关于51单片机时钟与周期之间的关系之浅析
51单片机指令时间计算

51单片机指令时间计算51单片机作为一种常用的微控制器,广泛应用于各种嵌入式系统中。
在嵌入式系统设计中,了解51单片机指令时间计算是非常重要的,可以帮助我们更好地优化程序,提高系统的运行效率。
本文将围绕51单片机指令时间计算展开讨论,介绍相关的知识和技巧。
一、51单片机指令时间计算的基本概念在51单片机中,每一条指令都需要一定的时间来执行。
这个执行时间可以通过时钟频率来计算。
以一条机器指令所需的时钟周期数来衡量,通常以机器周期(Machine Cycle,MC)来表示。
在51单片机中,一个机器周期由12个时钟周期组成。
因此,我们可以根据时钟频率和指令的机器周期数来计算指令的执行时间。
二、指令执行时间的计算方法1. 单条指令执行时间的计算对于大多数指令来说,它们的执行时间是固定的,可以通过查表得到。
在一些特殊的指令中,执行时间可能会受到一些因素(如访问外部存储器)的影响,需要根据具体的情况进行计算。
2. 循环指令执行时间的计算循环指令是在程序中经常使用的一种指令,它的执行时间与循环次数有关。
如果循环次数已知,可以根据指令执行时间和循环次数来计算循环的总执行时间。
例如,如果一个循环包含5条指令,每条指令执行时间为4个机器周期,循环次数为10次,那么循环的总执行时间为5 * 4 * 10 = 200个机器周期。
3. 中断处理的影响在实际的系统设计中,中断处理是不可避免的。
当发生中断时,CPU会暂停当前的执行,转而处理中断请求。
因此,在计算指令的执行时间时,还需要考虑中断处理的时间。
一般情况下,中断处理的时间是固定的,可以通过查表得到。
三、指令时间计算的应用了解指令的执行时间对于程序的优化非常重要。
在编写程序时,我们可以通过合理地安排指令的顺序和循环的次数,来减少程序的执行时间,提高系统的响应速度。
在实时系统中,我们需要保证任务的及时响应。
通过计算指令的执行时间,我们可以预估系统是否能够满足实时性的要求。
单片机中各种周期的关系与定时器原理

单片机中各种周期的关系与定时器原理
我们现来理解几个比较重要的概念:
时钟周期:
时钟周期也叫振荡周期或晶振周期,即晶振的单位时间发出的脉冲数,一般有外部的振晶产生,比如12MHZ=12乘以10的6次方,即每秒发出12000000个脉冲信号,那幺发出一个脉冲的时间就是时钟周期,也就是1/12微秒。
通常也叫做系统时钟周期。
是计算机中最基本的、最小的时间单位。
在8051单片机中把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:
在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期同6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期=6个状态周期=12个时钟周期。
时钟周期、状态周期、机器周期、指令周期、12T、6T、1T 之间关系

时钟周期、状态周期、机器周期、指令周期、12T、6T、1T 之间关系时钟周期:
又叫振荡周期;是时钟脉冲的倒数;例如22.1184MHz的控制器,其时钟周期就是1/22.1184 us.
状态周期:
8051把1个时钟周期叫做一个节拍。
两个节拍定义为一个状态周期。
机器周期:
完成一个基本操作的时间单元叫做机器周期。
一个机器周期由若干个状态周期构成。
8051的机器周期一般由6个状态周期构成,即12个时钟周期。
指令周期:
完成一条指令所需的时间。
简单的指令是单机器周期指令;复杂的双机器周期指令和多机器周期指令。
指令周期是CPU的关键指标。
ARM的指令一般都是单周期指令。
STC单片机下载时有一个12T和6T模式选择。
12T就是普通的模式,指令周期的时间等于时钟周期的12倍。
而6T则是倍速模式,指令周期的时间等于时钟周期的6倍。
两者的区别会在串口速度上面有体现。
同样的code,以6T模式和以12T模式下载后,串口波特率相差一倍。
1T是12倍速的模式,即指令周期的时间与时钟周期相等。
单片机指令周期 机器周期 状态周期 振荡时钟周期之间的关系

指令周期机器周期状态周期振荡时钟周期(时钟周期)时钟周期:时钟周期也称为振荡周期,定义为时钟脉冲的倒数(可以这样来理解,时钟周期就是单片机外接晶振的倒数,例如12M的晶振,它的时间周期就是1/12 us),是计算机中最基本的、最小的时间单位。
在一个时钟周期内,CPU仅完成一个最基本的动作。
对于某种单片机,若采用了1MHZ的时钟频率,则时钟周期为1us;若采用4MHZ的时钟频率,则时钟周期为250us。
由于时钟脉冲是计算机的基本工作脉冲,它控制着计算机的工作节奏(使计算机的每一步都统一到它的步调上来)。
