初中数学一次函数PPT课件
合集下载
人教版《一次函数》上课课件PPT初中数学ppt

当自变量x的值为多少时,一次函数y=3x+2的函数值小于0?
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华
在函数 y=kx+b(k≠0)中,当 y<0 时 x 的取值范围.
(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度; 解一元一次不等式:3x+2>0.
因为任何一个以 x 为未知数的一元一次不等式都可以变形为 kx+b>0(k≠0)或 kx+b<0(k≠0)的形式,所以解一元一次不等式可以看作是求一次函数 y=kx+b 的函数值大于 0
解一元一次不等式:3x+2>0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值大于0?
解一元一次不等式:3x+2<0.
当自变量x的值为多少时,一次 函数y=3x+2的函数值小于0?
解一元一次不等式:kx+b>0(k≠0), kx+b<0(k≠0).
当自变量x的值为多少时,一次函数 y=kx+b的函数值大于0,小于0?
课堂练习
1.如图,直线y=ax+b过点A(0,2)和点B(-3,0), 则方程ax+b=0的解是( D) A.x=2 B.x=0 C.x=-1 D.x=-3
2.一次函数y=kx+b(k,b为常数,k≠0)的图象如图所示, 根据图象信息可求得关于x的方程kx+b=3的解为__x_=__2_.
3.如图是函数y=kx+b(k,b是常数,且k≠0)的图象,利用图象直接写出: (1)方程kx+b=0的解; (2)方程kx+b=-2的解; (3)方程kx+b=-3的解. 解:(1)x=2 (2)x=0 (3)x=-1
(2)从第几个月开始小丽的存款数可以超过小华?
解:(1)y1=62+12x,y2=20x (2)由 20x>62+12x 解得 x>734 , 从第 8 个月开始小丽的存款数可以超过小华
初中数学八年级上册《5.3一次函数》PPT课件 (5)

(2)y=
2 3
x+200
它是一次函数,不是正比例函数。
(3)t=
200
v
它不是一次函数,也不是正比例函数。
(4)y=2(3-x)它是一次函数,不是正比例函数。
(5)S=x(50+x)它不是一次函数,也不是正比例函数。
说出下列一次函数的比例系数k和常数项b
(1)C=2πr
k=—2π— b =—0—
5.3 一次函数(1)
1、小明准备将平时的零用钱节约一些储存起来。 他明的已存存款有数50y元(元,)与从月现数在x起的每关月系节式存__1_5_元y_=_,1_5_那x_+_么5_0_小_.
2、为迎合“绿色乡村”的举办理念,小明积极参 与改善生态环境的活动。今年植树节,他种了一 棵高为1米的树苗. 这种树苗平均每年长高0.2米.那 么树h=高0.h2(t米+1)与年数t之间的函数关系式是 ________________.
2
2
例1、求出下列各题中x与y之间的函数关系式,并判
断y是否为x的一次函数?是否为正比例函数?
(1) 某农场种植玉米,每平方米种玉米6株,玉米株
数 (y2与 )种正植方面 形积 周长x(xm与2)之面间积的y之关间系的. 关系;
(3)等腰三角形ABC的周长为16,底边长为y,腰AB长
为x,y与x之间的关系.
3则、b已知 7一=次2 函.数y=kx+
1 2
Hale Waihona Puke ,在x=2时,y=-3,则k= 4
.
考考你
1、已知正比例函数 .当x=-2时,y=6,求 比例系数k的值.
(1)计算当x=-3时,y的值; (2)计算y=-3时,x的值。 2,已知y是x一次函数,当x=3时,y=1;当x=-2 时,y=-14。求y关于x的函数解析式;
一次函数复习PPT课件

基础知识 基础练习
提升、归纳
典例解析
课内练习
课堂小结
反思纠错
正比例函数
定义
函数y=kx(k≠0)叫做正比例函数
k>0
y
k<0
y
图像
o
x
o
x
图像是经过原点(0,0)的一条直线
性质
图像在一、三象限内,y随x的 增大而增大
图像在二、四象限内,y随x的 增大而减小
一次函数
定义
函数y=kx+b(k,b都是常数,且k≠0)叫做一次函数
(1)、函数y=kx+b的图像不通过第四象限,则( )
A.k>0 b>0 B.k>0 b<0
C.k>0 b=0 D.k>0 b≥0
y
解:函数y=kx+b的图像不通过第四象限,
即如图,所以k>0,b>0,
o
x
因此选A这样做对吗?为什么?
(2)已知函数y=kx+b的图像经过点(0,-4)且
与两坐标轴围成的三角形的面积为8,求它的解析式。
在第一轮复习中,我们会发现,有一些错误 是学生的共性。如何让他们在以后的第二轮复习 中不错或少错,是非常值得我们研究的问题,如 果一味把正确的解法抛给他们,尽管暂时学生会 理解它,但时间一长,往往会所剩无几。如果把 学生经常出现的错误适时展现出来,让他们自己 来纠错,这样印象会深刻得多,自然到达更有效 的教学。
教师讲完第二题,接着问学生:①当x取什么值时,y1>y2 ?②当 x____时,y1>0 ?
通过两条直线的位置关系,以及直线与x轴的位置关系来解决问① ②,较好地体现了函数、方程与不等式之间的关系,突出了新课程重 视基础,关注联系与综合的特点。
练一练
(1)一次函数y=3x-4的图像不经过的象限( )
人教版初中数学《一次函数》_课件-完美版

