北师大六年级数学下册知识点归纳
北师大版小学数学六年级下册总复习公式大全

北师大版小学数学六年级下册总复习公式大全一、平面图形1.长方形的周长和面积长方形的周长=(长+宽)×2 c=(a+b)×2 长方形的周长÷2-长=宽c÷2-a=b 长方形的周长÷2-宽=长c÷2-b=a长方形的面积=长×宽S=ab 长方形的面积÷长=宽S÷a=b 长方形的面积÷宽=长S÷b=b2.正方形的周长和面积正方形的周长=边长×4 c=4a 正方形的周长÷4=边长c÷4=a 正方形的面积=边长×边长S=a.a= a23.平行四边形的面积平行四边形的面积=底×高S=ah平行四边形的面积÷底=高S÷a=h 平行四边形的面积÷高=底S÷h=a4.三角形(具有稳定性)三角形的面积=底×高÷2S=ah÷2 三角形的面积×2÷底=高S×2÷a=h 三角形的面积×2÷高=底S×2÷h=a 三角形的内角和=180度。
三角形三边的关系:三角形任意两条边的和要大于第三条边,任意一条边的长要大于其它两边的差,小于两边的和。
5.梯形的面积梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 6.圆形直径=半径×2 d=2r半径=直径÷2 r= d÷2 2 直径=圆的周长÷圆周率d=c÷π半径=圆的周长÷圆周率÷2 r=c÷π÷2 圆的周长=直径×圆周率c=πd圆的周长==半径×2×圆周率c =2πr半圆的周长=周长的一半+直径半圆的周长=半径×5.14 (π+2=5.14)圆的面积=圆周率×半径2S=πr2 *圆的面积=周长的一半×半径二、立体图形1.长方体:长方体的周长=(长+宽+高)×4 C=4(a+b+h)长方体的周长÷4-宽-高=长C÷4-b -h=a 长方体的周长÷4-长-高=宽C÷4-a-h=b 长方体的周长÷4-长-宽=高C÷4-a-b=h 长方体的体积=长×宽×高公式:V=abh 长方体的体积÷宽÷高=长V÷b÷h=a 长方体的体积÷长÷高=宽V÷a÷h=b 长方体的体积÷长÷宽=高V÷a÷b=h 长方体(或正方体)的体积÷底面积=高V÷S=h 长方体(或正方体)的体积÷高=底面积V÷h=S 正方体的体积=棱长×棱长×棱长公式:V=aaa圆的周长=直径×π公式:l=πd=2πr圆的面积=半径×半径×π公式:S=πr2圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
北师大版六年级下册数学期末复习重点知识要点归纳

北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
北师大版小学数学六年级下册知识点汇总

北师大版小学数学六年级下册知识点汇总
北师大版小学数学六年级下册的知识点汇总如下:
1. 乘法运算:乘法口诀表,三位数乘两位数,四位数乘两位数,两个分数的乘法,倒数相乘的乘法等。
2. 除法运算:两位数除以一位数,两位数除以两位数,有余数的除法,小数除法等。
3. 分数的运算:分数的加减乘除运算,带分数的加减运算,分数的约分与化简。
4. 小数的运算:小数的加减乘除运算,小数的四舍五入,小数与分数的相互转换。
5. 数字的整体性:数字和字母的组合,数字的位置及大小排序,数字的代表规律等。
6. 累加与累减:连续多个数的累加与累减,累加与累减的反运算。
7. 平均数与代表数:多个数的平均数的计算,代表数与代表性测验。
8. 数据的处理与分析:数据的整理与统计,数据的图表示,数据的分析与解读等。
9. 时间的认识与计算:时、分、秒之间的换算,时钟的读与画。
10. 长度、面积和体积:长度单位之间的换算,常见物体的长度、面积和体积的比较与计算。
11. 图形的认识与运用:几何图形的名称和性质,图形的分类和判断等。
12. 位置与方向:二维图形的相对位置,方向的判断与描述。
以上是北师大版小学数学六年级下册的知识点汇总,希望对您有帮助!。
北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳北师大版六年级数学下册主要包含了有理数、图形和变量、分数和小数、运算法则和计算、长度、面积和体积、数据和统计这几个知识点。
下面将对每个知识点进行归纳:一、有理数1. 正数和负数:正数是大于零的数,负数是小于零的数,0既不是正数也不是负数。
2. 数轴:用数轴表示有理数。
数轴上,正数在0的右边,负数在0的左边。
3. 比较和排序:可以通过数轴上的大小关系进行比较和排序。
二、图形和变量1. 坐标系:直角坐标系由x轴和y轴组成。
坐标系中,x轴是水平的,y轴是竖直的,它们都通过原点O。
2. 点与坐标:用点在坐标系中的位置来表示其坐标。
3. 图形的比较:可以通过图形的面积、周长和形状进行比较。