显然,对同一种机型的计算机,时钟频率越高,计算机的工作速度就越快。
8051单片机把一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示)。
机器周期:在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
8051系列单片机的一个机器周期由6个S周期(状态周期)组成。
前面已说过一个时钟周期定义为一个节拍(用P表示),二个节拍定义为一个状态周期(用S表示),8051单片机的机器周期由6个状态周期组成,也就是说一个机器周期==6个状态周期==12个时钟周期。
例如外接24M晶振的单片机,他的一个机器周期=12/24M 秒;指令周期:执行一条指令所需要的时间,一般由若干个机器周期组成。
指令不同,所需的机器周期也不同。
对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
总线周期:由于存贮器和I/O端口是挂接在总线上的,CPU对存贮器和I/O 接口的访问,是通过总线实现的。
第4章-51单片机对时间的控制PPT课件

定时工作方式0
在定时工作1,16位寄存器TH1和TL1只用13位,由TH1的8位和TL1的低5位组 成。当TL1的低5位计数溢出时,向TH1进位。而TH1计数溢出时,则向中断标志 位TF1进位(即硬件将TF1置1),并请求中断。可通过查询TF1是否置“1”或考 察中断是否发生来判定定时器T1的操作完成与否。
当GATE=0时,“或门”输出恒为1,“与门”的输出信号K由TR1决定,定 时器不受INT1输入电平的影响,由TR1直接控制定时器的启动和停止。 TR1=1;定时/计数启动; TR1=0;定时/计数停止;
当GATE=1时,“与门”的输出信号K由INT1输入电平和TR1位的状态一起 决定,当且仅当TR1=1且INT1=1(高电平)时,计数启动;否则,计数停止。
时计数器时,也就是TH0和TL0合并为一个16位数据寄存器,当计数达到最大状态 65535,如表4-5所示。如果再计一个数,就会产生溢出,此时标志位TF0被置为1, 而TH0和TL0都被清零。 ② TR1和TR0——定时器运行控制位
TR0(TR1)=0,停止定时器/计数器的工作。 TR0(TR1)=1,开启定时器/计数器的。
定时计数中断响应地址
中断源
定时/计数器 0(TF0) 定时/计数器 1(TF1)
向量地址
000BH~0012H 001BH~0022H
C51 中断序号
20
定时工作方式1
当工作方式控制寄存器控制位M1、M0=01,定时/计数器所在的工作方式为工 作方式1,假设我们使用定时器0,则定时数据寄存器就是由TH0的全部8位和 TL0全部8位组成。其逻辑电路和工作情况和方式0是完全相同的,所不同的只是 组成计数器的位数。
12
(5)定时\计数工作方式控制寄存器TMOD(89H)
51单片机内部时钟误差

51单片机内部时钟误差摘要:I.引言- 介绍51 单片机内部时钟误差的概念II.51 单片机内部时钟误差的原因- 晶振频率不准确- 机器周期占用III.51 单片机内部时钟误差的影响- 计时准确性下降- 系统性能受到影响IV.解决51 单片机内部时钟误差的方法- 采用高精度晶振方案- 动态同步修正方案V.结论- 总结解决51 单片机内部时钟误差的方法及其重要性正文:I.引言51 单片机内部时钟误差是指在51 单片机内部,由于各种原因导致时钟信号的不准确,从而影响整个系统的性能。
对于需要高精度时间的应用,如计时、通信等,这种误差尤为关键。
本文将探讨51 单片机内部时钟误差的原因、影响及其解决方法。
II.51 单片机内部时钟误差的原因51 单片机内部时钟误差的主要原因是晶振频率的不准确和机器周期占用。
1.晶振频率不准确:51 单片机的内部时钟信号是由外部晶振提供的。
如果晶振的频率不稳定,那么时钟信号也会随之波动,从而影响计时准确性。
2.机器周期占用:在51 单片机内部,从定时器/计数器产生中断请求到响应中断,需要占用一定的机器周期。
此外,定时器/计数器溢出中断请求到执行中断也需要一定的机器周期。
这些机器周期占用会导致计时器/计数器初值的准确度下降,从而影响时钟误差。
III.51 单片机内部时钟误差的影响51 单片机内部时钟误差会对系统性能产生影响,主要表现在计时准确性的下降。
在需要高精度时间的应用中,如实时操作系统、通信设备等,这种误差可能导致系统运行不稳定,甚至功能失效。
IV.解决51 单片机内部时钟误差的方法针对51 单片机内部时钟误差,有以下两种解决方法:1.采用高精度晶振方案:通过使用高精度晶振,可以提高时钟信号的准确度,从而降低时钟误差。
但需要注意的是,高精度晶振的价格较高,需要在成本和性能之间进行权衡。
