平面平面.(2)解法一:取的中点,连接.∵,∴.又平面平面,且交线为,则平面.∵平面,∴,∴四边形为菱形,∴.又,∴是边长为正三角形,∴.∴.设点到平面的距离为.则.又,∴.所以点到平面的距离为.解法二:利用平面转化为求点到平面的距离,即.19. 某大型商场去年国庆期间累计生成万张购物单,从中随机抽出张,对每单消费金额进行统计得到下表:由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等.用频率估计概率,完成下列问题:(1)估计去年国庆期间该商场累计生成的购物单中,单笔消费额超过元的概率;(2)为鼓励顾客消费,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为,且一等奖、二等奖、三等奖的中奖率依次构成等比数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量比去年同期增长,式预测商场今年国庆期间采办奖品的开销.【答案】(1) ;(2)580000.【解析】试题分析:(1)由消费在区间的频率为,可知中位数估计值为,设所求概率为,利用每个矩形的中点横坐标与该矩形的纵坐标相乘后求和等于求解即可;(2)根据,解得,可得一等奖、二等奖、三等奖的中奖率分别为,,,从而可得一等奖、二等奖、三等奖中奖单数可估计为,,,进而可得结果.试题解析:(1)因消费在区间的频率为,故中位数估计值即为.设所求概率为,而消费在的概率为.故消费在区间内的概率为.因此消费额的平均值可估计为.令其与中位数相等,解得.(2)设等比数列公比为,根据题意,即,解得.故一等奖、二等奖、三等奖的中奖率分别为,,.今年的购物单总数约为.其中具有抽奖资格的单数为,故一等奖、二等奖、三等奖中奖单数可估计为,,.于是,采购奖品的开销可估计为(元).20. 已知抛物线的焦点为,为轴上的点.(1)过点作直线与相切,求切线的方程;(2)如果存在过点的直线与抛物线交于,两点,且直线与的倾斜角互补,求实数的取值范围. 【答案】(1) 切线的方程为或;(2) .【解析】试题分析:(1)设切点为,利用导数求出切线斜率,由点斜式求得切线方程,将代入切线方程,求出或,进而可得切线方程;(2)设直线的方程为,代入得,根据斜率公式可得,韦达定理得,利用判别式大于零可得结果. 试题解析:(1)设切点为,则.∴点处的切线方程为.∵过点,∴,解得或.当时,切线的方程为,当时,切线的方程为或.(2)设直线的方程为,代入得.设,,则,.由已知得,即,∴.把①代入②得,③当时,显然成立,当时,方程③有解,∴,解得,且.综上,.21. 已知函数.(1)讨论函数的单调性;(2)当时,曲线总在曲线的下方,求实数的取值范围.【答案】(1) 当时,函数在上单调递增;当时,在上单调递增,在上单调递减;(2) .【解析】试题分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;;(2)原命题等价于不等式在上恒成立,即,不等式恒成立,可化为恒成立,只需大于的最大值即可.试题解析:(1)由可得的定义域为,且,若,则,函数在上单调递增;若,则当时,,在上单调递增,当时,,在上单调递减.综上,当时,函数在上单调递增;当时,在上单调递增,在上单调递减.(2)原命题等价于不等式在上恒成立,即,不等式恒成立.∵当时,,∴,即证当时,大于的最大值.又∵当时,,∴,综上所述,.【方法点晴】本题主要考查利用导数研究函数的单调性以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数恒成立(即可)或恒成立(即可);② 数形结合(图象在上方即可);③ 讨论最值或恒成立;④ 讨论参数.本题是利用方法① 求得的范围.22. 在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系.已知曲线的极坐标方程为,为曲线上的动点,与轴、轴的正半轴分别交于,两点.(1)求线段中点的轨迹的参数方程;(2)若是(1)中点的轨迹上的动点,求面积的最大值.【答案】(1) 点的轨迹的参数方程为(为参数);(2) 面积的最大值为.【解析】试题分析:(1)将极坐标方程利用,化为直角坐标方程,利用其参数方程设,则,从而可得线段中点的轨迹的参数方程;(2)由(1)知点的轨迹的普通方程为,直线的方程为.设,利用点到直线距离公式、三角形面积公式以及辅助角公式,结合三角函数的有界性可得面积的最大值.试题解析:(1)由的方程可得,又,,∴的直角坐标方程为,即.设,则,∴点的轨迹的参数方程为(为参数).(2)由(1)知点的轨迹的普通方程为,,,,所以直线的方程为. 设,则点到的距离为,∴面积的最大值为.【名师点睛】本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.23. 已知函数.(1)解不等式;(2)若关于的不等式只有一个正整数解,求实数的取值范围.【答案】(1) 不等式的解集为;(2).【解析】试题分析:(1)对分三种情况讨论,分别去掉绝对值符号,然后求解不等式组,再求并集即可得结果;(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解.试题解析:(1)当时,,解得,∴;当时,,解得,∴;当时,,解得,∴.综上,不等式的解集为或.(2)作出函数与的图象,由图象可知当时,不等式只有一个正整数解,∴.。

