电路的频率响应分析解析
频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析目录一.频率响应的基本概念 (2)1. 概念 (2)2. 研究频率响应的意义 (2)3. 幅频特性和相频特性 (2)4. 放大器产生截频的主要原因 (3)二.频率响应的分析方法 (3)1. 电路的传输函数 (3)2. 频率响应的波特图绘制 (4)(1)概念 (4)(2)图形特点 (4)(3)四种零、极点情况 (4)(4)具体步骤 (6)(5)举例 (7)三.单级放大电路频率响应 (7)1.共射放大电路的频率响应 (7)2.共基放大电路的频率响应 (9)四.多级放大电路频响 (10)1.共射一共基电路的频率响应 (10)(1)低频响应 (11)(2)高频响应 (12)2.共集一共基电路的频率响应 (13)3.共射—共集电路级联 (15)五.结束语 (15)一.频率响应的基本概念1.概念我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。
但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。
即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。
我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。
2.研究频率响应的意义通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。
例如输入信号i u 为方波,s U 为方波的幅度,T 是周期,0/2ωπ=T ,用傅里叶级数展开,得...)5sin 513sin 31(sin 22000++++=t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。
但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。
电路分析第10章 频率响应 多频正弦稳态电路

U Au 2 U 1
(4) 电流转移函数
· I1
+ · U1 –
N0w
+ · U2 –
ZL
· I2
I Ai 2 I
1
N0w
+ · U2 –
ZL
策动点函数 转移函数
网络函数 H(jw) = |H(jw)|(w)
频率特性
|H(jw)| —— 幅频特性 (w) —— 相频特性
RC电路:对所有频率都是电容性电路。 RL电路:对所有频率都是电感性电路。 RLC电路:某些频率是电容性;某些频率是电感性;
LC电路:对某些频率是纯电感性;对某些频率是纯电容性。 某些频率是纯电阻性(谐振状态)。
· U U Z = ·= u – i I I = |Z|Z
Z(jw) = R(w) + jX(w)
输入阻抗Z(jw)可看作激励电流10˚A所产生的电压响应。
Z(jw) = R(w) + jX(w) = |Z(jw)|Z(w)
+ U
·
· I
N0
– Z与频率 w 的关系称为阻抗的频率特性。|Z| 与频率 w 的关系称为阻抗的幅频特性。 与频率 w 的关系称为 阻抗的相频特性。幅频特性和相频特性通常用曲线表示。
[例] 电路如图,求ab端输入阻抗。 解: Zab = R2 + jwL + R1 jwC 1 R1 + jw C
a
R1 R2 jwL
R1 = R2 + jwL + 1 + jwCR1 R1 – jwCR12 = R2 + jwL + 1 + (wCR1 )2
b
1 jwC
电路理论第11章 电路的频率响应

2. 网络函数H(jω)的物理意义
若输入和输出属于同一端口,称为驱动点函数, 或策动点函数。若输入和输出属于不同端口时, 称为转移函数。
驱动点函数
激励是电流源,响应是电压
( j ) U H ( j ) ( j ) I
( j ) 线性 I ( j ) U
网络
策动点阻抗
激励是电压源,响应是电流
(j ) ~
网络函数可以用相量法中任一分析求解方法获得。
