高考专题复习圆周运动
2025高考物理总复习圆周运动中的临界极值问题

2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2
。
3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)
2
(2)
解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4
s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路
2024届高考物理二轮专题学案:圆周运动的规律及应用

考点03 圆周运动的规律及应用基础知识一、常见的传动方式及特点同轴转动同缘传动装置图基本特点、、相同轮缘处______相同转动方向相同______【例题1】如图所示,三个齿轮的半径之比为1:3:5,当齿轮转动时,小齿轮边缘的A点和大齿轮边缘的B 点,若A轮顺时针转动,则B轮会_____ 转动,AB两轮的转速之比为______。
【总结】同缘传动,线速度大小相同;同轴转动,角速度、周期、转速相同。
二、圆周运动的多解性问题【例题2】一位同学玩飞镖游戏,已知飞镖距圆盘为L,对准圆盘上边缘的A点水平抛出,初速度为v0,飞镖抛出的同时,圆盘以垂直圆盘且过盘心O点的水平轴匀速转动。
若飞镖恰好击中A点,空气阻力忽略不计,重力加速度为g,则飞镖打中A点所需的时间为______;圆盘的半径R为______;圆盘转动的线速度的可能值为______。
【总结】分析思路:1.两个物体运动的有关联性; 2.物体做圆周运动有周期性。
三、匀速圆周运动1.特点:速度与加速度的不变、不断变化。
2.性质:匀速圆周运动是一种___________________________运动。
3.离心运动和近心运动①当时,物体做匀速圆周运动;②当时,物体沿切线飞出;③当时,物体做离心运动; ④当时,物体做近心运动。
四、向心力的来源运动模型汽车转弯水平转台(光滑) 火车转弯图示向心力提供动力学问题【例题3】如图所示,一同学用轻绳拴住一个装有水(未满)的水杯,让水杯在水平面内做匀速圆周运动,不计空气阻力,下列说法中正确的是( )A.水杯匀速转动时,杯中水面呈水平B.水杯转动的角速度越大,轻绳与竖直方向的夹角越大C.水杯转动的周期越小,轻绳在水平方向上的分力越大D.水杯转动的线速度越大,轻绳在竖直方向上的分力越大【总结】思路:1.确定研究对象。
2.确定圆周运动的轨道平面,以及、。
3.对物体进行分析,确定向心力来源。
4.根据牛顿运动定律和圆周运动知识列方程求解。
专题05三大力场中的圆周运动(解析版)

2023年高三物理二轮高频考点冲刺突破专题05 三大力场中的圆周运动【典例专练】一、高考真题1.(2022年北京卷)我国航天员在“天宫课堂”中演示了多种有趣的实验,提高了青少年科学探索的兴趣。
某同学设计了如下实验:细绳一端固定,另一端系一小球,给小球一初速度使其在竖直平面内做圆周运动。
无论在“天宫”还是在地面做此实验()A.小球的速度大小均发生变化B.小球的向心加速度大小均发生变化C.细绳的拉力对小球均不做功D.细绳的拉力大小均发生变化【答案】C【详解】AC.在地面上做此实验,忽略空气阻力,小球受到重力和绳子拉力的作用,拉力始终和小球的速度垂直,不做功,重力会改变小球速度的大小;在“天宫”上,小球处于完全失重的状态,小球仅在绳子拉力作用下做匀速圆周运动,绳子拉力仍然不做功,A错误,C正确;BD.在地面上小球运动的速度大小改变,根据2var=和2Frvm=(重力不变)可知小球的向心加速度和拉力的大小发生改变,在“天宫”上小球的向心加速度和拉力的大小不发生改变,BD错误。
故选C。
2.(2022年北京卷)正电子是电子的反粒子,与电子质量相同、带等量正电荷。
在云室中有垂直于纸面的匀强磁场,从P点发出两个电子和一个正电子,三个粒子运动轨迹如图中1、2、3所示。