2018对口升学高考数学

2018年普通专业对口高考题一、选择题(每小题3分,共30分。

每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1. 下列关系式中,正确的是( )A. A ∩∅= AB.A ∩A C U =∅C. A ∩B ⊇AD. A ∩B ⊇B2. 若0<x<1,则下列式子中,正确的是( )A.3x >2x >xB.x>2x >3xC.2x >3x >xD.x>3x >2x3. 已知函数 ƒ(x)为奇函数, 且当x>0时, ƒ(x)=2x +x1, 则 ƒ(-1)的值为( )A. 1B. 0C. 2D. -24. 函数 ƒ(x)=3x 12-10++的定义域是( )A. (-3,0]B. (-3,1]C. (-3,0)D. (-3,1)5. 已如α是第二象限角,135sin =α,则αcos 的值为( )A. -1312B. -135C. 1312D. 1356. 设首项为1,公比为32的等比数列}{n α的前n 项和为n S ,则( )A. n S =2n a -1B. n S =3n a -2C. n S =4-3n aD. n S =3-2n a 7.下列命题中,错误的是A.平面内一个三角形各边所在的直线都与另一个平面平行,则这两个平面平行B.平行于同一平面的两个平面平行.C.若两个平面平行,则位于这两个平面内的直线也互相平行.D.若两个平面平行。

则其中一个平面内的直线平行于另一个平面. 8.下列命题中,正确的是:A.若|a|=|b|,则a=b .B.若a=b ,则a 与b 是平行向量. C .若|a|>|b|,则a>b. D.若a ≠b ,则向量a 与b 不共线. 9.下列事件是必然事件的是:A.第一枚硬币,出现正面向上.B.若X ∈R 则X ²≥0.C.买一张奖券,中奖.D.检验一只灯泡合格. 10.(1+ax)(x+1)5的展开式中含X ²项的系数为5,则a 的值为 A.-4 B.-3 C.-2 D.-1 二、填空题11.已知集合M={0,1,3,4},N={x ∈R|0<x<2},则M ∩N=___. 12,已知22121=+-aa ,则=+-22a a =_____.13.若A 是△ABC的一个内角,且21cos =A 则A 2sin =____.14.设等差数列{}的前n 项和为n s ,若21-=-m s ,=0,=3,则公差d=______.15.抛物线241x y =的焦点坐标是_____.16.椭圆2x ²+3y ²-12=0的高心率为_____. 17.若向量a=(-2,1),b=(1.3),c=a+2b,则c=______18.掷两颗质地均匀的骰子,则点数之和为5的概率是_____. 三、计算题(每小题8分,共24分)19.若一元一次不等式+2x+a+1<0无解,求实数a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山西省中等职业学校毕业生对口升学考试数学考试大纲根据高等院校人才选拔需要和我省中等职业学校教育教学实际,参照教育部颁布的《中等职业学校数学教学大纲》,以人民教育出版社出版的中等职业教育课程改革国家规划教材《数学》(基础模块、拓展模块、职业模块)为主要参考教材,制订山西省中等职业学校学生对口升学数学考试大纲。

