(完整word版)数列专题错位相减求和

合集下载

数列求和(错位相减) 高考数学

数列求和(错位相减) 高考数学

试卷讲评课件
=
【解析】∵
= ⋅
+ =
=
=

,解得

(舍去)

+ = ⋅ +
=
=
∴ = + − = − .
又∵ = − ,
当 = 时, = − ,则 =

− ⋅


+. . . + − ⋅


= +
− − ⋅


+

+

+




+. . . +




= −
+
+
− − ⋅
+


试卷讲评课件
+
∴ = − .



则 −
= −

− ,

当 ≥ 时,由 + + = 有− + − + = ,两式相减

可得�� = − ,



即{ }是以− 为首项,以 为公比的等比数列,





所以 = −
= −
.



试卷讲评课件
(2)设数列{bn }满足2bn + n − 3 an = 0 n ∈ N ∗ ,记数列{bn }的前n项
所以 = − ,

+
因为 − =

错位相减法求和附答案

错位相减法求和附答案

错位相减法求和专项错位相减法求和适用于{a n'b n}型数列,其中{a n},{b n}分别是等差数列和等比数列,在应用过程中要注意:项的对应需正确;相减后应用等比数列求和部分的项数为(n-1)项;若等比数列部分的公比为常数,要讨论是否为11.已知二次函数的图象经过坐标原点,其导函数/■]■:I “亠],数列•的前项和为,点均在函数:=y:/.::的图象上•(I)求数列的通项公式;(n)设,,■是数列的前」项和,求・’•[解析]考察专题:2.1 , 2.2 , 3.1 , 6.1 ;难度:一般[答案](I)由于二次函数-的图象经过坐标原点,则设,又点「均在函数的图象上,二当心时,©、、= J ;:• ;•■■■ L] 5 T又忙:=.:「=乜,适合上式,I ............................................... (7 分)(n)由(i)知- 2 - :' 2 - :......................................... |;■:■: 2• • :' - 'I+(2«+ l)^"kl,上面两式相减得=3 21 +2 (21 +23十…4『r)-(2打+ 】卜2*4屮一才丨, ,: ■ .1=2整理得:,•.................2.已知数列’的各项均为正数,是数列’(14 分)的前n项和,且(1)求数列’的通项公式;(2)二知二一-[答案]查看解析解出a i = 3, [解析]又4S n = a n? + 2a n —3 ①2当 -时4S n -1 = + 2a n-1 —3 ②①—②他・%7^+ «叫-叫J,即丐~二・+ j)=o... ■ - ■ :.”■-■'"叫—2( 一)二数列也“}是以3为首项,2为公差的等差数列,6分二心=3 + 2(n-1) = 2/? + !T ti=3x2' +5x2?+L +(切1).『又.:匚............... : -.:-T a=-3x2l-2(22 +21+A +2*) + (2n+l)2"4-'④一③+(2卄】)・2曲12分3. (2013年四川成都市高新区高三4月月考,19,12分)设函数■' :■ 1 1 1',数列:前项和’,:;:「“二二;-匕斥.二’,数列■,满足沢二U.(I)求数列:,的通项公式•;(n)设数列屮广的前项和为•,数列殖的前;项和为’:,证明:[答案](i 由■',,得'•■•kJ是以;为公比的等比数列,故叫=』芦|.用错位相减法可求得■. ■? •比丁■二.(注:此题用到了不等式::I ,I …进行放大.)4. 已知等差数列'中,;是与的等比中项.fa 3(I)求数列的通项公式:(n)若' .求数列' 的前厂项和[解析](I)因为数列'是等差数列,是与的等比中项.所以 '又因为,设公差为」,U ' ' '' ' 1 , 所以.门 "'1',解得,[或,当宀2时,坷二2 , % =八(冲-1),2 =加;当d -0时,毎二4 .所以’或. .(6分)(n)因为' ,所以',所以^所以' •「——,所以■二丁「1 - - I■:」-:■ 2 ' I1 一?-匕=2(2° + 2' + 2:+-+2ff'l-w2tt) = 2•—-n-2^'两式相减得,所以' .(13 分)5. 已知数列:的前I:项和' ,' , 'J'■,等差数列:中= S,且公差心2.(I)求数列’、;的通项公式;(n)是否存在正整数',使得’''':若存在,求出“的最小值,若不存在,说明理由.u. —L £?… . = 2S + L 当H工2 u 虬=25 . + I —亠/口[解析](I) 时,相减得:%=她Z ") & 6 = 2坤 4 “ 二処二地,人? ?'数列:是以1为首项,3为公比的等比数列令-处叮"存沁"¥宥“ 4[細一恥汀丄“::.2:冷严」37; =3x3*5x3J +7x31+L +(2ff-l)x3"-'+(2/1+1)^3*-27; =3xl + 2p + 32+L +5fl -,)-(2» + 1)x3fl二匚=^V ,一 o> 伽,即 3" >60 ,当 n<3,亍弋60 ,当/;>4。

高中数列错位相减法

高中数列错位相减法

高中数列错位相减法
错位相减法是一种常用的数列求和方法,主要应用于等比数列与等差数列相乘的形式,形如An=BnCn,其中Bn为等差数列,Cn为等比数列。

这种方法的基本原理是:首先列出Sn,再把所有式子同时乘以等比数列的公比,即kSn;然后错一位,两式相减即可求出新数列的和。

举例来说,如果要求解数列:1+2a+3a^2+...+(n-1)a^(n-2)+na^(n-1) 的和,可以按照以下步骤进行:
1.首先写出首项和公比:a1=1,q=a。