在已知网络相量模型的条件下,计算网络函 数的基本方法是外加电源法:在输入端外加 一个电压源或电流源,用正弦稳态分析的任 一种方法求输出相量的表达式,然后将输出 相量与输入相量相比,求得相应的网络函数。 对于二端元件组成的阻抗串并联网络,也可 用阻抗串并联公式计算驱动点阻抗和导纳, 用分压、分流公式计算转移函数。
UL= UC =QU >>U
某收音机输入回路 L=0.3mH,R=10,为收到 例 中央电台560kHz信号,求:(1)调谐电容C值; (2) 如输入电压为1.5V,求谐振电流和此时的 电容电压。 解 (1)
1 C 269 pF 2 (2 f ) L
+ _
R L C
u
U 1.5 (2) I 0 0.15μ A R 10
转移 阻抗
转移 电流比
2 ( j ) 转移 U H ( j ) 1 ( j ) 电压比 U
2 ( j ) I H ( j ) 1 ( j ) I
注意
H(j)与网络的结构、参数值有关,与输入、输出 变量的类型以及端口对的相互位臵有关,与输入、 输出幅值无关。因此网络函数是网络性质的一种 体现。 H(j) 是一个复数,它的频率特性分为两个部分: 幅频特性 相频特性 模与频率的关系 | H (j ) |~ 幅角与频率的关系
电路基础原理交流电路中的频率响应

电路基础原理交流电路中的频率响应电路基础原理:交流电路中的频率响应电路是现代科技中重要的组成部分,而频率响应则是电路中一个关键的性能指标。
在交流电路中,频率响应反映了电路对不同频率信号的响应程度。
本文将介绍频率响应的基本概念和其在电路中的应用。
一、频率响应的概念频率响应是指电路对不同频率信号的传输和处理能力。
事实上,电路中的元件和线路都会对不同频率的信号做出不同的响应。
为了更好地理解频率响应,我们需要了解两个重要的概念:幅频特性和相频特性。
幅频特性描述了信号的振幅随频率变化的情况。
在交流电路中,我们常用幅度响应曲线(Bode图)来表示幅频特性。
幅度响应曲线通常是以对数坐标绘制的,其中横坐标表示频率,纵坐标表示幅度。
通过幅度响应曲线,我们可以清晰地看出信号在不同频率下的衰减和增益情况。
相频特性则描述了信号的相位随频率变化的情况。
在交流电路中,相位响应常常以相频特性曲线来表示。
相频特性曲线也是以对数坐标绘制的,横坐标表示频率,纵坐标表示相位角。
相频特性可以帮助我们分析信号在电路中的延迟和相位变化情况。
二、频率响应的影响因素频率响应受到多种因素的影响,其中包括电路的元件特性和布局、信号传输线的长度和材料等。
下面介绍一些常见的影响因素:1. 电容和电感元件:电容元件对高频信号有较好的传输性能,而电感元件则对低频信号具有较好的传输性能。
这是由于电容和电感的阻抗和频率有关,频率越高,电容的导纳越大,而电感的阻抗越大。
2. RC和RL滤波器:RC滤波器和RL滤波器是常见的频率选择性电路。
它们通过对不同频率信号的传输和阻塞来实现对信号的筛选和提取。
具体的频率响应取决于滤波器的参数和拓扑结构设计。
3. 信号传输线:信号在传输线上的传输受到线长和材料特性的影响。
信号在长线上的传输会引入传输损耗和相位延迟,并且不同材料的传输特性也不同。
三、频率响应在电路设计中的应用频率响应在电路设计中扮演着重要的角色。
通过分析和调整频率响应,我们可以改善电路的性能和功能。
电路分析基础10频率响应

专业基础课
电路分析基础
教师:张 荣
第十章 频率响应 多频正弦稳态
动态电路的响应是随频率变化的
k 1 k 1
U km cos( k 1 t u k ) I km cos( k 1t i k )
k 1
U km cos( k 1 t u k ) I nm cos( n 1 t i n )
2.非正弦周期信号电路的功率
u 设: ( t ) U 0 U km cos( k 1t u k )
k 1
+ u(t) -
i(t) N0
i ( t ) I 0 I km cos( k 1t i k )
k 1
无源二端网络
(1)瞬时功率p(t)
k 1
us(t)(v) … 20 0
T
1 F 15
… t(s)
+ us(t) (b)
5
+ uR(t) -
(a) 周期矩形脉冲
例:如图 (a)所示周期矩形脉冲作用于图(b)电路,周期 T=6.28 s,求uR(t)的稳态响应。(计算至五次谐波) 解: 将us(t)作傅氏展开: 基波角频率 1
