2018西城初三数学一模答案

合集下载

2018北京西城初三一模数学试题

2018北京西城初三一模数学试题

北京市西城区2018年九年级统一测试数学试卷2018.04一、选择题(本题共 16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能 深度学习的质量和速度,其中的一个大数据中心能存储 58000000000本书籍,将58000000000用科学记数法表示应为().1011911A • 5.8 10B . 5.8 10C . 58 10D . 0.58 102•在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是().B .C .D .3•将b 3 -4b 分解因式,所得结果正确的是().2 2 2A . b(b —4)B . b(b —4)C . b(b —2)D . b(b 2)(b-2)4. 如图是某个几何体的三视图,该几何体是().B .圆柱C .六棱柱D .圆锥 5.若实数a , b , c , d 在数轴上的对应点的位置如图所示,则正确的结论是(A .三棱柱左图千里江山图京津冀协同发展 内蒙古自治区成立七十周年河北雄安新区建立纪念主视图俯视图A . a :::_5a b c d____________ I I N I I ;I I L I 1 I I, IB. b d <0 -5 -4 -3 -2 -1 0 1 2 3 4 5C. a -c <0D . c ::: . d6. 如果一个正多边形的内角和等于720,那么该正多边形的一个外角等于4优良-轻度污染—L中度污染1. 重度污染一^严重污染().A . 45B . 60C . 72D . 907.空气质量指数(简称为AQI)是定量描述空气质量状况的指数,它的类别如下表所示.AQI数据0~5051~100101 ~150151 ~200201 ~300301以上AQI类别优良轻度污染中度污染重度污染严重污染某同学查阅资料,制作了近五年1月份北京市A Q I各类别天数的统计图如下图所示.2014年2015年2016年2017年2018年时间1月1月1月1月1月根据以上信息,下列推断不合理的是A. AQI类别为优”的天数最多的是2018年1月B . AQI数据在0~100之间的天数最少的是2014年1月C •这五年的1月里,6个AQI类别中,类别优”的天数波动最大D • 2018年1月的AQI数据的月均值会达到中度污染”类别&将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数10203040506070809010075 A投中次数71523303845536068投中频率0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750 B投中次数8142332354352617080投中频率0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800 F面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767 •②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750 •④投篮达到200次时,B运动员投中次数一定为160次. 其中合理的是().A .①B .②C.①③D .②③二、填空题(本题共16分,每小题2分)x -19.若代数式—的值为0,则实数x的值为--------------------10 .化简:(a +4)(a -2) —a(a +1) = _____________11. 如图,在厶ABC中,DE// AB , DE分别与AC , BC交于D , E两点.若& DEC 4S\ABC 9AC =3,贝y DC = __________x12. 从杭州东站到北京南站, 原来最快的一趟高铁 G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了杭京高铁复兴号”,它的运行速度比原来的35km/h ,约用4.5h 到达。

2018初3数学1模题及答案 解析 西城

2018初3数学1模题及答案 解析 西城

北京市西城区2018年九年级统一测试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( ). A .105.810⨯ B .115.810⨯C .95810⨯D .110.5810⨯【答案】A【解析】用科学记数法表示为105.810⨯.2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( ).A .B .C .D .【答案】C千里江山图京津冀协同发展内蒙古自治区成立七十周年河北雄安新区建立纪念【解析】中心对称绕中心转180︒与自身重合.3.将34b b -分解因式,所得结果正确的是( ). A .2(4)b b - B .2(4)b b - C .2(2)b b - D .(2)(2)b b b +-【答案】D【解析】324(4)(2)(2)b b b b b b b -=-=+-.4.如图是某个几何体的三视图,该几何体是( ). A .三棱柱 B .圆柱 C .六棱柱 D .圆锥【答案】C【解析】由俯视图可知有六个棱,再由主视图及左视图分析可知为六棱柱.5.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ). A .5a <- B .0b d +< C .0a c -< D .c d <【答案】D【解析】①5a >-,故A 错. ②0b d +>,故B 错. ③0a c ->,故C 错.④01c <<,42d ==,故选D .俯视图左视图主视图d c ba 0-1-2-3-4-5123456.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ). A .45︒ B .60︒C .72︒D .90︒【答案】B【解析】多边形内角和(2)180720n -⨯︒=︒,∴6n =. 正多边形的一个外角360360606n ︒︒===︒.7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.AQI 数据 0~50 51~100 101~150 151~200 201~300 301以上AQI 类别 优 良 轻度污染 中度污染 重度污染 严重污染某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月 B.AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别【答案】D【解析】①AQI 为“优”最多的天数是14天,对应为2018年1月,故A 对.246810121416优良轻度污染中度污染重度污染严重污染2014年1月2015年1月2016年1月2017年1月2018年1月时间天数123446789610121032134691141210②AQI201420152016201720180~50641281451~100710109120~1001314221726AQI在0~100之间天数最少的为2014年1月,故B对.③观察折线图,类别为“优”的波动最大,故C对.④2018年1月的AQI在“中度污染”的天数为1天,其他天AQI均在“中度污染”之上,因此D推断不合理.8.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数102030405060708090100A投中次数7152330384553606875投中频率0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750 B投中次数8142332354352617080投中频率0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③【答案】B【解析】①在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,投篮30次,次数太少,不可用于估计概率,故①推断不合理.②随着投篮次数增加,A运动员投中的概率显示出稳定性,因此可以用于估计概率,故②推断合理.③频率用于估计概率,但并不是准确的概率,因此投篮次时,只能估计投中200次数,而不能确定一定是160次,故③不合理.二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为__________.【答案】1x = 【解析】101x x -=+,10x -=,1x =.10.化简:()()42(1)a a a a +--+=__________.【答案】8a -【解析】22421288()()()a a a a a a a a a +--+=+---=-.11.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.【答案】2【解析】∵DE AB ∥, ∴249DEC ABC S CD S AC ⎛⎫== ⎪⎝⎭△△, ∴23CD AC =. ∵3AC =, ∴2CD =.E DCBA12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达。