2.列出Sn:S=1+2a+3a^2+...+(n-1)a^(n-2)+na^(n-1)。

3.把Sn乘以公比a:aS= a+2a^2+3a^3+...+(n-1)a^(n-
1)+na^n。

4.然后错一位,两式相减:S-aS = 1+a+a^2+...+a^(n-1)-na^n。

5.最后在等式两边同时除以(1-a),得到:S=(1-an)/(1-a) -
n*a^n/(1-a)。

通过错位相减法,我们可以快速准确地求解一些数列的和,特别是在处理一些复杂数列时更加高效。

这种方法在高中数学中非常重要,也是各类数学竞赛中的常考点之一。

高中数学数列-错位相减法求和专题训练含答案精选全文完整版

高中数学数列-错位相减法求和专题训练含答案精选全文完整版

可编辑修改精选全文完整版错位相减法求和专题训练1.已知数列{}n a 满足22,{ 2,n n n a n a a n ++=为奇数为偶数,且*12,1,2n N a a ∈==.(1)求 {}n a 的通项公式;(2)设*1,n n n b a a n N +=⋅∈,求数列{}n b 的前2n 项和2n S ;(3)设()2121nn n n c a a -=⋅+-,证明:123111154n c c c c ++++< 2.设正项数列{}n a 的前n 项和为n S ,且满足37a =, 21691n n a S n +=++, *n N ∈.(1)求数列{}n a 的通项公式;(2)若正项等比数列{}n b 满足1132,b a b a ==,且n n n c a b =⋅,数列{}n c 的前n 项和为n T . ①求n T ;②若对任意2n ≥, *n N ∈,均有()2563135n T m n n -≥-+恒成立,求实数m 的取值范围.3.已知*n N ∈,设n S 是单调递减的等比数列{}n a 的前n 项和, 112a =且224433,,S a S a S a +++成等差数列.(1)求数列{}n a 的通项公式;(2)记数列{}n na 的前n 项和为n T ,求证:对于任意正整数n , 122n T ≤<. 4.递增的等比数列{}n a 的前n 项和为n S ,且26S =, 430S =. (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =,数列{}n b 的前n 项和为n T ,求1250n n T n ++⋅>成立的正整数n 的最小值.5.已知数列{}n a 及()212n n n f x a x a x a x =+++,且()()11?nn f n -=-, 1,2,3,n =.(1)求123a a a ,,的值;(2)求数列{}n a 的通项公式; (3)求证:11133n f ⎛⎫≤< ⎪⎝⎭. 6.已知数列{}n a 是以2为首项的等差数列,且1311,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及前n 项和()*n S n N ∈; (Ⅱ)若()1232n a n b -=,求数列{}1n n a b +的前n 项之和()*n T n N ∈.7.在数列{}n a 中, 14a =,前n 项和n S 满足1n n S a n +=+.(1)求证:当2n ≥时,数列{}1n a -为等比数列,并求通项公式n a ;(2)令11•213nn n n na b -⎛⎫= ⎪+⎝⎭,求数列{}n b 的前n 项和为n T .8.已知等差数列{}n a 的前n 项和n S ,且252,15a S ==,数列{}n b 满足11,2b =1n b += 12n n b n+. (1)求数列{}n a , {}n b 的通项公式; (2)记n T 为数列{}n b 的前n 项和, ()()222n n S T f n n -=+,试问()f n 是否存在最大值,若存在,求出最大值;若不存在,请说明理由.9.已知数列{}n a 的前n 项和22n S n n =+.(1)求数列{}n a 的通项公式n a ; (2)令()*211n n b n N a =∈-,求数列{}n a 的前n 项和n T . 10.已知单调递增的等比数列{}n a 满足: 2420a a +=, 38a = (1)求数列{}n a 的通项公式;(2)若12log n n n b a a =⋅,数列{}n b 的前n 项和为n S , 1250n n S n ++⋅>成立的正整数n 的最小值.参考答案1.解析:(1)当n 为奇数时, 22n n a a +-=,此时数列{}*21k a k N -∈()成等差数列. 2d = 当n 当为偶数时, 22n n a a +=,此时数列{}*2k a k N ∈()成等比数列 2q = ()()2{2nn n n a n ∴=为奇数为偶数(2)()()21221222121222142kkk k k k k k k b b a a a a k k k --++=+=-⋅++=⋅()()()21234212n n n S b b b b b b -=++++++23241222322n n S n ⎡⎤∴=⋅+⋅+⋅+⋅⎣⎦()2312241222122n n n S n n +⎡⎤=⋅+⋅++-+⋅⎣⎦12242222n n n S n +⎡⎤∴-=+++-⋅⎣⎦(3) ()()3121nnn C n =-+- ()()()()2121{ 2121nn nn n C n n -⋅-∴=-⋅+为奇为偶 ()()1111321212n n n n C n +=<≥-- n 为奇 ()()1111221212n n n n C +=<≥-+ n 为偶2.解析:(1) 2n 1n a 6S 9n 1+=++,()()2n n 1a 6S 9n 11n 2-=+-+≥,∴()22n 1n n a a 6a 9n 2+-=+≥,∴()22n 1n a a 3+=+ 且各项为正,∴()n 1n a a 3n 2+=+≥又3a 7=,所以2a 4=,再由221a 6S 91=++得1a 1=,所以21a a 3-=∴{}n a 是首项为1,公差为3的等差数列,∴n a 3n 2=-(2) 13b 1,b 4==∴n 1n b 2-=, ()n 1n n n c a b 3n 22-=⋅=-⋅①()01n 1n T 12423n 22-=⋅+⋅++-⋅,②()12n n 2T 12423n 22=⋅+⋅++-⋅∴()12n 1n T 13222--=++++ ()n 3n 22--⋅, ()n n T 3n 525=-⋅+()n 3n 52m -⋅⋅≥ ()2*6n 31n 35n 2,n N -+≥∈恒成立∴()2n 6n 31n 35m 3n 52-+≥-⋅ ()()()nn 3n 52n 72n 73n 522---==-⋅,即n 2n 7m 2-≥恒成立. 设n n 2n 7k 2-=, n 1n n 1nn 12n 52n 792nk k 222+++----=-= 当n 4≤时, n 1n k k +>; n 5≥时, n 1n k k +< ∴()n 55max 33k k 232===,∴3m 32≥. 点睛:本题主要考查了数列的综合应用问题,其中解答中涉及到等差数列的通项公式的求解,数列的乘公比错位相减法求和,数列的恒成立的求解等知识点的综合运用,试题有一定的综合性,属于中档试题,解答中准确运算和合理转化恒成立问题是解答的关键. 3.解:(1)设数列{}n a 的公比q ,由()4422332S a S a S a +=+++, 得()()42434232S S S S a a a -+-+=+,即424a a =,∴214q =. {}n a 是单调递减数列,∴12q =, ∴12nn a ⎛⎫= ⎪⎝⎭(2)由(1)知2n n nna =, 所以234112*********n n n n nT --=++++++,①232123412122222n n n n nT ---=++++++,②②-①得: 211112222n n n n nT -=++++-,1122212212nn n n n n T ⎛⎫- ⎪+⎝⎭=-=--,由()111112n n n n n T T n a ++++-=+=,得123n T T T T <<<<,故112n T T ≥=又2222n n n T +=-<,因此对于任意正整数n , 122n T ≤<点睛:本题主要考查了数列的综合应用和不等式关系证明问题,其中解答涉及到等比数列的基本量的运算,数列的乘公比错位相减法求和,以及放缩法证明不等式,突出考查了方程思想和错位相减法求和及放缩法的应用,试题综合性强,属于难题. 4.解析:(1)设等比数列{}n a 的公比为q由已知, 42302S S =≠.则1q ≠,则()()212414161{1301a q S q a q S q-==--==-,,两式相除得2q =±,∵数列{}n a 为递增数列,∴2q =,则12a =,所以2n n a =.