连续系统的频率响应分析

合集下载

系统的频域分析

系统的频域分析

6 系统的频域分析 p 5
Yzs (jw)= H(jw) F(jw)
Yzs ( jw ) 或 : H ( jw ) H ( jw ) e j (w ) F ( jw )
如果信号不存在傅氏变换时,不可以用频域分析方法。 在本教材中,没有特别提示时,涉及到H(jw) 的求解, 都指满足IR条件的LTI因果系统,即不考虑初始状态的影响, 即满足:
4/RC
w
随着频率的增加,系统的幅度响应|H(jw)|不断减小,说明信号 的频率越高,信号通过该系统的损耗也就越大,即低通。 由于|H(j(1/RC))|=0.707,所以把wc=1/RC称为该系统的3db截频。
6 系统的频域分析 p 13
连续信号通过系统响应的频域分析
在此就是求零状态响应。又称:零状态响应的频域分析法
H ( jw ) FT[h(t )]
1 1 jw 1 jw 2 1 ( jw ) 2 3( jw ) 2
6 系统的频域分析 p 9
例 LTI系统,输入 f(t)=e –t u(t),输出 y(t)= e-tu(t) + e2tu(t) ,求频率响应H(jw)和h(t)。
部分分式展开
1 3( jw ) 3 jw 44 Yzs ( jw ) Fzs ( jw ) H ( jw ) jw ) 22 jw 2 (jw 3 1)((jw )(3 jw 3)
1 -t 5 - 3t - 2t y zs (t ) FT [Yzs ( jw )] [ e 2e - e ]u (t ) 2 2
j wC
由Fourier反变换,得系 统的冲激响应h(t)为:
6 系统的频域分析 p 12
1 -(1 / RC)t h(t ) e u(t ) RC

第五章1-连续LTI系统频域分析

第五章1-连续LTI系统频域分析
第5章 系统的频域分析
连续时间LTI系统的频域分析 离散时间LTI系统的频域分析 信号的幅度调制和解调
时域分析的要点是,以冲激函数为基本信号,
任意输入信号可分解为一系列冲激函数;而系统零 状态响应yzs(t) = x(t)*h(t)。 由单位冲激函数δ (t)所引起的零状态响应称为单位 冲激响应,简称冲激响应,记为h(t)。
解: 利用H(j)与h(t)的关系
H ( j) F[h(t)] 1 1 j 1 j 2

1
( j)2 3( j) 2
只有当连续系统是稳定的LTI系统时,才存在H(j), 且可以由h(t)计算出H(j)。
电路系统的频率响应:
分析电路系统的频率响应,主要有两种方法。
H ( j) Yzs ( j)
( j) 3
X ( j) ( j)2 3( j) 2
在实际应用中, 只有当连续系统是稳定的LTI系统时,
才存在H(j),且频响函数才有意义。
例 已知某LTI系统的冲激响应为
h(t) = (e-t-e-2t) u(t),求系统的频率响应H(j)。
vR (t) RiR (t)
VR ( jw) R IR ( jw)
ZR

VR ( IR(
jw) jw)

R
vL
(t)

L
diL (t) dt
VL ( jw) jwLIL ( jw)
ZL
VL ( jw) IL ( jw)

jwL
iC
(t)

C
d
vC (t) dt
IC ( jw) jwCVC ( jw)
例 已知某LTI系统的动态方程为 y"(t) + 3y'(t) + 2y(t) = x(t),