西城初三一模【数学】试题及答案

西城初三一模【数学】试题及答案

2018年北京西城区初三一模数学试卷选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个.爱智康1.A. B.C. D.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储本书籍,将用科学记数法表示应为( ).58000000000580000000005.8×1010 5.8×101158×1090.58×10112.A. B.C. D.在中国集邮总公司设计的年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( ).20173.A. B.C. D.将分解因式,所得结果正确的是( ).−4b b 3b (−4)b 2b (b −4)2b (b −2)2b (b +2)(b −2)4.如图是某个几何体的三视图,该几何体是( ).爱智康A.三棱柱B.圆柱C.六棱柱D.圆锥5.A. B.C. D.若实数,,,在数轴上的对应点的位置如图所示,则正确的结论是( ).a b c d a <−5b +d <0|a |−c <0c <d√6.A. B. C. D.如果一个正多边形的内角和等于,那么该正多边形的一个外角等于( ).720∘45∘60∘72∘90∘7.A.B.C.D.空气质量指数(简称为)是定量描述空气质量状况的指数,它的类别如下表所示.数据~~~~~以上类别优良轻度污染中度污染重度污染严重污染某同学查阅资料,制作了近五年月份北京市各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是( ).类别为“优”的天数最多的是年月数据在~之间的天数最少的是年月这五年的月里,个类别中,类别“优”的天数波动最大年月的数据的月均值会达到“中度污染”类别AQI AQI 05051100101150151200201300301AQI 1AQI AQI 20181AQI 010********AQI 20181AQI填空题(本题共16分,每小题2分)爱智康8.A.①B.②C.①③D.②③将,两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数投中次数投中频率投中次数投中频率下面有三个推断:①投篮次时,两位运动员都投中次,所以他们投中的概率都是.②随着投篮次数的增加,运动员投中频率总在附近摆动,显示出一定的稳定性,可以估计运动员投中的概率是.④投篮达到次时,运动员投中次数一定为次.其中合理的是( ).A B 102030405060708090100A71523303845536068750.70000.7500.7670.7500.7600.7500.7570.7500.7560.750B81423323543526170800.8000.7000.7670.8000.7000.7170.7430.7630.7780.80030230.767A 0.750A 0.750200B 1609.若代数式的值为,则实数的值为 .x −1x +10x 10.化简: .(a +4)(a −2)−a (a +1)=11.如图,在中,,分别与,交于,两点.若,,则 .△ABC DE //AB DE AC BC D E =S △DEC S △ABC 49AC =3DC =12.从杭州东站到北京南站,原来最快的一趟高铁次约用到达.从年月日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的次的运行速度快,约用到达.如果在相同的路线上,杭州东站到北京南站的距离不变,设“杭京高铁复兴号”的运行速度.设“杭京高铁复兴号”的运行速度为,依题意,可列方程为 .G205h 2018410G2035km/h 4.5h x km/h 13.如图,为⊙的直径,为上一点,,,交⊙于点,连接,,那么 .AB O C AB ∠BOC =50∘AD //OC AD O D AC CD ∠ACD =解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)爱智康14.在平面直角坐标系中,如果当时,函数()图象上的点都在直线上方,请写出一个符合条件的函数()的表达式: .xOy x >0y =kx −1k ≠0y =−1y =kx −1k ≠015.如图,在平面直角坐标系中,点的坐标为,等腰直角三角形的边在轴的正半轴上,,点在点的右侧,点在第一象限.将绕点逆时针旋转,如果点的对应点恰好落在轴的正半轴上,那么边的长为 .xOy A A (1,0)ABC AB x ∠ABC =90∘B A C △ABC A 75∘C E y AB 16.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点.求作:过点且与直线垂直的直线,垂足为点某同学的作图步骤如下:步骤作法推断第一步以点为圆心,适当长度为半径作弧,交直线于,两点.第二步连接,,作的平分线,交直线于点.直线即为所求作.请你根据该同学的作图方法完成以下推理:∵, ,∴.(依据: ).P P l P Q Q P l A B P A =P BP A P B ∠AP B l Q ∠AP Q =∠P Q P Q ⊥lP A =P B ∠AP Q =∠P Q ⊥l 17.计算:.−+4sin 30−|−1|18−−√()15−1∘2√爱智康18.解不等式组,并求该不等式组的非负整数解.{3(x +2)⩾x +4<1x −1219.(1)求证:.(2)点在线段上运动,当时,图中与全等的三角形是 .如图,平分,于点,的中点为,.AD ∠BAC BD ⊥AD D AB E AE <AC DE //AC F AC AF =AE △ADF 20.(1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数的值.已知关于的方程(为实数,).x m +(3−m )x −3=0x 2m m ≠0m 21.(1)补全图形,求的度数并说明理由;(2)若,,求的长.如图,在中,,分别以点,为圆心,长为半径在的右侧作弧,两弧交于点,分别连接,,,记与的交点为.△ABD ∠ABD =∠ADB B D AB BD C BC DC AC AC BD O ∠AOB AB =5cos ∠ABD =35BD 22.