(2)122log 22n n n n b n ==-⋅,()1231222322n n T n =-⋅+⋅+⋅++⋅ 设1231222322n n H n =⋅+⋅+⋅++⋅,① 23412222322n n H n +=+⋅+⋅++⋅,②①-②得:()1231121222222212n n n n n H n n ++--=++++-⋅=-⋅-,11222n n n n T +-=-⋅+-=,1250n n T n ++⋅>, 即111222250n n n n n +++-⋅+-+⋅>,1252n +>,∴正整数n 的最小值是5.点睛:本题主要考查了等比数列的求和公式及通项公式的应用,错位相减求和方法的应用,及指数不等式的求解.5.解析:(1)由已知()1111f a -=-=-,所以11a =.()21212f a a -=-+=,所以23a =.()312313f a a a -=-+-=-,所以35a =.(2)令1x =-,则()()()()2121111nn n f a a a -=-+-++-,①()()()()()21112111111nn n n n f a a a a +++-=-++-++-+-,②两式相减,得()()()1111?11n n n n a f f +++-=---= ()()()11?11?n nn n +-+--,所以()11n a n n +=++,即121n a n +=+, 又11a =也满足上式,所以数列{}n a 的通项公式为()211,2,3,n a n n =-=.(3)()233521n n f x x x x n x =++++-,所以()2311111352133333nn f n ⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,③()2341111111·3521333333n n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,④①-②得()2312111111222213333333nn n f n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,所以11133n n n f +⎛⎫=-⎪⎝⎭. 又1,2,3,n =,∴103nn +>,故113n f ⎛⎫< ⎪⎝⎭. 又1111210333n n n n f f +++⎛⎫⎛⎫--=> ⎪ ⎪⎝⎭⎝⎭, 所以13n f ⎧⎫⎛⎫⎨⎬ ⎪⎝⎭⎩⎭是递增数列,故1111333n f f ⎛⎫⎛⎫≥=⎪ ⎪⎝⎭⎝⎭. 所以11133n f ⎛⎫≤< ⎪⎝⎭. 【点睛】本题考查数列的前3项及通项公式的求法,考查不等式的证明,解题时要认真审题,注意错位相减法的合理运用.6.解析:(Ⅰ) 设数列{}n a 的公差为d ,由条件可得23111a a a =,即()()2222210d d +=+,解得3d =或0d =(舍去),则数列{}n a 的通项公式为()23131n a n n =+-=-,()()23113122n n n S n n +-==+. (Ⅱ)由(Ⅰ)得()121322n a n n b --==,则()1231223341225282312n n n n T a b a b a b a b n +=++++=⨯+⨯+⨯++-⨯,①()23412225282312n n T n +=⨯+⨯+⨯++-⨯,②将①-②得()123122323232312n n n T n +-=⨯+⨯+⨯++⨯--⨯()()211132324312834212n n n n n +++⨯-⨯=+--⨯=---⨯-,则()18342n n T n +=+-⨯.【易错点晴】本题主要考等差数列的通项公式、等比数列的求和公式、以及“错位相减法”求数列的和,属于中档题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以1q -.7.解析:(1)11,4n a == 当2n ≥时, 1,n n n a s s -=-得()1121n n a a +-=-,1121n n a a +-=-112,n n a --=得 121n n a -=- n a = 14,1{21,2n n n -=+≥(2)当1n =时, 123b = 当2n ≥时, 13nn b n ⎛⎫=⋅ ⎪⎝⎭当1n =时, 123T =当2n ≥时, 232111233333nn T n ⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令2311123333nM n ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3411111233333n M n +⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴ 23M = 122111191833n n n +-⎡⎤⎛⎫+--⋅ ⎪⎢⎥⎣⎦⎝⎭ 2111111312323nn M n -⎡⎤⎛⎫∴=+--⋅ ⎪⎢⎥⎣⎦⎝⎭132311243n n n T +⎛⎫∴=-⋅ ⎪⎝⎭ 经检验1n =时, 1T 也适合上式. 132311243n n n T +∴=-⋅ ()*n N ∈ . 点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 8.解析:(1)设等差数列{}n a 的首项为1a ,公差为d , 则11121{{,.510151n a d a a n a d d +==⇒∴=+==由题意得1111122n n b b b n n +=⋅=+,,∴数列n b n ⎧⎫⎨⎬⎩⎭是等比数列,且首项和公比都是12, 2n n n b ∴=. (2)由(1)得231232222n n n T =+++⋅⋅⋅+, 2341112322222n n n T +=+++⋅⋅⋅+, 两式相减得: 23111111=222222n n n n T ++++⋅⋅⋅+-, 222n n n T +∴=-;()()()2122222n n n nn n S T n nS f n n +-+=∴==+;()()()()()221111121222n n n n n n n n n f n f n ++++++-+∴+-=-= 当3n ≥时, ()()10f n f n +-<;当3n <时, ()()10f n f n +-≥;()()()3311,2,322f f f === ∴()f n 存在最大值为32.点睛:数列问题是高考中的重要问题,主要考查等差等比数列的通项公式和前n 项和,主要利用解方程得思想处理通项公式问题,利用分组求和、裂项相消、错位相减法等方法求数列的和.在利用错位相减求和时,要注意提高运算的准确性,防止运算错误. 9.解析:(1)当1n =时, 11==3a S ;当2n ≥时, ()()221=212121n n n a S S n n n n n --=+----=+, 1=3a 也符合,∴数列{}n a 的通项公式为=21n a n +. (2)2211111=14441n n b a n n n n ⎛⎫==- ⎪-++⎝⎭,∴()111111111...1422314141n n T n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 点睛:本题考查了等差数列的定义,求数列的前n 项和问题,属于中档题.解决数列的通项公式问题时,一般要紧扣等差等比的定义,利用方程思想求解,数列求和时,一般根据通项的特点选择合适的求和方法,其中裂项相消和错位相减法考查的比较多,主要是对通项的变形转化处理即可.10.解析:(1)设等比例列16.λ∴的最大值为的首项为1a ,公比为q依题意,有3112120{8a q a q a q +==,解之得12{ 2a q ==或132{ 12a q ==, 又数列{}n a 单调递增, 12{ 2.2n a a n q =∴∴==,(2)依题意, 12.log2.2,.2bn n n n n ==- 12222323.........2,Sn n n ∴-=⨯+⨯+⨯++①2122223324........21Sn n n -=⨯+⨯+⨯+++②由①—②得: 2222324......2.21Sn n n n =+++++-+()212.2112n n n -=-+-21.212n n n =+-+- , 1250n n S n +∴=⋅>,即12250,226n n +->∴>,当4n ≤时, 2241626n <=<;当5n ≥时,5223226n <=<, ∴使1250n n S n ++⋅>,成立的正整数n 的最小值为5.【 方法点睛】本题主要考查等比数列的通项公式与求和公式以及错位相减法求数列的的前n 项和,属于中档题.一般地,如果数列{}n a 是等差数列, {}n b 是等比数列,求数列{}n n a b ⋅的前n 项和时,可采用“错位相减法”求和,一般是和式两边同乘以等比数列{}n b 的公比,然后作差求解, 在写出“n S ”与“n qS ” 的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式.。