下列说法正确的是()A.磁场方向垂直于纸面向里B.轨迹1对应的粒子运动速度越来越大C.轨迹2对应的粒子初速度比轨迹3的大D.轨迹3对应的粒子是正电子【答案】A【详解】AD.根据题图可知,1和3粒子绕转动方向一致,则1和3粒子为电子,2为正电子,电子带负电且顺时针转动,根据左手定则可知磁场方向垂直纸面向里,A正确,D错误;B.电子在云室中运行,洛伦兹力不做功,而粒子受到云室内填充物质的阻力作用,粒子速度越来越小,B 错误;C.带电粒子若仅在洛伦兹力的作用下做匀速圆周运动,根据牛顿第二定律可知2v qvB mr=解得粒子运动的半径为mvrqB=根据题图可知轨迹3对应的粒子运动的半径更大,速度更大,粒子运动过程中受到云室内物质的阻力的情况下,此结论也成立,C错误。
高考圆周运动知识点

高考圆周运动知识点在物理学中,我们学习了许多与运动相关的知识,而圆周运动是其中一个重要的概念。
圆周运动是指物体围绕固定点以匀速运动,形成一个圆形轨迹的运动。
在高考中,圆周运动也是一个常见的考点。
本文将介绍高考圆周运动的一些重要知识点和相关应用。
1. 圆周运动的基本概念圆周运动由物体的半径和角速度决定。
半径是指物体到固定点的距离,而角速度则是指物体单位时间内绕固定点转过的角度。
在圆周运动中,物体的速度大小是恒定的,但方向却不断改变。
这是因为物体在不断改变方向的同时,它的速度向心向外的分量也在不断改变。
2. 圆周运动的速度和加速度在圆周运动中,物体沿圆周方向的速度称为切向速度,而向心加速度则是指物体向圆心方向加速的大小。
这两者之间存在着一种关系,即向心加速度等于切向速度平方除以半径。
这也是为什么当我们在转弯时,速度越快,半径越小,感觉向心加速度越大的原因。
3. 圆周运动的力学原理圆周运动的力学原理可以由牛顿第二定律推导得出。
根据牛顿第二定律,物体的向心加速度等于合外力点对物体的向心力除以物体的质量。
在圆周运动中,合外力通常指向圆心方向的力,如重力或绳索的拉力。
根据这个原理,我们可以推导出与圆周运动相关的各种物理公式。
4. 圆周运动的应用圆周运动在现实生活中有着广泛的应用。
一个常见的例子是地球绕太阳的公转运动,这是地球四季变化的原因之一。
此外,圆周运动在机械工程、航天工程等领域也有重要的应用。
例如,卫星绕地球运动的轨道就是一个圆周运动。
5. 圆周运动的衍生知识点除了基本的圆周运动概念之外,还有一些与之相关的衍生知识点也是高考的考点之一。
例如,转动惯量和角动量等概念与圆周运动密切相关。
转动惯量是指物体对角加速度产生抵抗的能力,而角动量是物体绕固定轴旋转时的物理量。
这些概念在解题中会经常出现。
总结起来,高考圆周运动是一个重要的物理知识点,掌握其基本概念和相关公式对于解题和理解其他物理现象都有重要帮助。
理解圆周运动的力学原理、应用以及衍生知识点,可以帮助我们更好地应对考试,同时也能扩展我们对物理学的认识。
高考考点专题复习五(圆周运动及开普勒三大定律)内含word版本的答案

高考考点专题复习五:开普勒三大定律与圆周运动1、开普勒三定律1.发现过程(1). 两种学说地心说认为地球是宇宙的中心,是静止不动的,太阳、月亮及其他行星都绕地球运动。
日心说认为太阳是静止不动的,地球和其他行星都绕太阳运动。
丹麦天文学家开普勒信奉日心说,通过四年多的刻苦计算,最终发现了三个定律。
2、开普勒三定律内容1. 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳位于椭圆轨道的一个焦点上。
使用条件:椭圆或圆,若轨道为圆则太阳位于圆心。
(1)知识深化:对应地球的四季,时间变化。
2. 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
(1)知识深化(1)近日点速度最大,远日点速度最小。
因为:S1=S2,所以:近日点速度最大,远日点速度最小。
从力和速度夹角考虑:由远日点到近日点夹角小于90°;有近日点到远日点夹角大于90°。
(2)使用条件:椭圆或圆,若为圆则速度大小相同。
3. 开普勒第三定律(周期定律):行星轨道半长轴的三次方跟它的公转周期的二次方的比值是一个常量。
k Tr 23(1)使用条件:椭圆或圆,若为圆则r 为半径,如果是椭圆则r 为半长轴。
(2)k 只与太阳的质量有关,与行星的参数(v 、T 、r 、m )无关。
二:圆周运动1.概念:物体沿着圆周的运动,它的运动轨迹为圆,圆周运动为曲线运动,故一定是变速运动。