(1)求,的值;如图,在平面直角坐标系中,直线与轴的交点为,与轴的交点为,线段的中点在函数()的图象上.xOy y =x +mx A (−4,0)y B AB M y =k xk ≠0m k爱智康(2)将线段向左平移个单位长度()得到线段,,、的对应点分别为,,.1当点落在函数()的图象上时,求的值.2当时,结合函数的图象,直接写出的取值范围.AB n n >0CD A M B C N D D y =kxx <0n MD ⩽MN n 23.选择各志愿服务项目的人数统计表志愿服务项目划记人数.纪念馆志愿讲解员正.书香社区图书整理.学编中国结及义卖正正.家风讲解员.校内志愿服务正合计某同学所在年级的名学生参加“志愿北京”活动,现有以下个志愿服务项目:.纪念馆志愿讲解员..书香社区图书整理..学编中国结及义卖..家风讲解员..校内志愿服务.要求:每位学生都从中选择一个项目参加,为了了解同学们选择这个个项目的情况,该同学随机对年级中的名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数比例统计图.纪念馆志愿讲解员.书香社区图书整理.学编中国结及义卖.校内志愿服务.家风5005A B C D E 540B E B A E C C C B B A C E D B A B E C A D D B B C C A A E B C B D C A C C A C E A 8B C 12D E 64040A B C E D爱智康(1)分析数据、推断结论::抽样的个样本数据(志愿服务项目的编号)的众数是 .(填的字母代号)(2):请你任选中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.讲解员a 40A −Eb A −E 24.(1)求点到半径的距离(用含的式子表示).(2)作于点,求的度数及的值.如图,⊙的半径为,内接于⊙,,,为延长线上一点,与⊙相切,切点为.O r △ABC O ∠BAC =15∘∠ACB =30∘D CB AD O A B OC r DH ⊥OC H ∠ADH CBCD25.(1)通过取点、画图、测量及分析,得到了与的几组值,如下表:(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当时,的长度均为 .如图,为⊙的直径上的一个动点,点在上,连接,过点作的垂线交⊙于点.已知,.设、两点间的距离为,、两点间的距离为.某同学根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:P O AB C AB ⌢P C A P C O Q AB =5cm AC =3cm A P x cm A Q y cm y x x y x (cm)01 2.53 3.545y (cm)4.04.75.04.84.13.7AQ =2AP AP cm 26.在平面直角坐标系中,抛物线:与轴交于点,抛物线的顶点为,直线:.xOy G y =m +2mx +m −1(m ≠0)x 2y C G D l y =mx +m −1(m ≠0)爱智康(1)当时,画出直线和抛物线,并直接写出直线被抛物线截得的线段长.(2)随着取值的变化,判断点,是否都在直线上并说明理由.(3)若直线被抛物线截得的线段长不小于,结合函数的图象,直接写出的取值范围.m =1l G l G m C D l l G 2m 27.(1)如图,当时,1依题意补全图.2用等式表示与之间的数量关系: .(2)当时,探究与之间的数量关系并加以证明.(3)当时,若边的中点为,直接写出线段长的最大值.正方形的边长为,将射线绕点顺时针旋转,所得射线与线段交于点,作于点,点与点关于直线对称,连接.ABCD 2AB A αBD M CE ⊥AM E N M CE CN 10<α<45∘∘1∠NCE ∠BAM 45<α<90∘∘∠NCE ∠BAM 0<α<90∘∘AD F EF 28.对于平面内的⊙和⊙外一点,给出如下定义:若过点的直线与⊙存在公共点,记为点,,设,则称点(或点)是⊙的“相关依附点”,特别地,当点和点重合时,规定,(或).已知在平面直角坐标系中,,,⊙的半径为.C C Q Q C A B k =AQ +BQCQA B C k A B AQ =BQ k =2AQ CQ 2BQCQ xOy Q (−1,0)C (1,0)C r爱智康(1)如图,当时,1若是⊙的“相关依附点”,则的值为 .2是否为⊙的“相关依附点”.答: (填“是”或“否”).(2)若⊙上存在“相关依附点”点,1当,直线与⊙相切时,求的值.2当时,求的取值范围.(3)若存在的值使得直线与⊙有公共点,且公共点时⊙的“相关依附点”,直接写出的取值范围.1r =2√(0,1)A 1C k k (1+,0)A 22√C 2C k M r =1QM C k k =3√r r y =−x +b 3√C C 3√b康智爱2018年北京西城区初三一模数学试卷选择题(本题共16分,每小题2分) 第1-8题均有四个选项,符合题意的选项只有一个.1.【答案】A2.【答案】C3.【答案】D4.【答案】C5.【答案】D6.【答案】B7.【答案】D8.【答案】B填空题(本题共16分,每小题2分)9.【答案】110.【答案】a−811.【答案】212.【答案】4.5x=5(x−35)13.【答案】40∘解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)爱智康14.【答案】答案不唯一15.【答案】2√16.【答案】1.2.等腰三角形三线合一BPQ17.【答案】原式.=2−22√18.【答案】原不等式的非负整数解为,,.01219.【答案】(1)证明见解析.(2)△ADE20.【答案】(1)证明见解析.(2)整数的值为或.m −1−321.【答案】(1)画图见解析,,证明见解析.(2).∠AOB =90∘BD =622.【答案】(1)..1.2的取值范围是.(2)m =4k =−4n =1n n ⩾223.【答案】(1)(2):(人).:(人).:(人).:(人).:(人).CA 100B 125C 150D 50E 7524.【答案】(1)点到半径的距离为.(2),.B OC r 2∠ADH =90∘=CB CD1225.【答案】(1)答案见解析.(2)画图见解析.(3)2.42爱智康26.【答案】(1)画图见解析.(2)无论取何值,点,都在直线上.(3)或.m C D l m ⩽−3√m ⩾3√27.【答案】1画图见解析.2.(1)(2).证明见解析.(3).∠NCE =2∠BAM ∠NCE +∠BAM =9012∘E =1+F max 2√28.【答案】12是(1)1,2.(2)(3).2√k =3√1⩽r <2−<b <33√3√。