(完整word版)数列求和常见的7种方法(word文档良心出品)

(完整word版)数列求和常见的7种方法(word文档良心出品)

数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。

数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设οοοοο89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得οοοοο1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x ο①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222οοοοοο++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数(1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n [例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:οοοοοοοο1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵οοοοοn n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴οοοοοο89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1οοοοοοοοο-+-+-+- =)0tan 89(tan 1sin 1οοο-=οο1cot 1sin 1⋅=οο1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cos οοοn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅=9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求32111111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k 43421321个个 (找通项及特征) ∴ 32111111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(9113214434421个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅=313提高练习:1.已知数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==L ,⑴设数列),2,1(21ΛΛ=-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2ΛΛ==n a c n nn ,求证:数列{}n c 是等差数列;2.设二次方程n a x 2-n a +1x +1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122 *N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++=Λ,求n S ;。

高考数学数列求和错位相减裂项相消(解析版)全

高考数学数列求和错位相减裂项相消(解析版)全

数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列a n 和等比数列b n 对应项之积组成的数列c n (即c n =a n b n )的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项b n 其实可以看成等差数列通项a n a n =1 与等比数列通项b n 的积.公式秒杀:S n =(A ⋅n +B )q n -B (错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列a n 的前n 项和为S n ,若a 1=1,S n =a n +1-1.(1)求数列a n 的通项公式;(2)设b n =na n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1n ∈N ∗ ; (2)T n =2-n +22n.【解析】(1)因为a 1=1,S n =a n +1-1.所以S 1=a 2-1,解得a 2=2.当n ≥2时,S n -1=a n -1,所以a n =S n -S n -1=a n +1-a n ,所以2a n =a n +1,即a n +1a n=2.因为a 2a 1=2也满足上式,所以a n 是首项为1,公比为2的等比数列,所以a n =2n -1n ∈N ∗ .(2)由(1)知a n +1=2n ,所以b n =n2n ,所以T n =1×12+2×12 2+3×12 3+⋯+n ×12 n⋯①12T n =1×12 2+2×12 3+⋯+(n -1)×12 n +n ×12n +1⋯②①-②得12T n =12+12 2+12 3+⋯+12 n -n ×12 n +1=121-12 n1-12-n ×12 n +1=1-1+n 2 12 n ,所以T n =2-n +22n.【经典例题2】已知等差数列a n 的前n 项和为S n ,数列b n 为等比数列,且a 1=b 1=1,S 3=3b 2=12.(1)求数列a n ,b n 的通项公式;(2)若c n =a n b n +1,求数列c n 的前n 项和T n .【答案】(1)a n =3n -2,b n =4n -1(2)T n =4+n -1 4n +1【解析】(1)设等差数列a n 的公差为d ,等比数列b n 的公比为q ,由题意得:3a 1+3d =12,解得:d =3,所以a n =1+3n -1 =3n -2,由3b 2=12得:b 2=4,所以q =a2a 1=4,所以b n =4n -1(2)c n =a n b n +1=3n -2 ⋅4n ,则T n =4+4×42+7×43+⋯+3n -2 4n ①,4T n =42+4×43+7×44+⋯+3n -2 4n +1②,两式相减得:-3T n =4+3×42+3×43+3×44+⋯+3×4n -3n -2 4n +1=4+3×16-4n +11-4-3n -2 4n +1=-12+3-3n 4n +1,所以T n =4+n -1 4n +1【经典例题3】已知各项均为正数的等比数列a n 的前n 项和为S n ,且S 2=6,S 3=14.(1)求数列a n 的通项公式;(2)若b n =2n -1a n,求数列b n 的前n 项和T n .【答案】(1)a n =2n n ∈N * (2)T n =3-2n +32n 【解析】(1)设等比数列a n 的公比为q ,当q =1时,S n =na 1,所以S 2=2a 1=6,S 3=3a 1=14,无解.当q ≠1时,S n =a 11-q n 1-q ,所以S 2=a 11-q 21-q =6,S 3=a 11-q 31-q=14.解得a 1=2,q =2或a 1=18,q =-23(舍).所以a n =2×2n -1=2n n ∈N * .(2)b n =2n -1a n =2n -12n .所以T n =12+322+523+⋯+2n -32n -1+2n -12n ①,则12T n=122+323+524+⋯+2n -32n+2n -12n +1②,①-②得,12T n =12+222+223+224+⋯+22n -2n -12n +1=12+2122+123+124+⋯+12n -2n -12n +1=12+2×141-12n -1 1-12-2n -12n +1=32-2n +32n +1.所以T n =3-2n +32n.【练习1】已知数列a n 满足a 1=1,a n +1=2a n +1n ∈N ∗ .(1)求数列a n 的通项公式;(2)求数列n a n +1 的前n 项和S n .【答案】(1)a n =2n -1(2)S n =n -1 ⋅2n +1+2【解析】(1)由a n +1=2a n +1得:a n +1+1=2a n +1 ,又a 1+1=2,∴数列a n +1 是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.