三、分数和小数1. 分数的概念:分数由一个分子和一个分母组成,分子表示整体的部分,分母表示被分成的份数。
2. 分数的大小比较:可以通过分数的大小关系进行比较和排序。
3. 小数的概念:小数是整数和分数的结合,整数部分位于小数点的左侧,小数部分位于小数点的右侧,如0.5、3.14等。
4. 分数和小数的转换:可以将分数转换为小数,也可以将小数转换为分数。
四、运算法则和计算1. 加法和减法运算:可以进行有理数的加法和减法运算。
2. 乘法和除法运算:可以进行有理数的乘法和除法运算。
3. 运算规律:加法和乘法满足交换律和结合律,减法和除法不满足交换律和结合律。
4. 计算顺序:在多个运算符存在的表达式中,先进行括号内的运算,再进行乘法和除法运算,最后进行加法和减法运算。
五、长度、面积和体积1. 长度的测量:用尺子、卷尺等工具可以测量线段的长度。
2. 面积的测量:用平方单位可以测量平面图形的面积。
3. 体积的测量:用立方单位可以测量立体图形的体积。
六、数据和统计1. 数据的收集:可以通过调查、观察等方式收集数据。
2. 数据的展示:可以用列表、频数表、条形图等方式展示数据。
3. 平均数和范围:可以通过计算平均数和范围来描述数据的中心和变化程度。
六年级(下册)数学知识要点归纳

北师大版六年级(下册)数学知识要点归纳第一单元圆柱和圆锥1、“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2、圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆,侧面是曲面。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
(4)圆柱是由长方形绕长或宽旋转360度得到的立方体,所以沿高线切割后的切面是长方形。
3、圆锥的特征:(1)圆锥的底面是一个圆,和底面相对的位置有一个顶点。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
(4)圆锥是由直角三角形绕一条直角边旋转360度得到的立方体,所以沿高线切割后的切面是等腰三角形。
4、沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)(如果不是沿高剪开,有可能还会是平行四边形)。
圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πdh;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πrh圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2或S表=2πrh+2πr2圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
5、圆柱的体积:一个圆柱所占空间的大小。
6、圆柱体积公式的推导:复习六年级上册圆的面积公式的推导:把圆等分的份数越多,拼成的图形就越接近平行四边形或长方形。
拼成的平行四边形的底相当于圆周长的一半,高相当于圆的半径;拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。
所以圆的面积=π×半径×半径=π×半径2如同,圆的面积公式的推导,也可以沿着圆柱底面的扇形和圆柱的高把圆柱切开,把它分成若干等份,分得越细越好,再把它拼成一个近似长方体的立体图形,形状改变了,但体积没变,那么就可以发现拼成的这个长方体的底面积与圆柱的底面积是相等的,长方体的高也与圆柱的高相等,而长方体的体积=底面积×高,也就等于圆柱的体积。
北师大版六年级数学下册知识点归纳总结

北师大版六年级数学下册知识点归纳总结目录1. 第一单元 (3)1.1 分数的概念与表示方法 (3)1.2 分数的基本性质 (4)1.3 同分母分数的比较 (5)1.4 异分母分数的转换 (6)2. 第二单元 (7)2.1 小数的概念与表示方法 (7)2.2 小数的性质 (8)2.3 小数与分数之间的联系与区别 (8)2.4 小数的四则运算 (9)3. 第三单元 (10)3.1 百分数的含义和表示方法 (10)3.2 百分数与小数的关系 (11)3.3 百分数在实际生活中的应用 (12)3.4 百分数与其他比的转换 (14)4. 第四单元 (14)4.1 方程的意义及类型 (16)4.2 解一元一次方程的方法 (17)4.3 方程的应用实例 (17)4.4 实际问题中的方程求解策略 (18)5. 第五单元 (19)5.1 平面图形的面积计算 (19)5.2 平面图形的周长计算 (21)5.3 立体图形的体积计算 (21)5.4 立体图形的表面积计算 (23)6. 