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告

连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。

本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。

2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。

傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。

具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。

3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。

频率响应是系统对不同频率输入信号的响应情况。

通过系统函数H(ω)可以计算系统的频率响应。

系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。

4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。

通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。

常用的频域分析方法包括功率谱密度估计、谱线估计等。

5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。

通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。

6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。

通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。

进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。

7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。

频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。

总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。

频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。

什么是频率响应

什么是频率响应

什么是频率响应频率响应是指信号经过系统或设备时,不同频率成分的增益或衰减程度。

它描述了系统对不同频率输入信号的响应能力,包括传输或处理信号时对频率的变化如何进行放大或减弱。

频率响应是衡量系统性能的重要参数之一,对于音频设备、通信系统、音响系统等具有重要的意义。

频率响应通常用图形的形式表示,其横轴表示频率,纵轴表示增益或衰减程度。

在图形上,我们可以看到不同频率点处的振幅变化情况,从而了解系统对不同频率信号的放大或衰减情况。

频率响应图形通常为连续曲线,能够直观地显示出系统对于不同频率信号的响应特性。

频率响应的单位通常以分贝(dB)为衡量标准。

分贝是一种相对单位,用于描述信号的增益或衰减程度。

在频率响应图形中,增益大于0dB表示信号被放大,而衰减则表示信号被减弱。

通过分析频率响应图形,我们可以了解系统在不同频率下对信号的处理能力,进而判断系统的性能优劣。

频率响应的主要特征有两个,分别是通频带和截止频率。

通频带是指系统能够传输或处理的频率范围,常用单位为赫兹(Hz)。

通频带可以告诉我们系统对于低频和高频信号的响应情况,对于音频系统来说,较宽的通频带可以提供更好的低频和高频音质表现。

而截止频率是指在该频率下系统的增益已经衰减到一定程度,无法再传输或处理信号。

截止频率通常是指-3dB的点,也就是系统响应下降3dB的频率点。

频率响应在音频系统设计和调试中有着重要的应用。

对于音响设备和扬声器,优秀的频率响应表现可以提供更加准确和平衡的音质体验。

在通信系统中,频率响应的平坦度能够决定信号传输质量和可靠性。

因此,在系统设计和选择设备时,频率响应是需要重点考虑的因素之一。

总结起来,频率响应是描述信号经过系统或设备后,不同频率成分的增益或衰减程度。

它能够直观地展示系统对于不同频率信号的响应特性,是衡量系统性能重要的参数之一。

在音频设备、通信系统等领域,频率响应的优劣直接关系到信号传输的质量和体验效果。

因此,了解和掌握频率响应的概念和特点,对于设计和选择合适的系统和设备都至关重要。

实验三 连续信号与系统的频域分析

实验三 连续信号与系统的频域分析
郑慧乐
学号
0174280
同组人:无
实验项目
实验三连续信号与系统的频域分析
☑必修□选修
□演示性实验☑验证性实验□操作性实验□综合性实验
实验地点
H113
实验仪器台号
F0
指导教师
蒋娜
实验日期及节次
week14->2-12
一、实验目的及要求:
1、目的
1.掌握非周期信号的傅里叶变换:fourier函数和ifourier函数;
四、实验结果与数据处理:
1.利用fourier函数求下列信号的傅里叶变换F(jω),并用ezplot函数绘出其幅度谱和相位谱。
(1)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=sym('Heaviside(t)-Heaviside(t-2)');%
Fw=fourier(f);
plot([07.0711],[0.7070.707],':');
axis([04001.1]);
grid;
xlabel('角频率(\omega)');
ylabel('幅度');
title('H(j\omega)的幅频特性');
subplot(212);
plot(w,h2*180/pi);
axis([0400200]);
(2)
syms t v w phase im re;%定义变量t,v,w,phase,im re
f=exp(-1*t)*sym('Heaviside(t)');%
Fw=fourier(f);
subplot(311);

管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)

管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)

)。(填“因果”或“非因果”)
【答案】时变、因果
【解析】根据时不变的定义,当输入为 x(t-t0)时,输出也应该为 y(t-t0)=
(
t
t0
5
) cos(
x(
t
1
பைடு நூலகம்t0
)
)
但当输入
x(t-t0)时实际的输出为 (
t
5
) cos(
x(
t
1
t0
)
)

与要求的输出不相等,所以系统是时变的,因果性的定义是指系统在 t0 时刻的响应只与
【解析】无失真传输的定义:无失真是指响应信号与激励信号相比,只是大小与出现
的时间不同,而无波形上的变化。
3.若某系统对激励 e(t)=E1sin(ω1t)+E2sin(2ω1t)的响应为 r(t)
=KE1sin(ω1t-φ1)+KE2sin(2ω1t-2φ1),响应信号是否发生了失真?(
)(失真
或不失真)
A.W B.2W C.ω0
1 / 97
圣才电子书

D.ω0-W
十万种考研考证电子书、题库视频学习平 台
【答案】B
【解析】f(t)乘上 cos(ωt0+θ)实际上就是对信号进行调制,将原信号的频谱搬
移到- 0 和 0 的位置,由于 ω0>>W,所以频谱无重叠,则频谱宽度为原来的 2 倍
答:因为
Sa
0t
0
G20
,所以
故 故得
4.图 4-3(a)所示系统,已知输入信号 f(t)的 F(jω)=G4(ω),子系统函数 。求系统的零状态响应 y(t)。
图 4-3 答:F(jω)的图形如图 4-3(b)所示。

系统的频率响应函数

系统的频率响应函数

系统的频率响应函数系统的频率响应函数是描述系统输入与输出之间的频率关系的数学函数。

它通常表示为H(ω),其中H是频率响应函数的符号,ω表示频率。

频率响应函数可以是连续时间系统的拉普拉斯变换,也可以是离散时间系统的Z变换。

在以下的讨论中,我们将主要关注连续时间系统的频率响应函数。

频率响应函数对系统的稳态性能和滤波特性具有重要的影响,因此对于系统的设计和分析来说是非常关键的。

下面我们将介绍一些关于系统频率响应函数的重要概念和性质。

1.频率响应函数的定义:频率响应函数是系统的输出与输入之间的幅度和相位关系的数学表示。

在连续时间系统中,频率响应函数H(ω)可以表示为系统的拉普拉斯变换:H(ω)=G(jω)其中,G(s)是系统的传递函数,s是复变量,j是虚数单位。

2. 幅频特性:系统的幅频特性是频率响应函数的幅度分布关系。

它决定了系统对不同频率的输入信号的放大或衰减程度。

通常用幅度特性曲线表示,可以是Bode图、奈奎斯特图等。

幅频特性的分析可以帮助我们了解系统的增益衰减情况和频率选择性能。

3.相频特性:系统的相频特性是频率响应函数的相位分布关系。

它决定了系统对不同频率的输入信号的相位变化。

相频特性也通常用相位特性曲线表示。

相频特性的分析可以帮助我们了解系统的相位延迟和相位失真情况。

4.幅相特性的分离:频率响应函数可以分解为幅度响应函数和相位响应函数的乘积形式:H(ω)=,H(ω),*ϕ(ω)其中,H(ω),表示幅度响应函数,ϕ(ω)表示相位响应函数。