(2)由(1)得:n a n +1 =n ⋅2n ;∴S n =1×21+2×22+3×23+⋅⋅⋅+n -1 ⋅2n -1+n ⋅2n ,2S n =1×22+2×23+3×24+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1,∴-S n =2+22+23++2n-n ⋅2n +1=21-2n1-2-n ⋅2n +1=1-n ⋅2n +1-2,∴S n =n -1 ⋅2n +1+2.【练习2】已知数列a n 的前n 项和为S n ,且S n =2a n -1.(1)求a n 的通项公式;(2)设b n =na n ,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =(n -1)⋅2n +1【解析】(1)令n =1得S 1=a 1=2a 1-1,∴a 1=1,当n ≥2时,S n -1=2a n -1-1,则a n =S n -S n -1=2a n -2a n -1,整理得a n =2a n -1,∴an a n -1=2,∴数列a n 是首项为1,公比为2的等比数列,∴a n =2n -1;(2)由(1)得b n =na n =n ⋅2n -1,则T n =1⋅20+2⋅21+3⋅22+⋅⋅⋅+n ⋅2n -1,2T n =1⋅21+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n ,两式相减得-T n =20+21+22+23+⋅⋅⋅+2n -1-n ⋅2n =1-2n1-2-n ⋅2n ,化简得T n =1-2n +n ⋅2n =(n -1)⋅2n +1.【练习3】已知数列a n 的前n 项和为S n ,且3S n =4a n -2.(1)求a n 的通项公式;(2)设b n =a n +1⋅log 2a n ,求数列b n 的前n 项和T n .【答案】(1)a n =22n -1(2)T n =409+6n -59×22n +3【解析】(1)当n =1时,3S 1=4a 1-2=3a 1,解得a 1=2.当n ≥2时,3a n =3S n -3S n -1=4a n -2-4a n -1-2 ,整理得a n =4a n -1,所以a n 是以2为首项,4为公比的等比数列,故a n =2×4n -1=22n -1.(2)由(1)可知,b n =a n +1⋅log 2a n =2n -1 ×22n +1,则T n =1×23+3×25+⋯+2n -1 ×22n +1,4T n =1×25+3×27+⋯+2n -1 ×22n +3,则-3T n =23+26+28+⋯+22n +2-2n -1 ×22n +3=23+26-22n +41-4-2n -1 ×22n +3=-403-6n -53×22n +3.故T n =409+6n -59×22n +3.【练习4】已知数列a n 满足a 1=1,a n +1=2n +1a na n +2n(n ∈N +).(1)求证数列2n a n 为等差数列;(2)设b n =n n +1 a n ,求数列b n 的前n 项和S n .【答案】(1)证明见解析 (2)S n =n -1 ⋅2n +1+2【解析】(1)由已知可得a n +12n +1=a n a n +2n ,即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n =1,∴2n a n 是等差数列.(2)由(1)知,2n a n =2a 1+n -1 ×1=n +1,∴a n =2nn +1,∴b n =n ⋅2nS n =1⋅2+2⋅22+3⋅23+⋅⋅⋅+n ⋅2n2S n =1⋅22+2⋅23+⋅⋅⋅+n -1 ⋅2n +n ⋅2n +1相减得,-S n=2+22+23+⋅⋅⋅+2n-n⋅2n+1=21-2n1-2-n⋅2n+1=2n+1-2-n⋅2n+1∴S n=n-1⋅2n+1+2◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式:(1)1n(n+k)=1k1n-1n+k;(2)1(2n-1)(2n+1)=1212n-1-12n+1;(3)1n+k+n=1k(n+k-n);(4)2n+1n2(n+1)2=1n2-1(n+1)2;(5)2n2n-12n+1-1=12n-1-12n+1-1;(6)2n(4n-1)n(n+1)=2n+1n+1-2nn;(7)n+1(2n-1)(2n+1)2n =1(2n-1)2n+1-1(2n+1)2n+2;(8)(-1)n(n+1)(2n+1)(2n+3)=14(-1)n2n+1-(-1)n+12n+3(9)(-1)nn-n-1=(-1)n(n+n-1)=(-1)n n-(-1)n-1n-1(10)1n(n+1)(n+2)=121n(n+1)-1(n+1)(n+2).(11)n⋅n!=n+1!-n!(12)kk+1!=1k!-1k+1!【经典例题1】已知正项数列a n中,a1=1,a2n+1-a2n=1,则数列1a n+1+a n的前99项和为( )A.4950B.10C.9D.14950【答案】C【解析】因为a2n+1-a2n=1且a21=1,所以,数列a2n是以1为首项,1为公差的等差数列,所以,a2n=1+n-1=n,因为数列a n为正项数列,则a n=n,则1a n+1+a n=1n+1+n=n+1-nn+1+nn+1-n=-n+n+1,所以,数列1a n+1+a n的前99项和为-1+2-2+3-⋯-99+100=10-1=9.故选:C.【经典例题2】数列a n 的通项公式为a n =2n +1n 2n +12n ∈N *,该数列的前8项和为__________.【答案】8081【解析】因为a n =2n +1n 2n +12=1n 2-1(n +1)2,所以S 8=1-122+122-132 +⋯+182-192 =1-181=8081.故答案为:8081.【经典例题3】已知数列a n 的前n 项和为S n =n 2,若b n =1a n a n +1,则数列{b n }的前n 项和为________.【答案】n 2n +1【解析】当n =1时,a 1=S 1=12=1,当n ≥2时,a n =S n -S n -1=n 2-n -1 2=2n -1,且当n =1时,2n -1=1=a 1,故数列a n 的通项公式为a n =2n -1,b n =1a n a n +1=1(2n -1)(2n +1)=1212n -1-12n +1 ,则数列{b n }的前n 项和为:121-13 +13-15 +15-17 +⋯+12n -1-12n +1 =121-12n +1 =n 2n +1.故答案为:n2n +1【练习1】数列12n +1+2n -1的前2022项和为( )A.4043-12B.4045-12C.4043-1D.4045-1【答案】B 【解析】解:12n +1+2n -1=2n +1-2n -12n +1+2n -1 2n +1-2n -1=2n +1-2n -12记12n +1+2n -1 的前n 项和为T n ,则T 2022=123-1+5-3+7-5+⋯+4045-4043=124045-1 ;故选:B 【练习2】数列a n 的各项均为正数,S n 为其前n 项和,对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列,又记b n =1a 2n +1⋅a 2n +3,数列b n 的前n 项和T n =______.【答案】n6n +9【解析】由对于任意的n ∈N *,总有a n ,S n ,a 2n 成等差数列可得:2S n =a 2n +a n ,当n ≥2时可得2S n -1=a 2n -1+a n -1,所以2a n =2S n -2S n -1=a 2n +a n -a 2n -1-a n -1,所以a 2n -a n -a 2n -1-a n -1=0,所以(a n +a n -1)(a n -a n -1-1)=0,由数列a n 的各项均为正数,所以a n -a n -1=1,又n =1时a 2n -a n =0,所以a 1=1,所以a n =n ,b n =1a 2n +1⋅a 2n +3=1(2n +1)(2n +3)=1212n +1-12n +3 ,T n =1213-15+15-17+⋯12n +1-12n +3 =1213-12n +3 =n 6n +9.故答案为:n6n +9.【练习3】12!+23!+34!+⋅⋅⋅+nn +1 !=_______.【答案】1-1n +1 !【解析】∵k k +1 !=k +1-1k +1 !=1k !-1k +1 !,∴12!+23!+34!+⋅⋅⋅+n n +1 !=1-12!+12!-13!+13!-14!+⋅⋅⋅+1n -1 !-1n !+1n !-1n +1 !=1-1n +1 !.