C.y=2x-3 D.y=-x+3
4.根据表中一次函数的自变量x与函数y的对应值,可得p的值为
(A ) A.1 B.-1 C.3 D.-3
x -2 0 1 y 3 p0
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
第11题图
第12题图轴交于点B, 若AB= ,则5 函数的解析式为_____y_=__-__2_x_+__2____.
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
5.(练习 1 变式)设一次函数 y=kx+b(k≠0)的图象经过点 A(1,3), B(0,-2)两点,试求 k,b 的值.
解:把 A,B 的坐标代入 y=kx+b 得kb+=b-=23,,解得kb==5-,2,即 k,b 的值分别为 5,-2
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
10.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂 线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是 ( C)
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
人教版八年级下册数学《函数的图象》一次函数PPT教学课件(第1课时)

新知探究
例1:一个水库的水位在最近 5h 内持续上涨 . 表中记录了这 5h 内6个时间点的水位高度 , 其中t表示时间 , y表示水位高度 . (1)在平面直角坐标系中描出表中数据对应的点 , 这些点 是否在一条直线上 ? 由此你能发现水位变化有什么规律吗 ?
t/h 0 1 2 3 4
5
y/m 3 3.3 3.6 3.9 4.2 4.5
x … 0.5 1 1.5 2 2.5 3 3.5 4 5
y … 12 6 4 3 2.4 2
1.5
6… 1…
新知探究
例3:下图反映的过程是小明从家去食堂吃早餐 , 接着去图书馆读报 , 然后回家 . 其中x 表示时间 , y 表示小明离家的距离 , 小明家、 食堂、图书馆在同一直线上 .
y/km
500 x/分
O 10 20 30 40 50
500 x/分
O 10 20 30 40 50
A
B
C
D
课堂小测
4.1~6个月的婴儿生长发育得非常快 , 他们的体重y(克)和月龄x(月) 之间的关系可以用y=a+700x表示 , 其中a是婴儿出生时的体重 . 若 一个婴儿出生时的体重是4000克 , 请用表格表示在1~6个月内 , 这 个婴儿的体重y与x之间的关系 :
离家500米的地方吃早餐 , 吃早餐用了20分 ; 再用10分赶到
离家1000米的学校参加考试 . 下列图象中 , 能反映这一过
程的是
(D)
y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
一次函数课件ppt

奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算
。
分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
初中数学一次函数课件

一次函数的表达式
表达式
特殊的 当
,
正比例函数
正比例函数是特殊的一次函数
第四 ,共34 。
一次函数的 像
当
的候,像与y 的交点
当
的候,像与x 的交点
正比例函数: 原点
第五 ,共34 。
一次函数的性
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
第七 ,共34 。
正比例函数性
当k>0 ,y随x的增大而增大,
且 像 一、三象限;
当k<0 ,y随x的增大而减小,
且 像 二、四象限。
第八 ,共34 。
两直 位置关系
平行
相交
第九 ,共34 。
求函数的解析式
直接求
第十 ,共34 。
*根据 像求
第十一 ,共34 。
初中数学一次函数 件
第一 ,共34 。
函数的定
一般的在一个 化 程中,如果有两个 量x与y,并且 于x的每一个确定的,y都有唯一确定的 与其 ,那么 我就x是自 量,y是x的函数。
第二 ,共34 。
函数的表示方式
像法 表法 解析式法
第三 ,共34 。
当b>0时,函数的图像与y轴交与正半轴; 当b<0时,函数的图像与y轴交于负半轴。
第六 ,共34 。
当k>0且b>0,函数的像一、二、三象限;
当k>0且b<0,函数的像一、三、四象限; 当k<0且b>0 ,函数的 像 一、二、四象限; 当k<0且b<0 ,函数的 像 二、三、四象限。
第十二 ,共34 。
*两点式
第十三 ,共34 。
北师大版八年级数学上册一次函数一次函数的应用优质PPT