201804-西城初三数学一模试题

201804-西城初三数学一模试题

北京市西城区2018年九年级统一测试数学试卷2018.4一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58 000 000 000本书籍.将58 000 000 000用科学记数法表示应为 A .105.810⨯B .115.810⨯C .95810⨯D .110.5810⨯2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是3.将34b b -分解因式,所得结果正确的是A .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +- 4.如图是某个几何体的三视图,该几何体是A .三棱柱B .圆柱C .六棱柱D .圆锥5若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .5a -<B .0b d +<C .0a c -<D .c <6.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于 A .45° B .60°C .72°D .90°某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不.合理..的是 A. AQI 类别为“优”的天数最多的是2018年1月 B. AQI 数据在0~100之间的天数最少的是2014年1月C.这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D. 2018年1月的AQI 数据的月均值会达到“中度污染”类别 8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767; ②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750;③当投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是A .①B .②C .①③D .②③ 二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为.10.化简:(+4)(2)(1)a a a a --+=.11.如图,在△ABC 中,DE ∥AB ,DE 分别与AC ,BC 交于D ,E两点.若49DEC ABCS S=,AC =3,则DC=. 12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35 km/h ,约用4.5 h 到达. 如果在相同的路线上,杭州东站到北京南站的距离不变,求“杭京高铁复兴号”的运行速度.设“杭京高铁复兴号”的运行速度为x km/h ,依题意,可列方程为.13.如图,AB 为⊙O 的直径,C 为上一点,50BOC ∠=︒,AD ∥OC , AD 交⊙O 于点D ,连接AC ,CD ,那么ACD ∠=.14.在平面直角坐标系xOy 中,如果当0x >时,函数1y kx =-(k ≠0)图象上的点都在直线1y =-上方,请写出一个符合条件的函数1y kx =-(k ≠0)的表达式:.15.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,0)A ,等腰直角三角形ABC 的边AB 在x 轴的正半轴上,90ABC ∠=︒, 点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针 旋转75︒,如果点C 的对应点E 恰好落在y 轴的正半轴上,那 么边AB 的长为. 16.阅读下面材料: 在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.请你根据该同学的作图方法完成以下推理: ∵ P A=PB ,∠APQ=∠, ∴PQ ⊥l .(依据:)三、解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)1711()4sin3015-+︒.AB︒18.解不等式组3(+2)+4,11,2x x x ≥⎧⎪⎨-<⎪⎩并求该不等式组的非负整数解.19. 如图,AD 平分∠BAC ,BD ⊥AD 于点D ,AB 的中点为E , AE<AC .(1)求证:DE ∥AC ;(2)点F 在线段AC 上运动,当AF=AE 时,图中与△ADF全等的三角形是.20.已知关于x 的方程2(3)30mx m x +--=(m 为实数,m ≠0). (1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都为正整数,求整数m 的值.21.如图,在△ABD 中,=ABD ADB ∠∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC , 记AC 与BD 的交点为O .(1)补全图形,求AOB ∠的度数并说明理由; (2)若AB =5,3cos 5ABD ∠=,求BD 的长.22. 如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为(4,0)A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(k ≠0)的图象上. (1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,M ,B 的对应点分别为C ,N ,D .①当点D 落在函数ky x=(<0x )的图象上时,求n 的值; ②当MD ≤MN 时,结合函数的图象,直接写出n 的取值范围.23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A .纪念馆志愿讲解员;B .书香社区图书整理;C .学编中国结及义卖;D .家风讲解员;E .校内志愿服务.每位同学都从中选择一个项目参加.为了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下.收集数据设计调查问卷,收集到如下的数据(志愿服务项目的编号,用字母代号表示)B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E.整理、描述数据划记、整理、描述样本数据、绘制统计图如下.请补全统计表和统计图.24.如图,⊙O的半径为r ,△ABC内接于⊙O,∠BAC=15︒,∠ACB=30︒,D为CB延长线上一点,AD与⊙O相切,切点为A.(1)求点B到半径OC的距离(用含r的式子表示);(2)作DH⊥OC于点H,求∠ADH的度数及CBCD的值.25.如图,P为⊙O的直径AB上的一个动点,点C在AB上,连接PC,过点A作PC的垂线交⊙O于点Q.已知AB=5cm,AC=3cm,设A,P两点间的距离为x cm,A,Q 两点间的距离为y cm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(说明:补全表格时的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AQ=2AP 时,AP 的长度约为cm .26.在平面直角坐标系xOy 中,抛物线G :221y mx mx m =++- (m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线l :1y mx m =+-(m ≠0).(1)当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长; (2)随着m 取值的变化,判断点C ,D 是否都在直线l 上并说明理由; (3)若直线l 被抛物线G 截得的线段长不小于...2.,结合函数的图象,直接写出m 的 取值范围.27.正方形ABCD 的边长为2. 将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE ⊥AM 于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当0°<α<45°时,①依题意补全图1;②用等式表示∠NCE 与∠BAM 之间的数量关系:;(2)当45°<α<90°时,探究∠NCE 与∠BAM 之间的数量关系并加以证明; (3)当0°<α<90°时,若边AD 的中点为F ,直接写出线段EF 的最大值.图1备用图28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”.特别地,当点A 和点B 重合时,规定AQ =BQ ,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为______;②2(1A 是否为⊙C 的“2相关依附点”?答:是______(选“是”或“否”); (2)若⊙C 上存在“k 相关依附点”点M ,①当r =1,直线QM 与⊙C 相切时,求k 的值;②当k r 的取值范围;(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点是⊙C 依附点”,直接写出b 的取值范围.图1备用图。