故答案为:1-1n +1 !.【练习4】设数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n .(1)求a n 的通项公式;(2)求数列a n3n +1 的前n 项和T n .【答案】(1)a n =33n -2(2)T n =3n3n +1【解析】(1)解:数列a n 满足a 1+4a 2+⋯+(3n -2)a n =3n ,当n =1时,得a 1=3,n ≥2时,a 1+4a 2+⋯+(3n -5)a n -1=3(n -1),两式相减得:(3n -2)a n =3,∴a n =33n -2,当n =1时,a 1=3,上式也成立.∴a n =33n -2;(2)因为a n 3n +1=3(3n -2)(3n +1),=13n -2-13n +1,∴T n =11-14+14-17+⋯+13n -2-13n +1,=1-13n +1=3n3n +1.【练习5】已知数列a n 的前n 项和为S n ,且2S n =1-a n n ∈N ∗ .(1)求数列a n 的通项公式;(2)设b n =log 13a n ,C n =n +1-nb n b n +1,求数列C n 的前n 项和T n【答案】(1)a n =13n (2)T n =1-1n +1【解析】(1)当n =1时,2a 1=2S 1=1-a 1,解得:a 1=13;当n ≥2时,2a n =2S n -2S n -1=1-a n -1+a n -1,即a n =13a n -1,∴数列a n 是以13为首项,13为公比的等比数列,∴a n =13 n =13n .(2)由(1)得:b n =log 1313 n =n ,∴C n =n +1-n n n +1=1n -1n +1,∴T n =1-12+12-13+13-14+⋅⋅⋅+1n -1-1n +1n -1n +1=1-1n +1.【练习6】已知数列a n 中,2n a 1+2n -1a 2+⋯+2a n =n ⋅2n .(1)证明:a n 为等比数列,并求a n 的通项公式;(2)设b n =(n -1)a nn (n +1),求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =2n -1n ∈N *(2)2n n +1-1【解析】(1)解:2n a 1+2n -1a 2+⋯+2a n =n ⋅2n ,即为a 1+a 22+⋯+a n2n -1=n ·······①,又a 1+a 22+⋯+a n -12n -2=n -1,········②,①-②得a n2n -1=1,即a n =2n -1(n ≥2),又当n =1时,a 1=1=21-1,故a n =2n -1n ∈N * ;从而a n +1a n =2n2n -1=2n ∈N * ,所以a n 是首项为1,公比为2的等比数列;(2)由(1)得b n =(n -1)2n -1n (n +1)=2n n +1-2n -1n ,所以S n =212-201 +223-212 +⋯+2n n +1-2n -1n =2nn +1-1.【练习7】记S n 是公差不为零的等差数列a n 的前n 项和,若S 3=6,a 3是a 1和a 9的等比中项.(1)求数列a n 的通项公式;(2)记b n =1a n ⋅a n +1⋅a n +2,求数列b n 的前20项和.【答案】(1)a n =n ,n ∈N *(2)115462【解析】(1)由题意知a 23=a 1⋅a 9,设等差数列a n 的公差为d ,则a 1a 1+8d =a 1+2d 2,因为d ≠0,解得a 1=d又S 3=3a 1+3d =6,可得a 1=d =1,所以数列a n 是以1为首项和公差为1的等差数列,所以a n =a 1+n -1 d =n ,n ∈N *(2)由(1)可知b n =1n n +1 n +2 =121n n +1 -1n +1 n +2,设数列b n 的前n 和为T n ,则T n =1211×2-12×3+12×3-13×4+⋅⋅⋅+1n n +1 -1n +1 n +2=1212-1n +1 n +2,所以T 20=12×12-121×22 =115462所以数列b n 的前20和为115462【练习8】已知等差数列a n 满足a 3=7,a 5+a 7=26,b n =1a 2n -1(n ∈N +).(1)求数列a n ,b n 的通项公式;(2)数列b n 的前n 项和为S n ,求S n .【答案】(1)a n =2n +1,b n =14n n +1(2)S n =n 4n +1【解析】(1)由题意,可设等差数列a n 的公差为d ,则a 1+2d =72a 1+10d =26,解得a 1=3,d =2,∴a n =3+2n -1 =2n +1;∴b n =1a 2n -1=12n +1 2-1=14n 2+4n =14n n +1 ;(2)∵b n =14n n +1=141n -1n +1 ,S n =141-12+12-13+⋯+1n -1n +1 =141-1n +1 =n 4n +1.【练习9】已知正项数列a n 的前n 项和为S n ,且4、a n +1、S n 成等比数列,其中n ∈N ∗.(1)求数列a n 的通项公式;(2)设b n =4S na n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =2n -1(2)T n =n +n2n +1【解析】(1)解:对任意的n ∈N ∗,a n >0,由题意可得4S n =a n +1 2=a 2n +2a n +1.当n =1时,则4a 1=4S 1=a 21+2a 1+1,解得a 1=1,当n ≥2时,由4S n =a 2n +2a n +1可得4S n -1=a 2n -1+2a n -1+1,上述两个等式作差得4a n =a 2n -a 2n -1+2a n -2a n -1,即a n +a n -1 a n -a n -1-2 =0,因为a n +a n -1>0,所以,a n -a n -1=2,所以,数列a n 为等差数列,且首项为1,公差为2,则a n =1+2n -1 =2n -1.(2)解:S n =n 1+2n -12=n 2,则b n =4S n a n a n +1=4n 22n -1 2n +1 =4n 2-1+12n -1 2n +1 =1+12n -1 2n +1=1+1212n -1-12n +1,因此,T n =n +121-13+13-15+⋯+12n -1-12n +1 =n +n2n +1.【练习10】已知S n 是数列a n 的前n 项和,a 1=1,___________.①∀n ∈N ∗,a n +a n +1=4n ;②数列S n n 为等差数列,且S nn 的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求a n ;(2)设b n =a n +a n +1a n ⋅a n +1 2,求数列b n 的前n 项和T n .【答案】(1)条件选择见解析,a n =2n -1(2)T n =2n n +12n +12【解析】(1)解:选条件①:∀n ∈N ∗,a n +a n +1=4n ,得a n +1+a n +2=4n +1 ,所以,a n +2-a n =4n +1 -4n =4,即数列a 2k -1 、a 2k k ∈N ∗ 均为公差为4的等差数列,于是a 2k -1=a 1+4k -1 =4k -3=22k -1 -1,又a 1+a 2=4,a 2=3,a 2k =a 2+4k -1 =4k -1=2⋅2k -1,所以a n =2n -1;选条件②:因为数列S n n 为等差数列,且S nn 的前3项和为6,得S 11+S 22+S 33=3×S 22=6,所以S 22=2,所以S n n 的公差为d=S 22-S 11=2-1=1,得到Sn n =1+n -1 =n ,则S n =n 2,当n ≥2,a n =S n -S n -1=n 2-n -1 2=2n -1.又a 1=1满足a n =2n -1,所以,对任意的n ∈N ∗,a n =2n -1.(2)解:因为b n =a n +a n +1a n ⋅a n +1 2=4n 2n -1 22n +1 2=1212n -1 2-12n +1 2,所以T n =b 1+b 2+⋅⋅⋅+b n =12112-132+132-152+⋅⋅⋅+12n -1 2-12n +1 2 =121-12n +1 2 =2n n +1 2n +12.