(这里的变速运动指的四速度,速度是矢量,方向改变时,其速度的大小也会跟着改变)2.线速度(1)物理意义:描述圆周运动物体的运动快慢. (2)定义公式:v =Δs Δt. (3)方向:线速度是矢量,其方向和半径垂直,和圆弧相切. 3.角速度(1)物理意义:描述物体绕圆心转动的快慢. (2)定义公式:ω=ΔθΔt. (3)单位:弧度/秒,符号是rad/s. 4.转速和周期(1)转速:物体单位时间内转过的圈数. (2)周期:物体转过一周所用的时间.二、匀速圆周运动1.定义:线速度大小处处相等的圆周运动. 2.特点(1)线速度大小不变,方向不断变化,是一种变速运动. (2)角速度不变(选填“变”或“不变”). (3)转速、周期不变(选填“变”或“不变”).3.涉及到的公式转化:2.线速度与角速度之间关系的理解:由v=ω·r知,r一定时,v∝ω;v一定时,ω∝1r;ω一定时,v∝r.[跟进训练]1.高速或超速离心机是基因提取中的关键设备,当超速离心机转速达80 000 r/min时,则关于距离超速离心机转轴12 cm处的质点,下列说法正确的是()A.周期为180 000sB .线速度大小为320π m/sC .角速度为160 000π rad/sD .角速度为4 0003rad/sA 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点(两齿轮的齿数分别为n 1、n 2)角速度、周期相同线速度大小相同线速度大小相同{跟进训练}1.(多选)对于做匀速圆周运动的物体,下列说法正确的是( ) A .根据T =2πRv ,线速度越大,则周期越小 B .根据T =2πω,角速度越大,则周期越小 C .角速度越大,速度的方向变化越快D.线速度越大,速度的方向变化越快2.如图所示为某齿轮传动装置中的A、B、C三个齿轮,三个齿轮的齿数分别为32、12、20,当齿轮绕各自的轴匀速转动时,A、B、C三个齿轮转动的角速度之比为()A.8∶3∶5B.5∶3∶8C.15∶40∶24D.24∶40∶153.【例2】如图所示的传动装置中,B、C两轮固定在一起同轴转动,A、B两轮用皮带传动,三个轮的半径关系是r A=r C=2r B.若皮带不打滑,求A、B、C三轮边缘上a、b、c三点的角速度之比和线速度之比.答案解析:一;P4 (跟进训练)B[离心机转速n=80 000 r/min=4 0003r/s,半径r=0.12 m.故周期T=1n=34 000s=7.5×10-4s,A错.角速度ω=2π·n=8 000π3rad/s,C、D错.线速度v=ω·r=8 000π3×0.12 m/s=320 π m/s,B对.]二:(跟进训练)1.BC[根据T=2πRv,当轨道半径一定时,才有线速度越大,周期越小,选项A错误;角速度越大,周期越小,选项B正确;单位时间内质点与圆心的连线(圆半径)转过的角度越大,速度的方向变化越快,选项C正确、D错误.]2.C[三个齿轮同缘转动,所以三个齿轮边缘的线速度相等,即为:v A=v B=v C三个齿轮的齿数分别为32、12、20,根据ω=vr得A、B、C三个齿轮转动的角速度之比为132∶112∶120=15∶40∶24,故C正确.]3.[解析]A、B两轮通过皮带传动,皮带不打滑,则A、B两轮边缘的线速度大小相等,即v a=v b或v a∶v b =1∶1①由v=ωr得ωa∶ωb=r B∶r A=1∶2②B、C两轮固定在一起同轴转动,则B、C两轮的角速度相等,即ωb=ωc或ωb∶ωc=1∶1③由v=ωr得v b∶v c=r B∶r C=1∶2④由②③得ωa∶ωb∶ωc=1∶2∶2由①④得v a∶v b∶v c=1∶1∶2[答案]1∶2∶21∶1∶2。
高考专题复习:圆周运动(最新整理)

一端固定在
A,
一个竖直放置的圆锥筒可绕其中心轴
和
另一端固定
匀速转动
求转盘转动的
2。
处有一个小孔,用细绳穿过小孔,绳两端各细一个小球A
球保持静止状态,
A
O
F N
A.6.0 N拉力
7、A、B两球质量分别为
相连,置于水平光滑桌面上,
的匀速圆周运动,空气对飞机作用力的大小等于( )
所示.已知小球
的小球,甩动手腕,
后落地,如图所示.已知,忽略手的运动半径和空气阻力.