幅相特性的分离可以使系统的分析更加方便和直观。

5.系统的稳定性:频率响应函数对系统的稳态性能具有重要影响。

当频率响应函数在所有ω值处有界时,系统是稳定的。

稳态性能的分析可以通过频率响应函数的幅值来进行,以确定系统的增益补偿。

6.频率响应函数的设计:频率响应函数的设计可以通过选择适当的系统传递函数来实现。

通常,需要根据特定的系统要求和设计目标来选择合适的传递函数,以达到所需的频率响应特性。

信号与系统连续时间系统的频率响应

信号与系统连续时间系统的频率响应

实验报告实验名称:连续时间系统的频率响应一、实验目的:1 加深对连续时间系统频率响应理解;2 掌握借助计算机计算任意连续时间系统频率响应的方法。

二、实验原理:连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。

根据系统函数H(s)在s平面的零、极点分布可以绘制频响特性曲线,包括幅频特性 H(jw) 曲线和相频特性?(w)曲线。

这种方法的原理如下:假定,系统函数H(s)的表达式为当收敛域含虚轴时,取s = jw,也即在s平面中,s沿虚轴从- j∞移动到+ j∞时,得到容易看出,频率特性取决于零、极点的分布,即取决于Zj 、Pi 的位置,而式中K是系数,对于频率特性的研究无关紧要。

分母中任一因子(jw- Pi )相当于由极点 p 引向虚轴上某点 jw的一个矢量;分子中任一因子(jw-Zj)相当于由零点Zj引至虚轴上某点 jw的一个矢量。

在右图示意画出由零点Zj和极点 Pi 与 jw点连接构成的两个矢量,图中Nj、Mi 分别表示矢量的模,ψj、θi 表示矢量的辐角(矢量与正实轴的夹角,逆时针为正)。

对于任意零点Zj 、极点Pi ,相应的复数因子(矢量)都可表示为:于是,系统函数可以改写为当ω延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。

这种方法称为s 平面几何分析。

通过零极点图进行计算的方法是: 1 在S 平面上标出系统的零、极点位置;2 选择S 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;3 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;4 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。

三、实验内容用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块, 可以手工输入不同数目的零极点。

计算频率从0~5频段的频谱,计算步长为0.1,分别计算上面两个系统的幅频特性和相频特性,将所得结果用表格列出,并画出相应的幅频特性曲线和相频特性曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统实验报告
姓名:白迎春 学号:1101050801 评语:
实验名称:实验四 连续系统的频率响应分析 实验时间:2012-11-13
一.实验目的
1. 深入理解系统频率响应的物理意义 2. 掌握利用Matlab分析系统频率响应的方法 3. 理解系统对信号的作用关系
二.实验内容
1. 信号f1(t)和f2(t)见下图:
f1 (t ) 1 t
1
t f 2 (t )
0
1
0
1
2
(1)取t:0.05:2.5,计算信号f(t)=f1(t)+f2(t)*cos(50t)的值,并画出波形; (2)一可实现的系统的频率响应函数为
104 H ( j ) ( j )4 26.131( j )3 341.42( j )2 2613.1( j ) 10000
0.2 0.15
|H(j)|
0.1 0.05 0
0
5
10
15
( rad/s)
4 2
()
0 -2 -4
0
5
10
15
( rad/s)
四.实验总结
对一些函数不是很能到位的掌握,还需要多加练习,并且结合理论知识。
2-2
2
1.510.50源自-0.5-10
0.5
1
1.5
2
2.5
%(2) a=[1 26.131 341.42 2613.1 10000]; b=[1000]; w=linspace(0,15,500); w1=w*pi; H=freqs(b,a,w1); figure(2) subplot(2,1,1);plot(w,abs(H)); xlabel('\omega(\pi rad/s)') ylabel('|H(j\omega)|') subplot(2,1,2);plot(w,angle(H)); xlabel('\omega(\pi rad/s)') ylabel('\phi(\omega)')
用freqs画出 H ( j ) 的幅度响应和相位响应曲线。
三.仿真分析
2-1
信号与系统实验报告
%(1) t=0:0.005:2.5; f1=stepfun(t,0)-stepfun(t,1); f2=tripuls(t-1,2,0); f=f1+f2.*cos(50*t); plot(t,f);
相关文档
最新文档