【过关检测】一、单选题1.S n=12+24+38+⋯+n2n=( )A.2n-n2n B.2n+1-n-22nC.2n-n+12n+1D.2n+1-n+22n【答案】B 【解析】由S n=12+24+38+⋯+n2n,得12S n=1×122+2×123+3×124+⋯+n⋅12n+1,两式相减得12S n=12+122+123+124+⋯+12n-n⋅12n+1=121-12n1-12-n12 n+1=1-12n-n⋅12 n+1=2n+1-n-22n+1.所以S n=2n+1-n-22n.故选:B.2.数列n⋅2n的前n项和等于( ).A.n⋅2n-2n+2B.n⋅2n+1-2n+1+2C.n⋅2n+1-2nD.n⋅2n+1-2n+1【答案】B【解析】解:设n⋅2n的前n项和为S n,则S n=1×21+2×22+3×23+⋯+n⋅2n, ①所以2S n=1×22+2×23+⋯+n-1⋅2n+n⋅2n+1, ②①-②,得-S n=2+22+23+⋯+2n-n⋅2n+1=21-2n1-2-n⋅2n+1,所以S n=n⋅2n+1-2n+1+2.故选:B.3.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则数列{nan}的前n项和为( )A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n【答案】D【解析】设等比数列{an}的公比为q,易知q≠1,所以由题设得S3=a11-q31-q=7S6=a11-q61-q=63 ,两式相除得1+q3=9,解得q=2,进而可得a1=1,所以an=a1qn-1=2n-1,所以nan=n×2n-1.设数列{nan }的前n 项和为Tn ,则Tn =1×20+2×21+3×22+⋯+n ×2n -1,2Tn =1×21+2×22+3×23+⋯+n ×2n ,两式作差得-Tn =1+2+22+⋯+2n -1-n ×2n =1-2n1-2-n ×2n =-1+(1-n )×2n ,故Tn =1+(n -1)×2n .故选:D .4.已知等差数列a n ,a 2=3,a 5=6,则数列1a n a n +1的前8项和为( ).A.15B.25C.35D.45【答案】B 【解析】由a 2=3,a 5=6可得公差d =a 5-a 23=1 ,所以a n =a 2+n -2 d =n +1,因此1a n a n +1=1n +1 n +2 =1n +1-1n +2 ,所以前8项和为12-13 +13-14 +⋯+19-110 =12-110=25故选:B 5.已知数列a n 的前n 项和为S n ,S n +4=a n +n +1 2.记b n =8a n +1a n +2,数列的前n 项和为T n ,则T n 的取值范围为( )A.863,47 B.19,17C.47,+∞D.19,17【答案】A 【解析】因为数列a n 中,S n +4=a n +(n +1)2,所以S n +1+4=a n +1+n +2 2,所以S n +1+4-S n +4 =a n +1-a n +2n +3,所以a n =2n +3.因为b n =8a n +1a n +2,所以b n =82n +5 2n +7=412n +5-12n +7 ,所以T n =417-19+19-111+⋅⋅⋅+12n +5-12n +7=417-12n +7 .因为数列T n 是递增数列,当n =1时,T n =863,当n →+∞时,12n +7→0,T n →47,所以863≤T n <47,所以T n 的取值范围为863,47 .故选:A .6.已知数列满足a 1+2a 2+3a 3+⋯+na n =n 2,设b n =na n ,则数列1b n b n +1的前2022项和为( )A.40424043B.20214043C.40444045D.20224045【答案】D【解析】因为a 1+2a 2+3a 3+⋯+na n =n 2①,当n =1时,a 1=1;当n ≥2时,a 1+2a 2+3a 3+⋯+n -1 a n -1=(n -1)2②,①-②化简得a n =2n -1n ,当n =1时:a 1=2×1-11=1=1,也满足a n =2n -1n,所以a n =2n -1n ,b n =na n =2n -1,1b n b n +1=1(2n -1)(2n +1)=1212n -1-12n +1 所以1b n b n +1的前2022项和121-13+13-15+⋯+12×2022-1-12×2022+1 =121-12×2022+1 =20224045.故选:D .7.已知数列a n 满足a 1=1,且a n =1+a n a n +1,n ∈N *,则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=( )A.2021 B.20202021C.122021D.22021【答案】B 【解析】∵a n =1+a n a n +1,即a n +1=a n 1+a n ,则1a n +1=1+a n a n =1a n +1∴数列1a n是以首项1a 1=1,公差d =1的等差数列则1a n =1+n -1=n ,即a n =1n∴a n a n +1=1n n +1=1n -1n +1则a 1a 2+a 2a 3+a 3a 4+⋯⋯+a 2020a 2021=1-12+12-13+...+12020-12021=20202021故选:B .8.等差数列a n 中,a 3=5,a 7=9,设b n =1a n +1+a n,则数列b n 的前61项和为( )A.7-3B.7C.8-3D.8【答案】C 【解析】解:因为等差数列满足a 3=5,a 7=9,所以d =a 7-a 37-3=1,所以a n =a 3+n -3 d =n +2,所以b n =1n +3+n +2=n +3-n +2,令数列b n 的前n 项和为S n ,所以数列b n 的前n 项和S n =4-3+5-4+⋯+n +3-n +2=n +3-3,所以S 61=8-3.故选:C .9.设数列n 22n -1 2n +1的前n 项和为S n ,则( )A.25<S 100<25.5B.25.5<S 100<26C.26<S 100<27D.27<S 100<27.5【答案】A 【解析】由n 2(2n -1)(2n +1)=14⋅4n 24n 2-1=141+14n 2-1 =141+121(2n -1)(2n +1)=14+1812n -1-12n +1,∴S n =n 4+181-13+13-15+⋅⋅⋅+12n -1-12n +1 =n 4+181-12n +1 =n (n +1)2(2n +1),∴S 100=100×1012(2×100+1)≈25.12,故选:A .10.已知数列a n 满足a n =1+2+4+⋯+2n -1,则数列2n a n a n +1 的前5项和为( )A.131B.163C.3031D.6263【答案】D 【解析】因为a n =1+2+4+⋯+2n -1=2n -1,a n +1=2n +1-1,所以2n a n a n +1=2n 2n -1 2n +1-1 =2n +1-1 -2n-1 2n -1 2n +1-1=12n -1-12n +1-1.所以2n a n a n +1 前5项和为121-1-122-1 +122-1-123-1 +⋯+125-1-126-1 =121-1-126-1=1-163=6263故选:D 11.已知数列a n 的首项a 1=1,且满足a n +1-a n =2n n ∈N * ,记数列a n +1a n +2 a n +1+2的前n 项和为T n ,若对于任意n ∈N *,不等式λ>T n 恒成立,则实数λ的取值范围为( )A.12,+∞ B.12,+∞C.13,+∞D.13,+∞【答案】C 【解析】解:因为a n +1-a n =2n n ∈N * ,所以a 2-a 1=21,a 3-a 2=22,a 4-a 3=23,⋯⋯,a n -a n -1=2n -1,所以a n -a 1=21+22+⋯+2n -1=21-2n -1 1-2=2n -2,n ≥2 ,又a 1=1,即a n =2n -1,所以a n +1=2n ,所以a n +1a n +2 a n +1+2 =2n 2n +1 2n +1+1=12n +1-12n +1+1,所以T n =121+1-122+1+122+1-123+1+⋯+12n +1-12n +1+1=13-12n +1+1<13所以λ的取值范围是13,+∞ .故选:C 12.