2.动态同步修正方案:在程序中,通过动态同步修正方法给定时器/计数器赋初值。
具体方法是将定时器/计数器低位(TLO)中的值和初始值相加,然后送入定时器/计数器中。
51单片机的指令周期
51单片机的指令周期051芯片内部有一高增益反相放大器,用于构成振荡器,反向放大器输入端为XTAL1,输出端XTAL2。
在XTAL1和XTAL2两端跨接一个石英晶体及两个电容就构成了稳定自激振荡器,电容器C1和C2通常都取30pF左右,对振荡频率有微调作用。
振荡频率范围是1.212MHz。
8051也使用外部震荡脉冲信号,由XTAL2端引脚输入,XTAL1端接地,外部震荡脉冲源方式常用于多块8051同时工作,以便于同步。
晶体振荡器的振荡信号从XTAL2端输出到片内的时钟发生器上,时钟发生器是一个二分频触发电路,它将振荡器的信号频率fosc除以2,向CPU提供两相时钟信号P1和P2。
时钟信号的周期称为机器状态时间S,CPU就以两相时钟P1和P2为基本节拍指挥8051单片机各个部件协调地工作。
除时钟周期外,还有两个与时间有关的概念叫机器周期和指令周期。
计算机的一条指令由若干个字节组成。
执行一条指令需要多少时间则以机器周期为单位。
所谓一个机器周期就是指CPU访问存储器一次所需要的时间。
例如取指令,读存储器,写存储器等等。
MCS51的一个机器周期为12个振荡周期,分为六个S状态,S1S6.而每个状态又分为两拍,称为P1和P2。
因此,一个机器周期中的12个振荡周期表示为S1P1,S1P2,S2P1等直到S6P2.若采用6MHZ晶体振荡器,则每个机器周期恰为2us。
每条指令都由一个或几个机器周期组成。
在MCS51系统中,有单周期指令,双周期指令。
四周期指令只有乘,除两条指令。
指令的运算速度和它的机器周期直接相关,机器周期数较小则执行速度快。
在编程时要注意选用具有同样功能而机器周期数小的指令。
每一条指令的执行都可以包括取指和执行两个阶段。
在取指阶段,CPU从内部或者外部ROM中取出指令操作码及操作数,然后再执行这条指令。
在8051指令系统中,根据各种操作的繁简程度,其指令可由单字节,双字节和三字节组成。
从机器执行指令的速度看,单字节和双字节指令都可能是单周期或双周期,而三字节指令都是双周期,只有乘,除指令占四个周期,一条指令的字节数表征这条指令在存储器中所占空间大小,而周期数表征运行这条指令所花时间长短,即运行速度。
5单片机的内部结构分析(三)时序与时钟
5单片机的内部结构分析(三)时序与时钟单片机的内外部结构分析(三)一、延时程序分析上一次课中,我们已经知道,程序中的符号R7、R6是代表了一个个的RAM单元,是用来放一些数据的,下面我们再来看一下其它符号的含义。
1.MOV:这是一条指令,意思是传递数据。
说到传递,我们都很清楚,传东西要从一个人的手上传到另一个人的手上,也就是说要有一个接受者,一个传递者和一样东西。
从指令MOV R7,#250中来分析,R7是一个接受者,250是被传递的数,传递者在这条指令中被省略了(注意:并不是每一条传递指令都会省的,事实上大部份数据传递指令都会有传递者)。
它的意义也很明显:将数据250送到R7中去,因此执行完这条指令后,R7单元中的值就应当是250。
在250前面有个#号,这又是什么意思呢?这个#就是用来说明250就是一个被传递的东西本身,而不是传递者。
那么MOV R6,#250是什么意思,应当不用分析了吧。
2.DJNZ:这是另一条指令,我们来看一下这条指令后面跟着的两个东西,一个是R6,一个是D2,R6我们当然已知是什么了,查一下D2是什么。
D2在本行的前面,我们已学过,这称之为标号。
标号的用途是什么呢?就是给本行起一个名字。
DJNZ指令的执行过程是这样的,它将其后面的第一个参数中的值减1,然后看一下,这个值是否等于0,如果等于0,就往下执行,如果不等于0,就转移,转到什么地方去呢?可能大家已猜到了,转到第二个参数所指定的地方去(请大家用自已的话讲一下这条语句是怎样执行的)。
本条指令的最终执行结果就是,在原地转圈250次。
3.执行完了DJNZ R6,D2之后(也就是R6的值等于0之后),就会去执行下面一行,也就是DJNZ R7,D1,请大家自行分析一下这句话执行的结果。
(转去执行MOV R6,#250,同时R7中的值减1),最终DJNZ R6,D2这句话将被执行250*250=62500次,执行这么多次同一条指令干吗?就是为了延时。
指令周期、时钟周期、总线周期概念辨析
指令周期、时钟周期、总线周期概念辨析在计算机中,为了便于管理,常把一条指令的执行过程划分为若干个阶段,每一阶段完成一项工作。
例如,取指令、存储器读、存储器写等,这每一项工作称为一个基本操作。
完成一个基本操作所需要的时间称为机器周期。
一般情况下,一个机器周期由若干个S周期(状态周期)组成。