201804-西城初三数学一模试题

201804-西城初三数学一模试题

北京市西城区2018年九年级统一测试一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58 000 000 000本书籍.将58 000 000 000用科学记数法表示应为A .105.810⨯B .115.810⨯C .95810⨯D .110.5810⨯2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是3.将34b b -分解因式,所得结果正确的是A .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-4.如图是某个几何体的三视图,该几何体是A .三棱柱B .圆柱C .六棱柱D .圆锥5若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是A .5a -<B .0b d +<C .0a c -<D .c <6.如果一个正多边形的内角和等于720°,那么该正多边形的一个外角等于A .45°B .60°C .72°D .90°某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不合理...的是A.AQI 类别为“优”的天数最多的是2018年1月B.AQI 数据在0~100之间的天数最少的是2014年1月C.这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D.2018年1月的AQI 数据的月均值会达到“中度污染”类别8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数102030405060708090100A投中次数7152330384553606875投中频率0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750B投中次数8142332354352617080投中频率0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800下面有三个推断:①当投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767;②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750;③当投篮达到200次时,B 运动员投中次数一定为160次.其中合理的是A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分)9.若代数式11x x -+的值为0,则实数x 的值为.10.化简:(+4)(2)(1)a a a a --+=.11.如图,在△ABC 中,DE ∥AB ,DE 分别与AC ,BC 交于D ,E两点.若49DEC ABC S S = ,AC =3,则DC=.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达.如果在相同的路线上,杭州东站到北京南站的距离不变,求“杭京高铁复兴号”的运行速度.设“杭京高铁复兴号”的运行速度为x km/h ,依题意,可列方程为.13.如图,AB 为⊙O 的直径,C 为AB 上一点,50BOC ∠=︒,AD ∥OC ,AD 交⊙O 于点D ,连接AC ,CD ,那么ACD ∠=︒.14.在平面直角坐标系xOy 中,如果当0x >时,函数1y kx =-(k ≠0)图象上的点都在直线1y =-上方,请写出一个符合条件的函数1y kx =-(k ≠0)的表达式:.15.如图,在平面直角坐标系xOy 中,点A 的坐标为(1,0)A ,等腰直角三角形ABC 的边AB 在x 轴的正半轴上,90ABC ∠=︒,点B 在点A 的右侧,点C 在第一象限.将△ABC 绕点A 逆时针旋转75︒,如果点C 的对应点E 恰好落在y 轴的正半轴上,那么边AB 的长为.16.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.请你根据该同学的作图方法完成以下推理:∵PA=PB ,∠APQ=∠,∴PQ ⊥l .(依据:)三、解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)1711(4sin3015-+︒-.18.解不等式组3(+2)+4,11,2x x x ≥⎧⎪⎨-<⎪⎩并求该不等式组的非负整数解.19.如图,AD 平分∠BAC ,BD ⊥AD 于点D ,AB 的中点为E ,AE<AC .(1)求证:DE ∥AC ;(2)点F 在线段AC 上运动,当AF=AE 时,图中与△ADF全等的三角形是.20.已知关于x 的方程2(3)30mx m x +--=(m 为实数,m ≠0).(1)求证:此方程总有两个实数根;(2)如果此方程的两个实数根都为正整数,求整数m 的值.21.如图,在△ABD 中,=ABD ADB ∠∠,分别以点B ,D 为圆心,AB 长为半径在BD 的右侧作弧,两弧交于点C ,分别连接BC ,DC ,AC ,记AC 与BD 的交点为O .(1)补全图形,求AOB ∠的度数并说明理由;(2)若AB =5,3cos 5ABD ∠=,求BD 的长.22.如图,在平面直角坐标系xOy 中,直线y x m =+与x 轴的交点为(4,0)A -,与y 轴的交点为B ,线段AB 的中点M 在函数ky x=(k ≠0)的图象上.(1)求m ,k 的值;(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD ,A ,M ,B 的对应点分别为C ,N ,D .①当点D 落在函数ky x=(<0x )的图象上时,求n 的值;②当MD ≤MN 时,结合函数的图象,直接写出n 的取值范围.23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A .纪念馆志愿讲解员;B .书香社区图书整理;C .学编中国结及义卖;D .家风讲解员;E .校内志愿服务.每位同学都从中选择一个项目参加.为了解同学们选择这5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下.收集数据设计调查问卷,收集到如下的数据(志愿服务项目的编号,用字母代号表示)B ,E ,B ,A ,E ,C ,C ,C ,B ,B ,A ,C ,E ,D ,B ,A ,B ,E ,C ,A ,D ,D ,B ,B ,C ,C ,A ,A ,E ,B ,C ,B ,D ,C ,A ,C ,C ,A ,C ,E.整理、描述数据划记、整理、描述样本数据、绘制统计图如下.请补.全统计表和统计图.........选择各志愿服务项目的人数统计表志愿服务项目划记人数A纪念馆志愿讲解员8B书香社区图书整理C学编中国结及义卖12D家风讲解员E校内志愿服务6合计4040分析数据、推断结论a.抽样的40个样本数据(志愿服务项目的编号)的众数是(填A-E的字母代号)b.请你任选A-E中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.24.如图,⊙O的半径为r,△ABC内接于⊙O,∠BAC=15︒,∠ACB=30︒,D为CB延长线上一点,AD 与⊙O相切,切点为A.(1)求点B到半径OC的距离(用含r的式子表示);(2)作DH⊥OC于点H,求∠ADH的度数及CB的值.25.如图,P为⊙O的直径AB上的一个动点,点C在 AB上,连接PC,过点A作PC的垂线交⊙O于Q.已知AB=5cm,AC=3cm,设A,P两点间的距离为x cm,A,Q两点间的距离为y cm.某同学根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x 与y 的几组值,如下表:(说明:补全表格时的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当AQ=2AP 时,AP 的长度约为cm .26.在平面直角坐标系xOy 中,抛物线G :221y mx mx m =++-(m ≠0)与y 轴交于点C ,抛物线G 的顶点为D ,直线l :1y mx m =+-(m ≠0).(1)当1m =时,画出直线l 和抛物线G ,并直接写出直线l 被抛物线G 截得的线段长;(2)随着m 取值的变化,判断点C ,D 是否都在直线l 上并说明理由;(3)若直线l 被抛物线G 截得的线段长不小于...2.,结合函数的图象,直接写出m 的取值范围.x (cm)01 2.5 3. 3.545y (cm)4.04.75.04.8.4.13.727.正方形ABCD的边长为2.将射线AB绕点A顺时针旋转α,所得射线与线段BD交于点M,作CE⊥AM于点E,点N与点M关于直线CE对称,连接CN.(1)如图1,当0°<α<45°时,①依题意补全图1;②用等式表示∠NCE与∠BAM之间的数量关系:;(2)当45°<α<90°时,探究∠NCE与∠BAM之间的数量关系并加以证明;(3)当0°<α<90°时,若边AD的中点为F,直接写出线段EF的最大值.图1备用图28.对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQ k CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”.特别地,当点A 和点B 重合时,规定AQ =BQ ,2AQ k CQ =(或2BQCQ).已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r .(1)如图1,当r =时,①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为______;②2(1A 是否为⊙C 的“2相关依附点”?答:是______(选“是”或“否”);(2)若⊙C 上存在“k 相关依附点”点M ,①当r =1,直线QM 与⊙C 相切时,求k 的值;②当k r 的取值范围;(3)若存在r 的值使得直线y b =+与⊙C 有公共点,且公共点是⊙C 相关依附点”,直接写出b 的取值范围.图1备用图。

