《一次函数与一元一次不等式》一次函数PPT课件二
合集下载
一次函数与一元一次不等式02课件

一次函数与一元一次 不等式
教学目标
知识与技能:掌握一次函数与一元一
次不等式的关系,会运用函数解决不等 式一元一次不等式 解集的联系。
情感、态度与价值观:感知不等式、
函数、方程的不同作用与内在联系,并 体会分类讨论的数学思想。
导探激励
y y=2x-5
4 问题1: 作出函数y=2x-5的图象, 3 2 观察图象回答下列问题: 1 (1) x取何值时,2x-5=0? -1 0 (2) x取哪些值时, 2x-5>0? -1 -2 (3) x取哪些值时, 2x-5<0? -3 (4) x取哪些值时, 2x-5>3? -4 -5
1 2 3 4 5
零用钱,表示从小张存款当月起每个月存18元,争
取超过小张.请你写出小张和小王存款和月份之间 的函数关系,并计算半年以后小王的存款是多少, 能否超过小张?至少几个月后小王的存款能超过小 张?
随堂练习:
已知y1=-x+3,y2=3x-4,当x 取何值时,y1>y2你是怎样做 的?与同伴交流。
还有别的解答方法吗?
y y=-x+3 1
6 5 4 3 2 1 -1 0 -1 -2 -3 -4 1 2 3 4 5
y=3x-4 2
x
y2
y1
课堂练习:用画函数图象的 方法解不等式5x+4<2x+10
课堂小结:
通过本节课的学习,你觉得用 函数的观点看一元一次方程与看一 元一次不等式(组)哪些共同点与 不同点?
作业:
1、P126练习第1题的(3)、(4) 2、 P126练习第2题。
看看同学们的学习效果
课堂检测要求:
1、要求学生独立完成;
教学目标
知识与技能:掌握一次函数与一元一
次不等式的关系,会运用函数解决不等 式一元一次不等式 解集的联系。
情感、态度与价值观:感知不等式、
函数、方程的不同作用与内在联系,并 体会分类讨论的数学思想。
导探激励
y y=2x-5
4 问题1: 作出函数y=2x-5的图象, 3 2 观察图象回答下列问题: 1 (1) x取何值时,2x-5=0? -1 0 (2) x取哪些值时, 2x-5>0? -1 -2 (3) x取哪些值时, 2x-5<0? -3 (4) x取哪些值时, 2x-5>3? -4 -5
1 2 3 4 5
零用钱,表示从小张存款当月起每个月存18元,争
取超过小张.请你写出小张和小王存款和月份之间 的函数关系,并计算半年以后小王的存款是多少, 能否超过小张?至少几个月后小王的存款能超过小 张?
随堂练习:
已知y1=-x+3,y2=3x-4,当x 取何值时,y1>y2你是怎样做 的?与同伴交流。
还有别的解答方法吗?
y y=-x+3 1
6 5 4 3 2 1 -1 0 -1 -2 -3 -4 1 2 3 4 5
y=3x-4 2
x
y2
y1
课堂练习:用画函数图象的 方法解不等式5x+4<2x+10
课堂小结:
通过本节课的学习,你觉得用 函数的观点看一元一次方程与看一 元一次不等式(组)哪些共同点与 不同点?
作业:
1、P126练习第1题的(3)、(4) 2、 P126练习第2题。
看看同学们的学习效果
课堂检测要求:
1、要求学生独立完成;
人教版初中数学八年级下册《一次函数与一元一次不等式》PPT课件