北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
根据图象回答下列问题: (1)哪条线表示B到海岸的距离与追赶时间之间的关系? 当t=0时,B距海岸 0 n mile,即s=0,故 l1表示B到海岸的 距离与追赶时间之间的关系。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)15min内B能否追上A? 延长 l1,l2,可以看出,当t=15时,l1 上的对应点 在 l2 上对应点的下方,这表明,15min时B尚未追上 A。
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(2)A,B哪个速度快? t从0增加到10时,l2 的纵坐标增加了2,而 l1 的纵 坐标增加了5,即10min内,A行驶了2 n mile,B 行驶了5n mile,所以B的速度快。
元,销售成本= 元,销售成本=
元;
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
(3)当销售量等于 时,销售收入等于销售成本;
(4)当销售量 时,该公司盈利(收入大于成本);
当销售量 时,该公司亏损(收入小于成本);
(5)l1对应的函数表达式是 式是 .
北师大版八年级数学上册一次函数一 次函数 的应用 优质PPT
思考:
(1)水库干旱前的蓄水量是多少?
(2)干旱持续10天,蓄水量是多少?干旱持续23天呢?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
-
当k>0且b>0时,函数的图像过一、二、三象限; 当k>0且b<0时,函数的图像过一、三、四象限; 当k<0且b>0时,函数的图像过一、二、四象限; 当k<0且b<0时,函数的图像过二、三、四象限。
7
-
正比例函数性质
当k>0时,y随x的增大而增大, 且图像过一、三象限;
当k<0时,y随x的增大而减小, 且图像过二、四象限。
-
一次函数
1
-
函数的定义
一般的在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与其 对应,那么我们就说x是自变量,y是x的函数。
2
函数的表示方式
图像法 图表法 解析式法
3
-
一次函数的表达式
表达式 y = kx +b(k 0,b为任意实数 ) 特殊的 当b 0 时, y kx为正比例函数
-
*根据图像求范围
17
18
19
-
*综合
20
21
-
交点问题
22
23-Leabharlann 图像应用题2425
26
27
28
29
-
找点问题
30
31
-
实际应用题
32
33
34
正比例函数是特殊的一次函数
4
-
一次函数的图像
当x 0的时候,图像与y轴的交点为 b 0 当 y 0 的时候,图像与x轴的交点为 b
k
正比例函数:经过原点
5
-
一次函数的性质
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。 当b>0时,函数的图像与y轴交与正半轴; 当b<0时,函数的图像与y轴交于负半轴。
8
-
两直线位置关系
平行
k1 k2
相交
k1 k2
b1 b(2 此时两条直线交于y轴同一点)
b1 b2 ( b1 k1 )(此时两条直线交于x轴同一点)
k1
k2 b2 k2
9
-
求函数的解析式
直接求
10
-
*根据图像求
11
12
-
*两点式
13
14
-
基本性质的考查
*象限问题
15
16
-
当k>0且b>0时,函数的图像过一、二、三象限; 当k>0且b<0时,函数的图像过一、三、四象限; 当k<0且b>0时,函数的图像过一、二、四象限; 当k<0且b<0时,函数的图像过二、三、四象限。
7
-
正比例函数性质
当k>0时,y随x的增大而增大, 且图像过一、三象限;
当k<0时,y随x的增大而减小, 且图像过二、四象限。
-
一次函数
1
-
函数的定义
一般的在一个变化过程中,如果有两个变量x与y, 并且对于x的每一个确定的值,y都有唯一确定的值与其 对应,那么我们就说x是自变量,y是x的函数。
2
函数的表示方式
图像法 图表法 解析式法
3
-
一次函数的表达式
表达式 y = kx +b(k 0,b为任意实数 ) 特殊的 当b 0 时, y kx为正比例函数
-
*根据图像求范围
17
18
19
-
*综合
20
21
-
交点问题
22
23-Leabharlann 图像应用题2425
26
27
28
29
-
找点问题
30
31
-
实际应用题
32
33
34
正比例函数是特殊的一次函数
4
-
一次函数的图像
当x 0的时候,图像与y轴的交点为 b 0 当 y 0 的时候,图像与x轴的交点为 b
k
正比例函数:经过原点
5
-
一次函数的性质
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。 当b>0时,函数的图像与y轴交与正半轴; 当b<0时,函数的图像与y轴交于负半轴。
8
-
两直线位置关系
平行
k1 k2
相交
k1 k2
b1 b(2 此时两条直线交于y轴同一点)
b1 b2 ( b1 k1 )(此时两条直线交于x轴同一点)
k1
k2 b2 k2
9
-
求函数的解析式
直接求
10
-
*根据图像求
11
12
-
*两点式
13
14
-
基本性质的考查
*象限问题
15
16