的小滑块。
当圆盘转动
段斜面倾角为53°,BC段斜
R 1R 2R 3A B
C
D
v
第一圈轨道
第二圈轨道
第三圈轨道
L
L
L 1
在轨道最低处第n 次碰撞刚结束时各自。
圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水
2024年新高考二轮物理复习专题——圆周运动

考情透析命题点考频分析命题特点核心素养水平面内圆周运动及临界问题2023:全国甲T4江苏T132022:全国甲T1北京T8河北T10浙江6月T2山东T82021:全国甲T2浙江6月T7广东T4本专题主要涉及水平面内、竖直面内和斜面上的圆周运动基本规律及临界问题等。
高考常以生活中圆周运动的实例为命题背景。
物理观念:能清晰、系统地理解向心力、临界状态的概念和各种圆周运动的规律。
能正确解释关于圆周运动的自然现象,综合应用所学的物理知识解决圆周运动的实际问题。
科学思维:能将较复杂的圆周运动过程转换成标准的物理模型。
能对常见的物理问题进行分析,通过推理,获得结论并作出解释。
竖直面内圆周运动及临界问题斜面上的圆周运动及临界问题热点突破1水平面内圆周运动及临界问题▼考题示例1(2023·湖南·模拟题)(多选)如图所示,半径为R的半球形陶罐固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O的对称轴OO′重合,转台以一定角速度ω匀速旋转。
甲、乙两个小物块(可视为质点)质量均为m,分别在转台的A、B两处随陶罐一起转动且始终相对罐壁静止,OA、OB与OO′间的夹角分别为a=30°和β=60°,重力加速度大小为g。
当转台的角速度为ω0时,小物块乙受到的摩擦力恰好为零,下列说法正确的是()A .ω0=g RB .当转台的角速度为ω0时,甲有上滑的趋势C .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的摩擦力一直增大D .当角速度从0.5ω0缓慢增加到1.5ω0的过程中,甲受到的支持力一直增大答案:BD解析:A 、小物块乙受到的摩擦力恰好为零,重力和支持力的合力提供向心力,即mg tan β=mω02R sin β,解得:ω0=2gR,故A 错误;B 、设转台角速度为ω时,物块甲受到的摩擦力为零,重力和支持力的合力提供向心力,mg tan α=mω2R sin α,解得:ω=2g3R<ω0;所以当转速为ω0时,支持力和重力的合力不足以提供向心力,甲有沿内壁切线上滑的趋势,故B 正确;C 、甲的临界角速度ω=2g3R>0.5ω0,所以当角速度从0.5ω0缓慢增大到2g3R时,甲有沿内壁切线下滑的趋势,角速度从2g3R缓慢增大到1.5ω0时,甲有沿内壁切线上滑的趋势,摩擦力方向发生了变化,其大小先减小再反向增大,故C 错误;D 、将甲收到的力分解为水平方向和竖直方向,竖直方向的合力为0,即mg =N cos α+f sin α,由C 可知,角速度从0.5ω0缓慢增加到1.5ω0的过程中,先减小再反向增大,则支持力一直在增大,故D 正确;故选:BD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考专题复习圆周运动文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]圆周运动1.物体做匀速圆周运动的条件:匀速圆周运动的运动条件:做匀速圆周运动的物体所受合外力大小不变,方向总是和速度方向垂直并指向圆心。
2.描述圆周运动的运动学物理量(1)圆周运动的运动学物理量有线速度v 、角速度ω、周期T 、转速n 、向心加速度a 等。
它们之间的关系大多是用半径r 联系在一起的。
如:Trr v πω2=⋅=,22224T r r r v a πω===。
要注意转速n 的单位为r/min ,它与周期的关系为nT 60=。
(2)向心加速度的表达式中,对匀速圆周运动和非匀速圆周运动均适用的公式有:ωωv r r v a ===22,公式中的线速度v 和角速度ω均为瞬时值。
只适用于匀速圆周运动的公式有:224Tra π= ,因为周期T 和转速n 没有瞬时值。
例题1.在图3-1中所示为一皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径为4r ,小轮的半径为2r 。
b 点在小轮上,到小轮中心的距离为r 。
c 点和d 点分别于小轮和大轮的边缘上。
若在传动过程中,皮带不打滑。
则( ) A .a 点与b 点的线速度大小相等 B .a 点与b 点的角速度大小相等 C .a 点与c 点的线速度大小相等 D .a 点与d 点的向心加速度大小相等 练习1.如图3-4所示的皮带转动装置,左边是主动轮,右边是一中皮个轮轴,2:1:=c A R R ,3:2:=B A R R 。