例1 下面三个不等式有什么共同特点?你能从函 数的角度对解这三个不等式进行解释吗?
(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.
y
3 y =3x+2
2
y =2
1
-2 -1 O -1
1 2 3 x y =0 y =-1
一次函数与一元一次不等式
三个不等式的左边都是 代数式 ,而右边分别是 2,0,-1.它们可以分 别看成一次函数 的函数 值大于2、小于0、小于 -1 时自变量x的取值范围 (如右图).
(2y) 2x 4 y< 2 x 4
3
(3y) 2x 4 2 3
x-
4
y
y=-2x+4
19.2.3 一次函数与一元一次不等式
1.解方程:2x+20=0
2.解不等式:5x+6>3x+10
3.解方程组:
3x+5y=8 2x-y=1
4.对于方程3x+5y =8,如何用x表示y?
根据图象,请写出图象所对应的一元
y 一次方程的解.
y
y=x+2
y=5x
0
x
y y=-2.5x+5
x
02
-2 0
y=5x+4和y=2x+10,画出两个函数的图象,
y
所以不等式的解集为x<2.
y=2x+10 x
O2
y=5x+4
例2 用画函数图象的方法解不等5x+4<2x+10.
解法2:不等式可化为3x-6<0,画出直线y=3x-6,
所以不等式的解集为x<2.
一元一次不等式与一次函数(第2课时)(课件)八年级数学下册(北师大版)

思考:10至25人的含义是什么?
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?
探究新知
解:设该单位参加这次旅游的人数是 x 人,选择甲旅行 社时,所需的费用为 y 1 元,选择乙旅行社时,所需的费 用为 y 2 元,则 y 1 = 200 × 0.75 x, 即 y 1 = 150 x; y 2 = 200 × 0.8(x - 1),即 y 2 = 160 x - 160.
探究新知
例 3 : 为绿 化 校园 , 某校 计 划购 进 A, B两 种 树苗 , 共 21 棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B种 树苗x棵,购买两种树苗所需费用为y元. (1)y与x的函数关系式为________; (2)若购买B种树苗的数量少于A种树苗的数量,请给出一种
千米收取的费用比乙租赁公司多 D.除去月固定租赁费,甲租赁公司平均每
千米收取的费用比乙租赁公司少
随堂练习
4.某电信公司有甲、乙两种手机收费业务.甲种业务规定 月租费10元,每通话1 min收费0.3元;乙种业务不收月 租费,但每通话1 min收费0.4元.你认为何时选择甲种业 务对顾客更合算?何时选择乙种业务对顾客更合算?
情境导入
一次函数与一元一次不等式的关系是什么? 一次函数与一元一次不等式的关系: 任何一元一次不等式都可以化为ax+b>0或ax+b<0(a,b为 常数,a≠0)的形式,所以解一元一次不等式就可以看成当一次 函数的值大于或小于0时,求相应的自变量的取值范围. 从 图 象 上 看 , ax + b > 0 或 ax + b < 0 的 解 集 是 使 直 线 y = ax + b(a≠0)位于x轴的上方或下方的部分对应的x的取值范围.
探究新知
核心知识点一: 一元一次不等式与一次函数的综合应用
例1:某电信公司有甲、乙两种手机收费业务.甲种业务规 定月租费10元,每通话1min收费0.3 元;乙种业务不收月租 费,但每通话1min收费0.4 元. 你认为何时选择甲种业务对 顾客更合算?何时选择乙种业务对顾客更合算?
一次函数与一元一次不等式-PPT课件

(8)一次函数y=(k-1)x+3-k的图象 经过一、二、三象限,则k的范围 是_______.
2019年12月30日星期一
21
2时32分32秒
12.试一试(根据一次函数与不等式的关系
填空):
(1) 解不等式3x-6<0,可看作
求一次函数y=3x-6的函数值
小于0的自变量的取值范围。
(2)“当自变量x取何值时,函 数y=3x+8的值大于0”可看作 求不等式3x+8>0的解集。
3.利用函数图象解不等式:3x-4<x+2(用两种方法)
解法1:化简不等式得2x-6<0,画出函 数y=2x-6的图象。
y Y=2x-6
当x<3时y=2x-6<0,所以不等式的解 集为x<3。
y
03 x -6
y=x+2
解法2:画出函数y=3x-4和函数y= x+2的图象,交点横坐标为3。
(1)对于一次函数y=(m-4)x+2m--1, 若y随x的增大而增大,且它的图 象与y轴的交点在x轴下方,那么m 的取值范围是___________.
2019年12月30日星期一
17
2时32分32秒
(2)直线 y 5 (k 2 1)x
中,
y随x减小而____,图象经过____
象限。
求一元一次不等式的解,可以看成某一 个一次函数当自变量取何值时,函数的值大 于零或等于零。
1、已知函数Y=3X+8,当X——= ——————,函数
的值等于0。当X—>———————,函数的值大于0。当
X———≤—-——2—— ,函数的值不大于2。 2、如图,直线L1, L2交于一点P,若y1 ≥y2 ,则( B) A.x ≥ 3 B.x ≤3 C.2 ≤ x ≤ 3 D.x ≤ 4
2.5.1一元一次不等式与一次函数的关系课件 (44张PPT)北师大版八年级数学下册