2018北京西城初三一模数学试卷和答案

2018北京西城初三一模数学试卷和答案

北京市西城区2018年九年级统一测试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( ). A .105.810⨯ B .115.810⨯C .95810⨯D .110.5810⨯2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( ).3.将34b b -分解因式,所得结果正确的是( ). A .2(4)b b - B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-4.如图是某个几何体的三视图,该几何体是( ). A .三棱柱 B .圆柱 C .六棱柱 D .圆锥5.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ). A .5a <- B .0b d +< C .0a c -< D .c d <6.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ). A .45︒ B .60︒C .72︒D .90︒7.空气质量指数(简称为AQI)是定量描述空气质量状况的指数,它的类别如下表所示.1根据以上信息,下列推断不合理的是A.AQI类别为“优”的天数最多的是2018年1月B.AQI数据在0~100之间的天数最少的是2014年1月C.这五年的1月里,6个AQI类别中,类别“优”的天数波动最大D.2018年1月的AQI数据的月均值会达到“中度污染”类别8.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为__________.10.化简:()()42(1)a a a a +--+=__________.11.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达。

2018届北京市西城区中考一模数学试卷含答案解析模板

2018届北京市西城区中考一模数学试卷含答案解析模板

2018届北京市西城区初三一模数学试卷一、单选题(共10小题)1.2018年春节假期期间,我市接待旅游总人数达到9 186 000人次,比去年同期增长1.9%.将9 186 000用科学计数法表示应为()A.9186×103B.9.186×105C.9.186×106D.9.186×107考点:科学记数法和近似数、有效数字答案:C试题解析:科学记数法是一个数表示成a×10的n次幂的形式,其中1≤|a|<10,n为整数,所以根据题意得9 186 000=9.186×106.故选C.2.如图,实数,,,在数轴上的对应点分别为,,,,这四个数中绝对值最大的数对应的点是()A.点B.点C.点D.点考点:实数大小比较答案:D试题解析:数轴上的数离远点最远的数绝对值最大,由图可得原点在MN之间,所以Q点离远点最远,故选D3.如图,直线,直线EF分别与,交于点,,,且与的平分线交于,若,则的度数是()A.35°B.30°C.25°D.20°考点:平行线的判定及性质答案:A试题解析:由题意得,故选A4.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.考点:几何体的三视图答案:B试题解析:由题意可得只有B选项的长方体的三视图都为长方形,故选B5.关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.B.C.D.考点:一元二次方程的根的判别式答案:A试题解析:由题意可得,故选A。

6.老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A.B.C.D.考点:概率及计算答案:B试题解析:由题意得10张中三块糖的纸条有3张,所以概率为,即选B。