2 2 1rad / s T 6.28
设周期信号u(t)的傅立叶展开式为:
u( t ) U 0 U km cos( k1t k )
k 1
1 则其有效值U T
电路分析第11章

11.1 网络函数
一、网络函数 1、网络函数的定义和分类 定义: 动态电路在频率为ω的单一正弦激励下,正弦稳 态响应(输出)相量与激励(输入)相量之比,称为 正弦稳态的网络函数。记为H(jω ),即
输出相量 H( j) 输入相量
1
分类:
若输入和输出属于同一端口,称为驱动点函数。 若输入是电流源,输出是电压时,称为驱动点阻抗。 若输入是电压源,输出是电流时,称为驱动点导纳。 二、网络函数的计算方法 正弦稳态电路的网络函数是以ω为变量的两个多 项式之比,它取决于网络的结构和参数,与输入的量 值无关。计算网络函数的基本方法是“外施电源法”。
当ω 0 L 1 时,电路发生谐振。 0 C
U _
谐振角频率 (resonant angular frequency) 谐振频率 (resonant frequency) 固有 频率
4
T0 1 / f 0 2π LC 谐振周期 (resonant period)
2、使RLC串联电路发生谐振的条件
1 L 1 20 103 Q 1000 12 R C 10 200 10
U L QU 1000 10V 10000V UC
11
11.3 RLC串联电路的频率响应
研究物理量与频率关系的图形(谐振曲线) 可以加深对谐振现象的认识。
一、 H ( j ) U R ( j ) U S ( j ) 的频率响应
H C (C1 ) 1
C3 H C (C3 ) 0
Q
dH C ( ) 0 d
1 C2 1 2 2Q
H C (C2 )
L1
1
C3
1
0
如何进行电路的频率响应分析

如何进行电路的频率响应分析电路的频率响应分析是电子工程领域中非常重要的一项技术。
通过对电路在不同频率下的响应进行分析,可以了解电路的频率特性及其对输入信号的处理能力。
本文将介绍如何进行电路的频率响应分析,包括频率响应的定义、常用的分析方法以及实际应用。
一、频率响应的定义频率响应是指电路在不同频率下对输入信号的响应情况。
它是衡量电路对频率变化的敏感程度的指标。
频率响应一般用传递函数来描述,传递函数是输出信号与输入信号的比值。
传递函数通常用H(jω)表示,其中j为虚数单位,ω为角频率。
二、频率响应的分析方法1. Bode图法Bode图法是一种常用的频率响应分析方法。
它通过绘制幅频特性曲线和相频特性曲线,直观地展示电路在不同频率下的响应情况。
幅频特性曲线表示电路的增益与频率之间的关系,相频特性曲线表示电路的相位与频率之间的关系。
2. 频谱分析法频谱分析法是将信号变换到频域进行分析的方法。
通过对输入信号经过电路处理后的频谱进行分析,可以得到电路的频率特性。
常用的频谱分析方法有傅里叶变换和快速傅里叶变换等。
3. 极坐标法极坐标法是一种通过绘制幅相特性曲线来描述电路频率响应的方法。
这种方法可以直观地表示电路的增益和相位差与频率之间的关系,有助于分析电路对不同频率信号的处理特性。
三、频率响应分析的应用1. 滤波器设计频率响应分析可以用于滤波器的设计。
通过分析电路在不同频率下的增益特性,可以选择合适的频率范围,设计出具有理想滤波效果的滤波器。
2. 信号传输分析频率响应分析可以用于分析信号在电路中的传输情况。
通过分析电路的频率响应,可以判断信号在不同频率下是否存在失真和衰减等问题,为信号传输提供参考。
3. 损耗分析频率响应分析可以用于分析电路中的损耗情况。
通过绘制幅频特性曲线,可以直观地了解不同频率下电路的增益衰减情况,为电路性能的优化提供参考。
四、总结电路的频率响应分析是电子工程中非常重要的一项技术。
通过对电路在不同频率下的响应进行分析,可以了解电路的频率特性,并为滤波器设计、信号传输分析和损耗分析等提供依据。
电阻电路的频率响应解析解计算

电阻电路的频率响应解析解计算电阻电路是电子电路中最简单的一种电路,它由电阻元件组成。
在交流电路中,电阻电路的频率响应是指电路中电流或电压与频率之间的关系。