第六单元 (24)6.1 数据的收集方法 (24)6.2 数据整理的方法与步骤 (26)6.3 如何制作统计表和统计图 (27)6.4 数据分析与解读 (29)7. 第七单元 (29)7.1 概率的含义及表示方法 (30)7.2 事件发生的可能性大小 (31)7.3 简单随机抽样的原理和方法 (32)7.4 概率在现实生活中的应用 (33)8. 第八单元 (35)8.1 图形的平移与旋转 (35)8.2 轴对称图形的性质 (36)8.3 中心对称图形的性质 (37)8.4 几何图形变换与对称的应用 (37)9. 第九单元 (38)9.1 实际问题中的数据收集与分析 (39)9.2 综合运用概率知识解决实际问题 (40)9.3 统计与概率综合题的典型例题解析 (41)10. 第十单元 (42)10.1 数学综合应用题的类型与解题思路 (43)10.2 数学综合应用题的解题技巧 (44)10.3 数学综合应用题的实践案例分析 (45)1. 第一单元自然数的认识与整数的认识。
北师大版六年级数学下册知识点归纳

北师大版六年级数学下册知识点归纳The document was prepared on January 2, 2021圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧=πd h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2πr h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表=πdh+πd2/2=或S表=2πrh+2πr25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。
3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V=πr2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V=π(d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V=π(C/2π)2h;圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
数学北师大版六年级下册整理和复习

讨论
1.已知圆柱体的底面半径和高,怎样求体积?
S=∏r
2
V=Sh
2.已知圆柱体的底面直径和高,怎样求体积? d 2 r= S=∏r V=Sh 2 3.已知圆柱体的底面周长和高,怎样求体积?
r=C÷∏ ÷2 S=∏r
2
V=Sh
1.已知圆锥的底面半径r和高h, 如何求体积V? 2 1
2.已知圆锥的底面直径d和高h, 如何求体积V? 2
r= d÷2 S=∏
S=∏ r
V= 3 S h
r
V= S h V= 3 S h
r =C÷∏÷2
3.已知圆锥的底面周长C和高h, 如何求体积V? 2 1
S=∏
1 3
r
完成课本P37-38页 第1-7题
意义
正、反比例
图形特征 解决问题
正比例和反比例的相同点和不同点:
正比例 反比例
相 都有一个定量,两个变量。 同 点 不 比值(商)一定 积一定 同 y x×y=K(一定) (一定) k 点 x
特征
圆 柱 圆 锥
侧面积 表面积 体积
S C h 侧 底
S S 2 S 表 侧 底
V Sh
1 V Sh 3
特征
体积
圆柱的表面积
圆柱的表面积
●要求下列圆柱形物体用料的面积,要求哪些面的总面积?
铁片制成的糖果盒 侧面+2个 侧面+1个底面
水泥烟囱 侧面
铁皮油 侧面+2个底面
定义:一幅图的图上距离和 实际距离的比 1.比例尺 计算公式:图上距离:实际距离 =比例尺
2.实际距离=图上距离÷比例尺 3.图上距离=实际距离×比例尺
完成课本P38-39页 第8-13题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版六年级数学下册知识点归纳————————————————————————————————作者:————————————————————————————————日期:圆柱和圆锥一、面的旋转1.“点、线、面、体”之间的关系是:点的运动形成线;线的运动形成面;面的旋转形成体。
2.圆柱的特征:(1)圆柱的两个底面是半径相等的两个圆。
(2)两个底面间的距离叫做圆柱的高。
(3)圆柱有无数条高,且高的长度都相等。
3.圆锥的特征:(1)圆锥的底面是一个圆。
(2)圆锥的侧面是一个曲面。
(3)圆锥只有一条高。
二、圆柱的表面积1.沿圆柱的高剪开,圆柱的侧面展开图是一个长方形(或正方形)。
(如果不是沿高剪开,有可能还会是平行四边形)2.圆柱的侧面积=底面周长×高,用字母表示为:S侧=ch。