假设在传动过程图3-1图3-4带不打滑,则皮带轮边缘上的A 、B 、C 三点的角速度之比是 ;线速度之比是 ;向心加速度之比是 。
2.图示为某一皮带传动装置。
主动轮的半径为r 1,从动轮的半径为r 2。
已知主动轮做顺时针转动,转速为n ,转动过程中皮带不打滑。
下列说法正确的是( )。
A .从动轮做顺时针转动 B .从动轮做逆时针转动 C .从动轮的转速为21r r nD .从动轮的转速为12r r n 3.(92)图3-7中圆弧轨道AB 是在竖直平面内的1/4圆周,在B 点,轨道的切线是水平的。
一质点自A 点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B 点时的加速度大小为______,刚滑过B 点时的加速度大小为_____。
3.描述圆周运动的动力学物理量———向心力(1)向心力来源:向心力是做匀速圆周运动的物体所受外力的合力。
向心力是根据力的作用效果命名的,不是一种特殊的性质力。
向心力可以是某一个性质力,也可以是某一个性质力的分力或某几个性质力的合力。
例如水平转盘上跟着匀速转动的物体由静摩擦力提供向心力;带电粒子垂直射入匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力;电子绕原子核旋转由库仑力提供向心力;圆锥摆由重力和弹力的合力提供向心力。
做非匀速圆周运动的物体,其向心力为沿半径方向的外力的合力,而不是物体所受合外力。
(2)向心力大小:根据牛顿第二定律和向心加速度公式可知,向心力大小为:图3-7AB22224Tr m r m r v m F πω=== 其中r 为圆运动半径。
(3)向心力的方向:总是沿半径指向圆心,与速度方向永远垂直。
(4)向心力的作用效果:只改变线速度的方向,不改变线速度的大小。
几种常见的匀速圆周运动的实例图表例题2.如图所示,A、B、C三个物体放在旋转圆台上,动摩擦因数均为μ,A的质量为2m ,B、C质量均为m ,A、B离轴R,C离轴2R,则当圆台旋转时(设A、B、C都没有滑动),A、B、C三者的滑动摩擦力认为等于最大静摩擦力,下列说法正确的是( ) A. C物的向心加速度最大; B. B物的静摩擦力最小;C. 当圆台转速增加时,C比A先滑动;D. 当圆台转速增加时,B比A先滑动。
练习4. 如图3—12所示,一转盘可绕其竖直轴在水平面内转动,转动半径为R ,在转台边缘放一物块A ,当转台的角速度为ω0时,物块刚能被甩出转盘。
若在物块A 与转轴中心O 连线中点再放一与A 完全相同的物块B (A 、B 均可视为质点),并用细线相连接。
当转动角速度ω为多大时,两物块将开始滑动图3-125.(08广东)有一种叫“飞椅”的游乐项目,示意图如图14所示,长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动。
当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ,不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系。
6.(97)质量为m 、电量为q 的质点,在静电力作用下以恒定速率v 沿圆弧从A 点运动到B 点,其速度方向改变的角度为 θ(弧度),AB 弧长为s 则A ,B 两点间的电势差U A -U B =_____________,AB 弧中点的场强大小E =________________。
4.竖直平面内圆周运动的临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轻杆、轨道、管道等)不同,所以物体在通过最高点时临界条件不同。
如图3-7所示,由于绳对球只能产生沿绳收缩方向的拉力,所以小球通过最高点的临界条件是:向心力只由重力提供,即Rv m mg 2=,则有临界速度gR v =。
只有当gR v ≥时,小球才能通过最高点。
如图3-8所示,由于轻杆对球既能产生拉力,也能产生支持力,所以小球通过最高点时合外力可以为零,即小球在最高点的最小速度可以为零。
这样gR v =就变成了小球所受弹力方向变化的临界值,即当v <gR 时,小球受向上的弹力;当gR v =时,球和杆之间无相互作用力;当v >gR 时,球受向下的弹力。
可见,物体在最高点的最小速度决定于物体在最高点受的最小合外力,不同情况下的最小合外力决定了不同情况下的最小速度。
图3-8图3-7例题3.(99)如图4-4所示,细杆的一端与一小球相连,可绕过O 点的水平轴自由转动。