2018北京西城初三一模数学试卷及问题详解

2018北京西城初三一模数学试卷及问题详解

北京市西城区2018年九年级统一测试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为( ). A .105.810⨯B .115.810⨯C .95810⨯D .110.5810⨯2.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是( ).A .B .C .D .3.将34b b -分解因式,所得结果正确的是( ). A .2(4)b b -B .2(4)b b -C .2(2)b b -D .(2)(2)b b b +-4.如图是某个几何体的三视图,该几何体是( ). A .三棱柱 B .圆柱 C .六棱柱 D .圆锥5.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( ).俯视图左视图主视图A .5a <-B .0b d +<C .0a c -<D .c d <6.如果一个正多边形的内角和等于720︒,那么该正多边形的一个外角等于( ). A .45︒B .60︒C .72︒D .90︒7.空气质量指数(简称为AQI )是定量描述空气质量状况的指数,它的类别如下表所示.AQI 数据 0~50 51~100 101~150 151~200 201~300 301以上AQI 类别优 良 轻度污染 中度污染 重度污染 严重污染某同学查阅资料,制作了近五年1月份北京市AQI 各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A .AQI 类别为“优”的天数最多的是2018年1月B .AQI 数据在0~100之间的天数最少的是2014年1月C .这五年的1月里,6个AQI 类别中,类别“优”的天数波动最大D .2018年1月的AQI 数据的月均值会达到“中度污染”类别 8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下: 投篮次数10 20 30 40 50 60 70 80 90 100A投中次数715 23 30 38 45 53 606875投中频率 0.7000.7500.7670.7500.7600.7500.7570.750 0.756 0.750B 投中次数8 14 23 32 35 43 52 61 70 80投中频率 0.8000.7000.7670.8000.7000.7170.7430.763 0.778 0.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.246810121416优良轻度污染中度污染重度污染严重污染2014年1月2015年1月2016年1月2017年1月2018年1月时间天数123446789610121032134691141210d c ba 0-1-2-3-4-512345yEDC②随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性, 可以估计A 运动员投中的概率是0.750.④投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是( ).A .①B .②C .①③D .②③二、填空题(本题共16分,每小题2分) 9.若代数式11x x -+的值为0,则实数x 的值为__________.. 10.化简:()()42(1)a a a a +--+=__________.11.如图,在ABC △中,DE AB ∥,DE 分别与AC ,BC 交于D ,E 两点.若49DEC ABC S S =△△,3AC =,则DC =__________.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h 到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h ,约用4.5h 到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市西城区2018年九年级统一测试数学试卷答案及评分标准 2018.4一、 选择题(本题共16分,每小题2分)二、 填空题(本题共16分,每小题2分) 9. 1. 10. 8a -. 11. 2.12.5(35) 4.5x x -=. 13.40.14.答案不唯一,只需0k >即可,例如1y x =-..16.BPQ .…………………………………………………………………………………… 1分等腰三角形顶角的角平分线与底边上的高重合. ……………………………………2分 三、解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)17.解: 11()4sin3015-+︒1541)2=+⨯- ……………………………………………………… 4分521=+2=.…………………………………………………………………………… 5分18.解:原不等式组为 3(+2)+4,1 1.2x x x ≥⎧⎪-⎨<⎪⎩解不等式①,得x ≥1-.…………………………………………………………… 1分 解不等式②,得3x <. …………………………………………………………… 2分 ∴ 该不等式组的解集为1-≤x <3.…………………………………………………3分 ∴ 该不等式组的非负整数解为0,1,2.………………………………………… 5分19. (1)证明:如图1.∵ AD 平分∠BAC ,∴ ∠1= ∠2.………………………………………1分∵ BD ⊥AD 于点D , ∴ 90ADB ∠=︒.∴ △ABD 为直角三角形. ∵ AB 的中点为E ,∴ 12AE AB =,12DE AB =.∴ DE AE =. …………………………… 2分① ② 图1∴ ∠1= ∠3. ∴ ∠2= ∠3.……………………………………………………………… 3分 ∴ DE ∥AC .……………………………………………………………… 4分(2)△ADE .…………………………………………………………………………… 5分20.(1)证明:∵ m ≠0,∴ 方程 2(3)30mx m x +--= 为一元二次方程. …………………… 1分 依题意,得2(3)12m m ∆=-+2(+3)m =.…………………………………………………… 2分∵ 无论m 取何实数,总有2(+3)m ≥0,∴ 此方程总有两个实数根. …………………………………………… 3分(2)解:由求根公式,得(3)(3)2m m x m--±+=.∴ 11x =,23x m=-(m ≠0). …………………………………………… 5分 ∵ 此方程的两个实数根都为正整数,∴ 整数m 的值为1-或3-. ………………………………………………… 6分21.(1)补全的图形如图2所示.