3.圆柱的侧面积公式的应用:(1)已知底面周长和高,求侧面积,可运用公式:S侧=ch;(2)已知底面直径和高,求侧面积,可运用公式:S侧= d h;(3)已知底面半径和高,求侧面积,可运用公式:S侧=2 r h4.圆柱表面积的计算方法:如果用S侧表示一个圆柱的侧面积,S底表示底面积,d表示底面直径,r表示底面半径,h表示高,那么这个圆柱的表面积为:S表=S侧+2S底或S表= dh+ d2/2=或S表=2 rh+2 r25.圆柱表面积的计算方法的特殊应用:(1)圆柱的表面积只包括侧面积和一个底面积的,例如无盖水桶等圆柱形物体。
(2)圆柱的表面积只包括侧面积的,例如烟囱、油管等圆柱形物体。
三、圆柱的体积1.圆柱的体积:一个圆柱所占空间的大小。
2.圆柱的体积=底面积×高。
如果用V表示圆柱的体积,S表示底面积,h表示高,那么V=Sh。
3.圆柱体积公式的应用:(1)计算圆柱体积时,如果题中给出了底面积和高,可用公式:V=Sh。
(2)已知圆柱的底面半径和高,求体积,可用公式:V= r2h;(3)已知圆柱的底面直径和高,求体积,可用公式:V= (d/2)2h;(4)已知圆柱的底面周长和高,求体积,可用公式:V= (C/2 )2h;4.圆柱形容器的容积=底面积×高,用字母表示是V=Sh。
5.圆柱形容器公式的应用与圆柱体积公式的应用计算方法相同。
四、圆锥的体积1.圆锥只有一条高。
2.圆锥的体积=1/3×底面积×高。
如果用V表示圆锥的体积,S表示底面积,h表示高,则字母公式为:1/3Sh3.圆锥体积公式的应用:(1)求圆锥体积时,如果题中给出底面积和高这两个条件,可以直接运用“v= 1/3 Sh”这一公式。
(2)求圆锥体积时,如果题中给出底面半径和高这两个条件,可以运用1/3πr²h(3)求圆锥体积时,如果题中给出底面直径和高这两个条件,可以运用1/3π(d/2)²h(4)求圆锥体积时,如果题中给出底面周长和高这两个条件,可以运用1/3π(c/2r )²h1、一个圆柱,半径不变,高扩大到原来的3倍,体积扩大到原来的( )倍。
2、一个圆柱,半径扩大到原来的3倍,高不变,体积扩大到原来的( )倍。
3、一个圆柱,底面半径扩大到原来的2倍,高缩小到原来的的2倍,圆柱的体积就( )倍。
4、如果一个圆柱的侧面展开图是一个正方形,那么这个圆柱的高是圆柱底面半径的( )倍。
5、把一个高是10分米的圆柱截成两个圆柱,表面积增加了0.36平方米,原来圆柱体的体积是( )立方米。
正比例和反比例1、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的比的比值(也就是商)一定,这两种量就叫做成正比例的量,它们之间的关系叫做正比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
2、用“描点法”可以得到正比例的图像,正比例的图像是一条直线。
对照图像,能根据一种量的值,估计另一种量相对应的值。
3、两种相关联的量,一种量变化,另一种量也随着变化。
如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们之间的关系叫做反比例关系。
如果用字母x和y分别表示两种相关联的量,用k表示它们的积,反比例关系可以用这样的式子来表示:xy = K (一定)。
4、两个变量的比值一定,这两个变量成正比例;两个变量的积一定,这两个变量成反比例;没有上述两种关系,这两个变量不成比例。
【典型例题】例1、(正比例的意义)一列火车行驶的时间和路程如下表。
这两种量有什么关系?时间/时12 3 4 5 6 …… 路程/千米 120240360480600720……分析与解:(1)从上表可以看出,表中有时间和路程两种量。
(2)从左往右看,时间扩大,路程也扩大;从右往左看,时间缩小,路程也缩小。
所以它们是两种相关联的量。
(3)路程和时间的比值始终不变,1120 = 120,2240= 120,3360 = 120……这个比值就是火车的行驶速度。
通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值(也就是速度)是一定的,有这样的关系:时间路程= 速度(一定)。
具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例关系;行驶的路程和时间成正比例的量。
点评:判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
例2、(判断是否成正比例)练习本的单价一定,买练习本的数量和总价是不是成正比例?为什么?分析与解:根据正比例的意义,看两个变量的比值是否一定,如果两个变量的比值一定,那么这两个变量就成正比例,反之,则不成正比例。