通常用内存中读取一个指令字的最短时间来规定CPU周期,(也就是计算机通过内部或外部总线进行一次信息传输从而完成一个或几个微操作所需要的时间)),它一般由12个时钟周期组成。
而时钟周期=1秒/晶振频率,因此单片机的机器周期=12秒/晶振频率 .指令周期(Instruction Cycle):取出并执行一条指令的时间。
总线周期(BUS Cycle):也就是一个访存储器或I/O端口操作所用的时间。
时钟周期(Clock Cycle):又称节拍周期,是处理操作的最基本单位。
(晶振频率的倒数,也称T状态)指令周期、总线周期和时钟周期之间的关系:一个指令周期由若干个总线周期组成,而一个总线周期时间又包含有若干个时钟周期。
指令周期CPU每取出一条指令并执行这条指令,都要完成一系列的操作,这一系列操作所需要的时间通常叫做一个指令周期。
换言之指令周期是取出一条指令并执行这条指令的时间。
由于各条指令的操作功能不同,因此各种指令的指令周期是不尽相同的。
例如一条加法指令的指令周期同一条乘法指令的指令周期是不相同的。
指令周期常常用若干个CPU周期数来表示,CPU周期也称机器周期。
指令不同,所需的机器周期数也不同。
对于一些简单的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。
对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。
通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。
总线周期1.微处理器是在时钟信号CLK控制下按节拍工作的。
8086/8088系统的时钟频率为4.77MHz,每个时钟周期约为200ns。
51单片机的时钟电路原理
51单片机的时钟电路原理
51单片机的时钟电路原理如下:
1. 外部晶振电路:51单片机的时钟电路主要由一个晶体振荡电路组成,晶体振荡电路由一个晶体谐振器和两个电容组成。
晶体振荡电路产生的正弦信号被送入单片机内部,用于驱动时钟周期。
2. 时钟源选择:51单片机的时钟源可以选择外部晶振电路提供的晶振信号或者内部RC振荡电路提供的振荡信号。
3. 预分频器:51单片机内部有一个12位的预分频器,用于将时钟信号进行分频。
预分频器的分频比可以通过程序设置,可以将时钟信号分频为1、2、4、8、12等倍数,可根据需要选择合适的分频比。
4. 定时器:51单片机内部有一个定时器/计数器,用于实现定时和计数功能。
定时器可以根据程序设置的计数值产生中断信号,以实现定时中断和计数中断功能。
5. 中断控制:51单片机的时钟电路中包含一个中断控制模块,用于实现对定时器中断信号的处理。
中断控制模块可以根据程序的设置,决定是否接受定时器中断信号,以及如何响应中断。
总之,51单片机的时钟电路利用外部晶振电路提供的晶振信号作为时钟源,通过预分频器进行分频,再经过定时器和中断控制模块的处理,最终实现定时和计数功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于51单片机时钟与周期之间的关系之浅析
单片机(Microcontrollers)是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域广泛应用。
从上世纪80年代,由当时的4位、8位单片机,发展到现在的300M的高速单片机。
简介
单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。
相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。
概括的讲:一块芯片就成了一台计算机。
它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。
同时,学习使用单片机是了解计算机原理与结构的最佳选择。
单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。
各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。
应用分类
单片机(Microcontrollers)作为计算机发展的一个重要分支领域,根据发展情况,从不同角度,单片机大致可以分为通用型/专用型、总线型/非总线型及工控型/家电型。
通用型
这是按单片机(Microcontrollers)适用范围来区分的。
例如,80C51式通用型单片机,它不是为某种专门用途设计的;专用型单片机是针对一类产品甚至某一个产品设计生产的,例如为了满足电子体温计的要求,在片内集成ADC接口等功能的温度测量控制电路。
总线型
单片机
单片机。