一、考试总体要求数学学科的考试内容包括认知要求和能力要求两个方面,说明如下:(一)认知要求认知要求由低到高分为三个层次:了解:初步知道知识的含义及其简单应用。

理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。

掌握:能够应用知识的概念、定义、定理、法则去解决一些综合性问题。

(二)能力培养要求基本运算能力:根据法则和公式正确地进行运算、处理数据。

空间想象能力:形成正确的空间概念,能根据空间图形的性质,用立体图来表达简单的空间概念。

数形结合能力:能绘制常用函数图形,会利用函数图像讨论或帮助理解函数的性质,初步学会用代数方法处理几何问题。

简单实际应用能力:会解决带有实际意义的简单数学问题,会把相关学科、生产或生活中的一些简单问题转化为数学问题,并予以解决。

思维能力:具有初步的分析、比较、综合、推理能力,应用数学概念和方法辨明数学关系,形成良好的逻辑思维习惯。

二、考试范围及要点基础模块(上册、下册),拓展模块,职业模块(三角计算及其应用、逻辑代数与数据表格)。

其中基础模块占50%,拓展模块占30%,职业模块占20%。

(一)函数1.集合集合的概念,集合的表示方法、集合之间的关系,集合的运算,充要条件。

2.不等式实数大小的基本性质和不等式的性质,一元二次不等式、绝对值不等式、对数不等式和指数不等式的解法,解一些简单的不等式并正确表示其解集。

3.函数函数的定义,常见函数的定义域,函数的单调性和奇偶性,二次函数的概念及图像和性质。

4.指数函数与对数函数n次根式的概念,分数指数幂的概念,有理指数幂的运算法则进行有关计算;幂函数,指数函数的概念、图像、性质及简单应用;对数的定义,对数的性质、运算法则、恒等式等;对数函数的概念,对数函数的图像、性质。

5.三角函数角的推广和弧度制的概念,弧度与角度的换算;任意角的正弦、余弦、正切的定义,特殊角的正弦、余弦、正切的值和三角函数在各象限内的符号,同角三角函数的基本关系式和诱导公式;两角和与差的正弦、余弦公式,掌握二倍角公式,两角和与差的正切公式;正弦函数的图像和性质,余弦函数图像和性质;正弦型函数的图像及其应用,已知三角函数值求指定区间内的特殊角的角度。

6.数列数列的概念、通项公式,等差数列、等差中项和等比数列、等比中项的定义,等差数列、等比数列的通项公式及前n项和公式。

(二)向量向量的概念,向量的加、减法运算和数乘向量的运算。

向量的内积与运算法则。

向量的直角坐标运算,两个向量平行、垂直的充要条件。

(三)几何1.解析几何中点公式和两点间的距离公式,直线的倾斜角、斜率和截距的概念,已知两点坐标求斜率的公式,直线方程的斜截式、点斜式和一般式,直线的方向向量和法向量,两条直线平行与垂直的条件,点到直线的距离、两条平行直线间的距离,两条相交直线的交点解法。

圆的方程并能进行简单的应用;椭圆、双曲线的定义和标准方程,椭圆、双曲线的性质和图像;抛物线的定义和标准方程,抛物线的性质和图像。

2.立体几何平面的基本性质,空间两条直线的位置关系、异面直线所成的角;直线与平面平行、垂直的判定和性质,直线与平面所成的角,三垂线定理;两平面平行的判定和性质,二面角与平面角,两平面相互垂直的判定和性质;简单多面体和旋转体的有关概念、结构特征和性质。

(四)概率1.排列、组合、二项式定理分类计数原理与分步计数原理,理解排列、组合的定义及计算公式,排列和组合的知识解决一些简单问题,组合性质,二项式定理。

2.概率随机现象与概率的统计定义,必然事件和不可能事件,随机事件和样本空间。

古典概率的定义、应用。

N次独立重复试验中恰好发生k次的概率及简单应用。

总体和样本的概念以及抽样方法,计算样本平均数和样本方差。

离散随机变量及分布。

(五)逻辑代数与数据表格数制的概念,进行简单的转换。

逻辑代数的基本概念与基本运算。

数据表格的概念,数组运算及数据表格的应用。

山西省中等职业学校毕业生对口升学数学考试说明一、考试选拔对象及范围山西省中等职业学校(含普通中专学校、职业中专学校、职业高中学校、成人中专学校、技工学校,下同)应届毕业生及具有我省户籍的省内外中等职业学校的往届毕业生。