在本文中,我们将介绍电阻电路的频率响应的解析解计算方法。
1. 电阻电路的基本原理电阻是一个线性元件,其电阻值不随频率的变化而变化。
因此,当交流信号经过电阻时,电流与电压的幅度相同,并且与频率无关。
这意味着电阻电路的频率响应是平坦的,不会对信号的幅度和相位进行衰减或改变。
2. 交流电流的表示为了进行频率响应的计算,我们首先需要表示交流电流。
根据欧姆定律,电流和电压之间的关系可以表示为:I = V / R其中,I是电流,V是电压,R是电阻。
3. 频率响应的计算方法为了计算电阻电路的频率响应,我们需要将电压表示为频率的函数。
假设交流电压V的形式为:V = V0 * e^(jωt)其中,V0是振幅,ω是角频率,t是时间。
将交流电压带入欧姆定律的公式中,可以得到交流电流的表达式:I = (V0 * e^(jωt)) / R4. 计算频率响应的表达式根据上述计算方法,可以推导出电阻电路的频率响应表达式。
通过将电流的复数形式转换为幅度和相位,我们可以得到:|I| = |V0 / R|相位:φ = 0这意味着电阻电路的频率响应是幅度不变且相位为0的平坦响应。
5. 频率响应的图像表示为了更直观地理解电阻电路的频率响应,我们可以绘制幅度和相位随频率变化的图像。
在频率为0时,电阻电路的幅度为常数,而相位为0。
随着频率增加,幅度保持不变,相位仍然为0。
6. 实际应用电阻电路的频率响应在电子工程中具有重要的应用。
例如,在音频设备中,我们希望信号能够在不同频率下保持稳定,因此需要使用电阻电路来实现频率均衡。
此外,在通信系统中,电阻电路也可以用于信号调节和滤波。
总结:电阻电路是最简单的电子电路之一,其频率响应是平坦的,不受频率影响。
通过计算交流电流,我们可以得到频率响应的解析解表达式,并绘制出相应的图像。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返回 上页 下页
I1( j)
I2 ( j)
U1( j)
线性 网络
U2 ( j)
激励是电压源
H
(
j
)
I2 ( j) U1( j)
转移 导纳
H
(
j
)
U2 ( U1 (
j) j)
转移 电压比
激励是电流源
H
(
j
)
U2 ( j) I1( j)
转移 阻抗
H
(
j)
I2 ( j) I1( j)
转移 电流比
返回 上页 下页
注意
H(j)与网络的结构、参数值有关,与输入、输出
变量的类型以及端口对的相互位置有关,与输入、 输出幅值无关。因此网络函数是网络性质的一种体 现。
H(j) 是一个复数,它的频率特性分为两个部分:
幅频特性
模与频率的关系 | H (j) |~
相频特性
幅角与频率的关系 (j) ~
网络函数可以用相量法中任一分析求解方法获得。
•
X 0
UR
•
•
I
UC
(2) LC上的电压大小相等,相位相反,串联总电压
为零,也称电压谐振,即
•
•
UL UC
0,
LC相当于短路。
电源电压全部加在电阻上,UR U
返回 上页 下页
•
UL
j 0
LI
j 0
L U R
j QU
•
UC
j I
0 C
j0
L U R
jQU
UL UC QU
特性阻抗
品质因数
3. RLC串联电路谐振时的特点
阻抗的频率特性
Z
R
j(L
1
C
)
|
Z
(ω)
|
(ω)
返回 上页 下页
| Z(ω) |
R2
(L
1
C
)2
R2 (XL XC )2
(ω )
tg
1
ωL
R
1 ωC
tg 1
XL
XC R
tg 1
X R
Z ( ) |Z( )| XL( )
( )
X( ) /2
R
o
0 XC( ) o
转移电压比
返回 上页 下页
注意 ①以网络函数中jω的最高次方的次数定义网络
函数的阶数。 ②由网络函数能求得网络在任意正弦输入时
的端口正弦响应,即有
H
(
j)
R( E(
j) j)
R( .2 RLC串联电路的谐振
谐振是正弦电路在特定条件下产生的一种特殊物 理现象。谐振现象在无线电和电工技术中得到广泛 应用,研究电路中的谐振现象有重要实际意义。
Q UI sin QL QC 0
QL ω0LI02 ,
QC
1
ω0C
I
2 0
0 LI02