现给小球一初速度,使它做圆周运动,图3中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 ( )处为拉力,b 处为拉力 处为拉力,b 处为推力 处为推力,b 处为拉力 处为推力,b 处为推力 练习7.如图3-14所示,一细圆管弯成的开口圆环,环面处于一竖直平面内。
一光滑小球从开口A 处进入管内,并恰好能通过圆环的最高点。
则下述说法正确的是( ) A.球在最高点时对管的作用力为零B.小球在最高点时对管的作用力为mgC.若增大小球的初速度,则在最高点时球对管的力一定增大D.若减小小球的初速度,则在最高点时球对管的力可能增大8. 如图3-13所示,半径为R 的光滑半圆球固定在水平面上,顶部有一小物体A 。
今给它一个水平初速度gR v 0,则物体将( )A.沿球面下滑至M 点B.沿球面下滑至某一点N ,便离开球面做斜下抛运动C.立即离开半球面做平抛运动D.以上说法都不正确5.有关圆周运动问题的分析思路图4-4图3-14图3-13圆周运动常常和力、运动、能量问题结合在一起,综合性强。
解决有关圆周运动问题的思路是:ⅰ.确定研究对象;ⅱ.确定做圆运动物体的轨道平面及圆心位置; ⅲ.对研究对象进行受力分析;ⅳ.在向心加速度方向和垂直于向心加速度方向上建立直角坐标系,若需要可对物体所受力进行适当的正交分解;ⅴ.依据牛顿运动定律和向心加速度的公式列方程;若过程中涉及能量问题一般还要列出动能定理或机械能守恒方程,然后再解方程,并讨论解的合理性。
例4.(09广东)如图17所示,一个竖直放置的圆锥筒可绕其中心轴OO ′转动,筒内壁粗糙,筒口半径和筒高分别为R 和H ,筒内壁A 点的高度为筒高的一半。
内壁上有一质量为m 的小物块。
求①当筒不转动时,物块静止在筒壁A 点受到的摩擦力和支持力的大小;②当物块在A 点随筒做匀速转动,且其所受到的摩擦力为零时,筒转动的角速度。
例5.(07山东卷)(16分)如图所示,一水平圆盘绕过圆心的竖直轴转动.圆盘边缘有一质量m =1.0kg 的小滑块。
当圆盘转动的角速度达到某一数值时,滑块从圆盘边缘滑落,经光滑的过渡圆管进入轨道ABC 。
已知AB 段斜面倾角为53°,BC 段斜面倾角为37°,滑块与圆盘及斜面间的摩擦因数均为μ=。
A 点离B 点所在水平面的高度h =1.2m 。
滑块在运动过程中始终末脱离轨道,不计在过渡图图10圆管处和B点的机械能损失,最大静摩擦力近似等于滑动摩擦力,取g=10m/s2,sin37°=,cos37°=。
(1)若圆盘半径R=0.2m,当圆盘的角速度多大时,滑块从圆盘上滑落(2)若取圆盘所在平面为零势能面,求滑块到达B点时的机械能。
(3)从滑块到达B点时起.经0.6s正好通过C点,求BC之间的距离。
练习9.(09安徽)(20分)过山车是游乐场中常见的设施。
下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。
一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m。
小球与水平轨道间的动摩擦因数μ=,圆形轨道是光滑的。
假设水平轨道足够长,圆形轨道间不相互重叠。
重力加速度取g=10m/s2,计算结果保留小数点后一位数字。
试求(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆形轨道,B、C间距L应是多少;(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件;小球最终停留点与起点A的距离。
10. (06重庆)(20分)(请在答题卡上作答)如题25图,半径为R 的光滑圆形轨道固定在竖直面内。
小球A 、B 质量分别为m 、βm (β为待定系数)。
A 球从工边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失。
重力加速度为g 。
试求: (1)待定系数β;(2)第一次碰撞刚结束时小球A 、B 各自的速度和B 球对轨道的压力;(3)小球A 、B 在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A 、B 在轨道最低处第n 次碰撞刚结束时各自的速度。
6.人造卫星的匀速圆周运动1. 人造地球卫星一般是沿椭圆轨道运行,为使问题简化,我们认为卫星以一个恰当的速率绕地心做匀速圆周运动,地球对它的万有引力提供它圆运动所需向心力。
2. 卫星的绕行速度v 、角速度ω、周期T 都与轨道半径r 有关:R 1 R 2 R 3 A BCDv 0第一圈轨第二圈轨第三圈轨LLL 1r 越大,v 越小,ω越小,T 越大()当卫星贴地球表面绕行时,其周期最短,约为84分钟。