是
b a
,0
,与 y 轴的交点坐标是 (0,b) ;要
作一次函数的图象,只需___两____点即可.
3. 一次函数 y = 2x – 5它与 x 轴的交点坐标
是
5 2
,
0
,与 y 轴的交点 坐标是 (0,-5) .
下面我们来探讨一下一元一次不等式与一次函数之
间的关系.
新课推进
一、利用一次函数的图象解一元一次 不等式 kx + b > 0(或 kx + b < 0).
这三者之间的关系常用来解决生活中 的某些决策型问题;如购物方案、最大利 润方案、旅游支出方案等.
一元一次不等式与一次函数的综合应用 例1 某电信公司有甲、乙两种手机收费业务.甲种业务
规定月租费 10 元,每通话 1 分钟收费 0.3 元;乙种业
务不收月租费,但每通话 1 分钟收费 0.4 元. 你认为何
由 y1<y2,得 150x<160x-160,解得 x>16. 因为参加旅游的人数为 10~25 人,所以: 当 x=16 时,y1 = y2,甲、乙两家旅行社的收费相同; 当 16<x≤25 时,y1 < y2 ,选择甲旅行社费用较少; 当 10≤x<16 时,y1 > y2,选择乙旅行社费用较少.
概括总结
方案选择问题解题思路: (1) 根据题意分别写出方案 A、B 的函数解析式 yA、yB; (2) 将方案 A、B 进行比较:① yA>yB ;② yA<yB; ③ yA=yB,从而分别得到自变量的取值范围; (3) 根据实际情况选择方案. 你学会了吗?
例3 某学校计划购买若干台电脑,现从两家商场了解到
0
__哥__哥__先跑过 100 m.
y1=4x (9,36) y2=3x+9
人教初中数学八下 19.2.3《一次函数与方程、不等式》一次函数与一元一次不等式课件 【经典初中数学

1、先化简:把各个二次根式 都化为最简二次根式。
2、再观察:化简后的二次根 式的被开方数是否相同。
例题讲解
1、计算: (1 )1x 69x (2 ) 8 045 解:(1) 16x 9x (2) 80 45
4 x3 x (43) x
4 53 5 (43) 5
7 x
5
探究
2、计算:
(1)2 81 181 32
18a , 28, x2 4, 5x4 y ,
×× √
×
2
x2 y,
ab ,
3xy ,
1
2 5 3x
√
×√
×
如图,学校要砌一个正方形花坛,已知外 面的正方形边长为 cm,里2 面2的正方形的边 长为 cm,两个正方形2 的周长和为多少?
22
两个正方形的周长和为:
2
4(2 2 2)
8 24 2
若两个正方形的面积分别为 27cm2、12cm2,则两正方形的周长 和为多少?
1.求Y1和Y2与X的函数关系式
2.问拍这批照片到照相馆拍,费用省还是由学校自己拍费用省=8x,Y2=4x+120
y
(2)由图象可知,当x=30 时,两家一样, Y=4x+120
当X>30时,照相馆省钱,
当X<30时,学校自己省钱.
0 30
x
24
25
教学反思:
5 63 2
3
4
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
( 2 ) 72 18 3 2 2
2、再观察:化简后的二次根 式的被开方数是否相同。
例题讲解
1、计算: (1 )1x 69x (2 ) 8 045 解:(1) 16x 9x (2) 80 45
4 x3 x (43) x
4 53 5 (43) 5
7 x
5
探究
2、计算:
(1)2 81 181 32
18a , 28, x2 4, 5x4 y ,
×× √
×
2
x2 y,
ab ,
3xy ,
1
2 5 3x
√
×√
×
如图,学校要砌一个正方形花坛,已知外 面的正方形边长为 cm,里2 面2的正方形的边 长为 cm,两个正方形2 的周长和为多少?
22
两个正方形的周长和为:
2
4(2 2 2)
8 24 2
若两个正方形的面积分别为 27cm2、12cm2,则两正方形的周长 和为多少?
1.求Y1和Y2与X的函数关系式
2.问拍这批照片到照相馆拍,费用省还是由学校自己拍费用省=8x,Y2=4x+120
y
(2)由图象可知,当x=30 时,两家一样, Y=4x+120
当X>30时,照相馆省钱,
当X<30时,学校自己省钱.
0 30
x
24
25
教学反思:
5 63 2
3
4
下列解答是否正确?为什么?
(1)2 75 3 27 3 2 75 9 3 3 10 3 10 3 0
错在没有 按照二次根式 加减混算从左 向右依次进行 的运算顺序计 算。
( 2 ) 72 18 3 2 2
一元一次不等式与一次函数课件