例3、(正比例的图像)磁悬浮列车匀速行驶时,路程与时间的关系如下。
时间/分 1 2 3 4 5 6 7 …… 路程/千米7142128354249……(1)图中的点A 表示时间为1分钟时,磁悬浮列车驶过的路程为7千米。
请你试着描出其他各点。
(2)连接各点,它们在一条直线上吗?(3)根据图像判断,列车运行2分半钟时,行驶的路程是多少千米?行驶30千米大约需要几分钟? 路程/千米42 35 28 21 147 ●A 01 2 3 4 5 6 7 时间/分分析与解:根据提供的各组数据描出图像的许多个点,再依次连成直线。
路程和时间相对应的数的比值都是7,即速度一定,路程和时间成正比例,图像是一条直线。
对照图像,可以根据时间的值估计出路程的值,也可以根据路程的值估计出时间的值,估计时允许有一定的出入。
例4、(辨析)圆的周长和直径成正比例,圆的面积和半径成正比例? 分析与解 可列表判断。
半径/cm 1 2 3 4 5 6 …… 直径/cm 2 4 6 8 10 12 …… 周长/cm 6.28 12.56 18.84 25.12 31.4 37.68 …… 面积/cm ²3.1412.5628.2650.2478.5113.04……圆的周长和直径的相对应的数的比值都是 3.14,所以圆的周长和直径成正比例。
而圆的面积和半径的相对应的数的比值是变化的,所以圆的面积和半径不成正比例。
圆的周长和直径成正比例,圆的面积和半径却不成正比例。
例5、(反比例的意义)下表是王师傅加工一批零件时,每小时加工零件个数随时间变化的情况。
这两种量有什么关系?每小时加工零件的个数/个20 30 40 60 80 ……加工的时间/时12 8 6 4 3 ……分析与解:(1)从上表可以看出,表中有每小时加工零件的个数和加工的时间两种量。
(2)从左往右看,每小时加工零件的个数扩大,加工的时间反而缩小;从右往左看,每小时加工零件的个数缩小,加工的时间反而扩大。
所以它们是两种相关联的量。
(3)每小时加工零件的个数和相对应的加工的时间的积都始终不变,如20 × 12 = 240,30 × 8 = 240,40 × 6 = 240……而这个积就是这批零件的总个数。
通过观察和计算,我们发现:每小时加工零件的个数和加工的时间是两种相关联的量,每小时加工零件的个数随着加工的时间变化而变化,但无论它们怎么变化,相对应的积是一定的,有这样的关系:每小时加工零件的个数×加工的时间 = 零件的总个数(一定)。
所以每小时加工零件的个数和加工的时间成反比例的量,它们之间的关系叫做反比例关系。
点评:判断两种量是不是成反比例,和正比例一样,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的乘积是否一定,进行判断。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy = K(一定)。
例6、(判断是否成反比例)总产量一定,每公顷的产量和公顷数是不是成反比例?为什么?分析与解:根据反比例的意义,看两个变量的乘积是否一定,如果两个变量的积一定,那么这两个变量就成反比例,反之,则不成反比例。
每公顷的产量和公顷数是两种相关联的量,它们与总产量有下面的关系:每公顷的产量×公顷数 = 总产量(一定)所以每公顷的产量和公顷数成反比例。
例7、(辨析)和一定,一个加数和另一个加数成反比例。
分析与解:判断两个变量是否成反比例,关键是看两个变量的乘积是否一定。
点评:有些相关联的量,虽然也是一种量变化,另一种量也随着变化,但它们不是积一定,也不是比值一定,它们就不成比例。
像这样的还有:人的跳高高度和身高;减数一定,被减数和差等。
例8、(综合题1)(1)长方形的面积一定,长和宽成反比例吗?为什么?(2)长方形的周长一定,长和宽成反比例吗?为什么?分析与解:判断时可以用列表的方式列举数据,也可以根据计算的公式来推导。
例9、(综合题2)分别说明大米的总千克数、每天吃的千克数和天数这三种量中,每两种量的比例关系。
(1)大米的总千克数一定,每天吃的千克数和天数;(2)每天吃的千克数一定,大米的总千克数和天数;(3)天数一定,大米的总千克数和每天吃的千克数。
分析与解:在大米的总千克数、每天吃的千克数和天数这三种量中,当某一种量一定时,另外两种量可能成正比例关系,也可能成反比例关系。
可以根据数量关系式来判五、观察与探究当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。
六、图形的放缩一幅图放大或缩小,只有按照相同的比来画,画的图才像。
七、比例尺1.比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。