注意 电 源 不 向 电 路 输 送
L
C
无功。电感中的无功与电 +
返回 上页 下页
例 求图示电路的网络函数 I2 /US 和 UL /US
jω
jω
+
+
._ UL
I2
Us
_
I1
2 I2 2
转移导纳
解 列网孔方程解电流 I2
(2 j)I1 2I2 US
2I1 (4 j)I2 0
I2
4
2US
(j)2
j6
I2
/US
4
2
2
j6
UL
/US
4
j 2 2
j6
1
0C
谐振角频率
时,电路发生谐振 。
谐振条件
仅与电路参数有关
f0
2π
1 LC
谐振频率
返回 上页 下页
串联电路实现谐振的方式:
(1) L C 不变,改变
0由电路参数决定,一个R L C串联电路只有一 个对应的0 , 当外加电源频率等于谐振频率时,电
路发生谐振。
(2)电源频率不变,改变 L 或 C ( 常改变C )。
1. 谐振的定义
含R、L、C的一端口电路,在特定条件下出现端口
电压、电流同相位的现象时,称电路发生了谐振。
I
R,L,C
U 电路
UI Z R
发生 谐振
返回 上页 下页
2.串联谐振的条件
Z
R
j(ωL
1 ωC
)
R
j( X L
XC
)
R jX
•
I
+
•
R j L
U
1
_
jC
当 X 0
ω0
1 LC
ω
0L
X ( j) 0 (jω) 0 R Z( j)
lim Z( j)
0
(1). 谐振时U与I同相.
入端阻抗为纯电阻,即Z=R,阻抗值|Z|最小。
电流I 和电阻电压UR达到最大值 I0=U/R (U一定)。
返回 上页 下页
•
IR
+
•
U
+
•
UR
_
+
•
U_L
•+
_
U_C
j L 1
jC
•
UL
•
•
UL UC 0
频率特性
电路和系统的工作状态跟随频率而变化的现象, 称为电路和系统的频率特性,又称频率响应。
1. 网络函数H(jω)的定义
返回 上页 下页
在线性正弦稳态网络中,当只有一个独立激 励源作用时,网络中某一处的响应(电压或电流) 与网络输入之比,称为该响应的网络函数。
H
(
j)
def
R( E(
j) j)
2. 网络函数H(jω)的物理意义
Q 0L 1 L
R RC R
(3) 谐振时出现过电压
当 =0L=1/(0C )>>R 时,Q>>1
UL= UC =QU >>U
返回 上页 下页
例 某收音机输入回路 L=0.3mH,R=10,为收到
中央电台560kHz信号,求:(1)调谐电容C值; (2) 如输入电压为1.5V,求谐振电流和此时的电 容电压。
解 (1) C 1 269pF
(2 f )2 L
+R
u
L
(2)
I0
U R
1.5 10
0.15μ
A
_
C
UC I0 XC 158.5μ V 1.5μ V
or
UC
QU
0 L U
R
返回 上页 下页
(4) 谐振时的功率
P=UIcos=UI=RI02=U2/R,
电源向电路输送电阻消耗的功率,电阻功率达最大。
驱动点函数
U( j) I( j)
线性 网络
返回 上页 下页
激励是电流源,响应是电压
U( j)
H
(
j)
U( j) I( j)
策动点阻抗
I( j)
线性 网络
激励是电压源,响应是电流
H
(
j)
I( j) U( j)
策动点导纳
转移函数(传递函数) I1( j)
I2 ( j)
U1( j)
线性 网络
U2 ( j)
第11章 电路的频率响应
本章内容
11.1 网络函数 11.2 RLC串联电路的谐振 11.3 RLC串联电路的频率响应 11.4 RLC并联谐振电路 11.5 波特图 11.6 滤波器简介
重点
1. 网络函数 2. 串、并联谐振的概念;
返回
11.1 网络函数
当电路中激励源的频率变化时,电路中的感抗、 容抗将跟随频率变化,从而导致电路的工作状态亦 跟随频率变化。因此,分析研究电路和系统的频率 特性就显得格外重要。
0
–/2
R2 X 2 幅频 特性 相频 特性
Z(jω)频响曲线
返回 上页 下页
Z(jω)频响曲线表明阻抗特性可分三个区域描述:
容性区
ω0
X ( j) 0 (jω) 0
R Z( j) lim Z( j)
0
电阻性
ω0
X ( j) 0 (jω) 0
Z( j0) R
感性区
ω0