∴ x>2.5, 2x-5>0 (3)x取哪些值时, 2x-5<0
∴ x<2.5, 2x-5<0
y 4
y=2x-5
3
2 (2.5,0)
1
-2-1-01 1 2 3 4 5 x -2 -3
-4 -5
探索交流
(4)x取哪些值时, 2x-5>1 ∴ x>3, 2x-5>1
y
4
y=2x-5
3
2
1
-2 -1-01 1 2 3 4 5 x
练习巩固
1.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解 集是( ) A.x≥2 B.x≤2 C.x≥4 D.x≤4
练习巩固
2.用画函数图象的方法解不等式5x+4<2x+10.
练习巩固
3.甲、乙两辆摩托车从相距20km的A、B两地相向而行,图中l1、l2 分别表示两辆摩托车离开A地的距离s(km)与行驶时间t(h)之 间函数关系. (1)哪辆摩托车的速度较快? (2)经过多长时间,甲车行驶到A、B两地中点?
由图象可知,当x>-2.5时,y<0; 当x>-3时,y<1. 思路二: 将函数问题转化为不等式问题. 即 解不等式-2x-5 >0
∴当x<-2.5时, y>0.
y 3 2
1O -3 -2 -1-1 1 3 x
-2 -3
-4 -5 y = -2x - 5
典例解析
例1.根据下列一次函数的图像,直接写出下列不等式的解集.
典例解析
(2)当x>9时,哥哥跑在弟弟前面; (3)弟弟先跑过20 m,哥哥先跑过
y y2 = 3x + 9
∴ x<2.5, 2x-5<0
y 4
y=2x-5
3
2 (2.5,0)
1
-2-1-01 1 2 3 4 5 x -2 -3
-4 -5
探索交流
(4)x取哪些值时, 2x-5>1 ∴ x>3, 2x-5>1
y
4
y=2x-5
3
2
1
-2 -1-01 1 2 3 4 5 x
练习巩固
1.一次函数y=ax+b的图象如图所示,则不等式ax+b≥0的解 集是( ) A.x≥2 B.x≤2 C.x≥4 D.x≤4
练习巩固
2.用画函数图象的方法解不等式5x+4<2x+10.
练习巩固
3.甲、乙两辆摩托车从相距20km的A、B两地相向而行,图中l1、l2 分别表示两辆摩托车离开A地的距离s(km)与行驶时间t(h)之 间函数关系. (1)哪辆摩托车的速度较快? (2)经过多长时间,甲车行驶到A、B两地中点?
由图象可知,当x>-2.5时,y<0; 当x>-3时,y<1. 思路二: 将函数问题转化为不等式问题. 即 解不等式-2x-5 >0
∴当x<-2.5时, y>0.
y 3 2
1O -3 -2 -1-1 1 3 x
-2 -3
-4 -5 y = -2x - 5
典例解析
例1.根据下列一次函数的图像,直接写出下列不等式的解集.
典例解析
(2)当x>9时,哥哥跑在弟弟前面; (3)弟弟先跑过20 m,哥哥先跑过
y y2 = 3x + 9