二、考试形式与试卷结构1.考试形式闭卷,笔答。

考试时间为90分钟,试卷满分100分。

2.题型结构分单项选择题、填空题、解答题三大题型。

3.试题难易比例结构易:较易:较难:难=4:3:2:1三、考试内容及总体要求考试范围包括基础模块与拓展模块(函数、向量、几何、概率基础),职业模块(逻辑代数与数据表格)两部分。

具体内容有如下几类:集合;不等式;函数;指数函数对数函数;三角函数;数列;平面向量;解析几何;立体几何;排列、组合、二项式定理;概率与统计;逻辑代数与数据表格四、考试内容相关知识点的说明从难易度对应来看,A对应:容易;B对应:较易;C对应较难;D 对应:难山西省中等职业学校对口升学考试数学样题本试分选择题和非选择题两部分。

满分100分,考试时间为90分钟,答卷前先填写密封线内的项目和座位号,考试结束后,将本试卷和答题卡一并交回。

选择题注意事项1选择题答案必须填涂在答题卡上,写在试卷上的一律不计分2答题前,考生务必将自己的姓名、准考证号、座位号,考试科目涂写在答题卡上。

3考生须按规定要求正确涂卡,否则后果自负一、单项选择题(本大题共10小题,每小题3分,共计30分)1.设集合P={1、2、3、4},Q={x ||x|≤2,x∈R}则Q P 等于( ) A 、{1、2} B 、{3、4} C 、{1} D 、{-1、-2、0、1、2}2.已知数列 、、、、、127531-n 则53是它的( ) A 第22项 B.第23项 C.第24项 D.第28项 3.log 3[log 4(log 5a)]=0,则a=( ) A.5 B.25 C.125 D.6254.数组(34,5,1,67,89,38)中,序号为3的数组元素为( )A.1B.89C.38D.5 5.下列四组函数中,表示同一函数的是( ) A.2)1(1-=-=x y x y 与 B.111--=-=x x y x y 与 C. y=41gx 与y=21gx 2 D.y=1gx-2与100lgx y = 6.设向量→a =(2,-1),→b =(x ,3)且→→⊥b a 则x=( )D. 21 B.3 C.23 D.-2 7.若函数b x a x x f +-+=)1(23)(2在]1,(-∞上为减函数,则( )A.a=-2B.a=2C.2-≥aD.2-≤a8. 在ABC ∆中,已知222c bc b a ++=则∠A 的度数为( ) A.3π B.6π C.32π D.323ππ或 9.已知直线a 、b 是异面直线,直线a//c 、那么c 与b 位置关系是( )A.一定相交B.一定异面C.平行或重合D.相交或异面10.顶点在原点,对轴是x 轴,焦点在直线3x-4y-12=0上的抛物线方程是( )A.x y 162=B.x y 122=C.x y 162-=D.x y 122-=非选择题注意事项:用属色钢笔或西珠笔将答案直接写在试卷上二、填空题(本大题共8小题,每空4分,共计32分,请把正确答案填写在横上) 1.)31(021)271()23()49(-+-+=_________________ 2 x x y cos 23sin 21+=的最大值是_________________ 3.若35,5,2=⋅==→→→→b a b a ,则→→b a ,的夹角θ=_________________4. 4)2(y x -的展开式中的第四项的二项式系数为_________________5. ⎩⎨⎧≥<=8,log 8,)(23x x x x x f 则f[f(2)]=_______________________6.函数223x x y --=的定义城为_______________________7.已知椭圆C 1过点M(4,0)且与椭圆C 2:364922=+y x 共焦点,则C 1的标准方程为_______________________8.二进制数(1011.11)2 ,转化为十进制数为_______________________三、解答题(本大题共6小题,1-5每小题6分,第6小题8分,共计38分)1.(6分)设等差数列{n a }的公差是正数,且4,125362-=+-=a a a a ,求前20项的和。

2.(6分)已知1715sin =θ,是第二象限角,求)3cos(πθ-的值。

3.(6分)已知向量→→b a ,均为单位向量,它们的夹角为60°,求→→+b a 3的值。

4.(6分)在5件产品中,有3件合格品,2件次品.从中任取2件,求取到次品件数X 的分布列。

5.(6分)过点(0,4),斜率为-1的直线l 与抛物线ax y 22=(a>0)交于A 、B 两点,且|AB|=104,求抛物线的方程。

θ。

相关文档
最新文档