……………………………………………………………1分∠AOB=90︒.证明:由题意可知BC=AB ,DC= AB .∵ 在△ABD 中,=ABD ADB ∠∠, ∴ AB=AD .∴ BC= DC= AD= AB .∴ 四边形ABCD 为菱形.…………………… 2分 ∴ AC ⊥BD .∴ ∠AOB=90︒. …………………………… 3分 (2)解:∵ 四边形ABCD 为菱形,∴ OB= OD .…………………………………………………………………… 4分在Rt △ABO 中,90AOB ∠=︒,AB =5,3cos 5ABD ∠=, ∴ cos 3OB AB ABD =⋅∠=.∴ 2=6BD OB =.…………………………………………………………… 5分22.解:(1)如图3.∵ 直线y x m =+与x 轴的交点为(4,0)A -,∴ 4m =.…………………………………… 1分 ∵ 直线y x m =+与y 轴的交点为B , ∴ 点B 的坐标为(0,4)B . ∵ 线段AB 的中点为M ,可得点M 的坐标为(2,2)M -. ∵ 点M 在函数ky x=(k ≠0)的图象上, 图2∴ 4k =-.…………………………………………………………………… 3分 (2)①由题意得点D 的坐标为(,4)D n -.∵ 点D 落在函数4y x=-(<0x )的图象上, ∴ 44n -=-. 解得 1n =.………………………………………………………………… 4分 ②n 的取值范围是n ≥2.……………………………………………………… 5分23.解:B 项有10人,D 项有4人,划记略.……………………………………………… 2分选择各志愿服务项目的人数比例统计图中,B 占25%,D 占10%.………………4分 分析数据、推断结论a. 抽样的40个样本数据(志愿服务项目的编号)的众数是 C .………………5分b. 根据学生选择情况答案分别如下(写出任意两个即可).A :50020%=100⨯(人).B :50025%=125⨯(人).C :50030%=150⨯(人).D :50010%=50⨯(人).E :50015%=75⨯(人).……………………………………………………… 6分24. 解:(1)如图4,作BE ⊥OC 于点E .∵ 在⊙O 的内接△ABC 中,∠BAC=15︒,∴ =230BOC BAC ∠∠=︒.在Rt △BOE 中,∠OEB=90︒,∠BOE=30︒,OB=r ,∴ 22OB rBE ==. ∴ 点B 到半径OC 的距离为2r.……………………………………………2分 (2)如图4,连接OA .由BE ⊥OC ,DH ⊥OC ,可得BE ∥DH . ∵ AD 与⊙ O 相切,切点为A ,∴ AD ⊥OA .………………………………3分 ∴ 90OAD ∠=︒. ∵ DH ⊥OC 于点H , ∴ 90OHD ∠=︒.∵ 在△OBC 中,OB=OC ,∠BOC=30︒,∴ 180752BOCOCB ︒-∠∠==︒.∵ ∠ACB=30︒,∴ 45OCA OCB ACB ∠=∠-∠=︒. ∵ OA=OC ,∴ 45OAC OCA ∠=∠=︒.∴ 180290AOC OCA ∠=︒-∠=︒.∴ 四边形AOHD 为矩形,∠ADH=90︒.…………………………………… 4分 ∴ DH =AO=r .∵ 2rBE =,图4∴ 2D BE H=. ∵ BE ∥DH ,∴ △CBE ∽△CDH .∴ 12CB BE D DH C ==.…………………………………………………………… 5分 25.解:(1)………………………………………………………………………………… 3分(2)如图5.………………………………………………………………………… 5分(3)2.42.…………………………………………………………………………… 6分 26.解:(1)当1m =时,抛物线G 的函数表达式为22y x x =+,直线l 的函数表达式为y x =. 画出的两个函数的图象如图6所示.……………1分2分(2)∵ 抛物线G :221y mx mx m =++- (m ≠0) 与y 轴交于点C ,∴ 点C 的坐标为(0,1)C m -.∵ 2221(1)1y mx mx m m x =++-=+-, ∴ 抛物线G 的顶点D 的坐标为(1,1)--. 对于直线l :1y mx m =+-(m ≠0), 当0x =时,1y m =-;图5图6当1x =-时,(1)11y m m =⨯-+-=-.∴ 无论m 取何值,点C ,D 都在直线l 上.……………………………………4分 (3)m 的取值范围是m≤m……………………………………… 6分 27.(1)①补全的图形如图7所示.…………………………………………………………1分② ∠NCE =2∠BAM .………………………………………………………………2分 (2)当45°<α<90°时,=1802NCE BAM ∠︒-∠.………………………………………3分 证明:如图8,连接CM ,设射线AM 与CD 的交点为H .∵ 四边形ABCD 为正方形, ∴ ∠BAD=∠ADC=∠BCD=90°,直线BD 为正方形ABCD 的对称轴,点A 与点C 关于直线BD 对称. ∵ 射线AM 与线段BD 交于点M , ∴ ∠BAM=∠BCM=α. ∴ ∠1=∠2=90α︒-. ∵ CE ⊥AM , ∴ ∠CEH=90°,∠3+∠5=90°. 又∵∠1+∠4=90°,∠4=∠5, ∴ ∠1=∠3.∴ ∠3=∠2=90α︒-.∵ 点N 与点M 关于直线CE 对称,∴ ∠NCE=∠MCE=∠2+∠3=1802BAM ︒-∠. ……………………… 6分 (31.………………………………………………………………………………7分28.解:(1.………………………………………………………………………… 1分②是.……………………………………………………………………………2分(2)①如图9,当r =1时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM ⊥CM . ∵ (1,0)Q -,(1,0)C ,r =1, ∴ 2CQ =,1CM =.∴MQ =图7此时23MQk CQ==.…………………………………………………… 3分②如图10,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN <QM ,点N ,M 在x 轴下方时同理). 作CD ⊥QM 于点D ,则MD=ND .∴ ()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=. ∵ 2CQ =,∴ 2MQ NQ DQk DQ CQ CQ+===.∴ 当k =3时,3DQ =. 此时221CD CQ DQ =-=.假设⊙C 经过点Q ,此时r = 2.∵ 点Q 在⊙C 外,∴ r 的取值范围是1≤r <2. …………………………………………… 5分(3)3-<b <33.……………………………………………………………… 7分图9 图10。

相关文档
最新文档