在数列a n 中,a 2=3,其前n 项和S n 满足S n =n a n +12 ,若对任意n ∈N +总有14S 1-1+14S 2-1+⋯+14S n -1≤λ恒成立,则实数λ的最小值为( )A.1B.23C.12D.13【答案】C 【解析】当n ≥2时,2S n =na n +n ,2S n -1=n -1 a n -1+n -1 ,两式相减,整理得n -2 a n =(n -1)a n -1-1①,又当n ≥3时,n -3 a n -1=n -2 a n -2-1②,①-②,整理得n -2 a n +a n -2 =2n -4 a n -1,又因n -2≠0,得a n +a n -2=2a n -1,从而数列a n 为等差数列,当n =1时,S 1=a 1+12即a 1=a 1+12,解得a 1=1,所以公差d =a 2-a 1=2,则a n =2n -1,S n =na 1+n (n -1)2d =n 2,故当n ≥2时,14S 1-1+14S 2-1+⋯+14S n -1=122-1+142-1+⋯+12n 2-1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =121-12n +1 ,易见121-12n +1 随n 的增大而增大,从而121-12n +1 <12恒成立,所以λ≥12,故λ的最小值为12,故选:C .二、填空题13.已知正项数列{an }满足a 1=2且an +12-2an 2-anan +1=0,令bn =(n +2)an ,则数列{bn }的前8项的和等于__.【答案】4094【解析】由a 2n +1-2a 2n -a n a n +1=0,得(an +1+an )(an +1-2an )=0,又an >0,所以an +1+an >0,所以an +1-2an =0,所以an +1a n=2,所以数列{an }是以2为首项,2为公比的等比数列,所以a n =2×2n -1=2n ,所以b n =n +2 a n =n +2 ⋅2n ,令数列{bn }的前n 项的和为Tn ,T 8=3×21+4×22+⋯+9×28,则2T 8=3×22+4×23+⋯+9×29,-T 8=6+22+23+⋯+28 -9×29=6+221-271-2-9×29=2-8×29=-4094,则T 8=4094,故答案为:4094.14.已知数列{an }的前n 项和为Sn ,且Sn =2an -2,则数列n a n的前n 项和Tn =__.【答案】2-n +22n.【解析】解:∵Sn =2an -2,∴Sn -1=2an -1-2(n ≥2),设公比为q ,两式相减得:an =2an -2an -1,即an =2an -1,n ≥2,又当n =1时,有S 1=2a 1-2,解得:a 1=2,∴数列{an }是首项、公比均为2的等比数列,∴an =2n ,n a n =n2n ,又Tn =121+222+323+⋯+n2n ,12Tn =122+223+⋯+n -12n +n 2n +1,两式相减得:12Tn =12+122+123+⋯+12n -n 2n +1=121-12n1-12-n2n +1,整理得:Tn =2-n +22n.故答案为:Tn =2-n +22n .15.将1+x n (n ∈Ν+)的展开式中x 2的系数记为a n ,则1a 2+1a 3+⋅⋅⋅+1a 2015=__________.【答案】40282015【解析】1+xn的展开式的通项公式为T k +1=C k n x k ,令k =2可得a n =C 2n =n n -12;1a n =2n n -1=21n -1-1n ;所以1a 2+1a 3+⋅⋅⋅+1a 2015=21-12 +212-13 +⋯+212014-12015=21-12015 =40282015.故答案为:40282015.16.数列a n 的前项n 和为S n ,满足a 1=-12,且a n +a n +1=2n 2+2nn ∈N * ,则S 2n =______.【答案】2n 2n +1【解析】由题意,数列{a n }满足a n +a n +1=2n 2+2n,可得a 2n -1+a 2n =2(2n -1)2+2(2n -1)=2(2n -1)(2n +1)=12n -1-12n +1,所以S 2n =11-13+13-15+⋯+12n -1-12n +1=1-12n +1=2n2n +1,故答案为:2n2n +1三、解答题17.已知数列a n 满足a 1=1,2a n +1a n +a n +1-a n =0.(1)求证:数列1a n 为等差数列;(2)求数列a n a n +1 的前n 项和S n .【答案】(1)证明见解析;(2)S n =n2n +1.【解析】(1)令b n =1a n ,因为b n +1-b n =1a n +1-1a n =a n -a n +1a n ⋅a n +1=2,所以数列b n 为等差数列,首项为1,公差为2;(2)由(1)知:b n =2n -1;故a n =12n -1;所以a n a n +1=12n -1 2n +1=1212n -1-12n +1 ;所以S n =a 1a 2+a 2a 3+⋯+a n a n +1=11×3+13×5+⋯+12n -1 2n +1=121-13+13-15+⋯+12n -1-12n +1 =n 2n +1;18.已知正项数列a n 的前n 项和为S n ,a n +1-a n =3n ∈N * ,且S 3=18.(1)求数列a n 的通项公式;(2)若b n =1a n a n +1,求数列b n 的前n 项和T n .【答案】(1)a n =3n (2)T n =n9n +9【解析】(1)∵a n +1-a n =3,∴数列a n 是以公差为3的等差数列.又S 3=18,∴3a 1+9=18,a 1=3,∴a n =3n .(2)由(1)知b n =13n ×3n +1=19×1n -1n +1 ,于是T n =b 1+b 2+b 3+⋅⋅⋅+b n =191-12 +12-13 +13-14 +⋅⋅⋅+1n -1n +1 =191-1n +1 =n 9n +919.已知数列a n 的首项为3,且a n -a n +1=a n +1-2 a n -2 .(1)证明数列1a n -2 是等差数列,并求a n 的通项公式;(2)若b n =-1 n an n +1,求数列b n 的前n 项和S n .【答案】(1)证明见解析;a n =1n+2(2)-1+-1 n1n +1【解析】(1)因为a n -a n +1=a n +1-2 a n -2 ,所a n -2 -a n +1-2 =a n +1-2 a n -2 ,则1a n +1-2-1a n -2=1,所以数列1a n -2 是以13-2=1 为首项,公差等于1的等差数列,∴1a n -2=1+n -1 =n ,即a n =1n+2;(2)b n =-1 n a n n +1=-1 n 1n n +1+2n +1 =-1 n 1n +1n +1 ,则S n =-1+12 +12+13 -13+14 +⋅⋅⋅+-1 n 1n +1n +1 =-1+-1 n 1n +1;综上,a n =1n +2,S n =-1+-1 n 1n +1 .20.已知数列a n 中,a 1=-1,且满足a n +1=2a n -1.(1)求证:数列a n -1 是等比数列,并求a n 的通项公式;(2)若b n =n +11-a n +1,求数列b n 的前n 项和为T n .【答案】(1)证明见解析,a n=-2n+1(2)T n=32-n+32n+1【解析】(1)解:对任意的n∈N∗,a n+1=2a n-1,所以a n+1-1=2a n-1,且a1-1=-2,所以数列a n-1是以-2为首项,2为公比的等比数列.所以a n-1=-2n,所以a n=-2n+1.(2)解:由已知可得b n=n+11-a n+1=n+12n+1,则T n=222+323+424+⋯+n+12n+1,所以,12T n=223+324+⋯+n 2n+1+n+12n+2,两式相减得12T n=222+123+⋯+12n+1-n+12n+2=12+181-12n-11-12-n+12n+2=34-1 2n+1-n+12n+2=34-n+32n+2,因此,T n=32-n+32n+1.21.已知等比数列a n,a1=2,a5=32.(1)求数列a n的通项公式;(2)若数列a n为正项数列(各项均为正),求数列(2n+1)⋅a n的前n项和T n.【答案】(1)a n=2n或a n=2·-2n-1;(2)T n=2+(2n-1)⋅2n+1.【解析】(1)等比数列a n的公比为q,a1=2,a5=32,则q4=a5a1=16,解得q=±2,所以当q=2时,a n=2n,当q=-2时,a n=2⋅(-2)n-1.(2)由(1)知,a n=2n,则有(2n+1)⋅a n=(2n+1)⋅2n,则T n=3×21+5×22+7×23+⋯+(2n+1)⋅2n,于是得2T n=3×22+5×23+⋯+(2n-1)⋅2n+(2n+1)⋅2n+1,两式相减,得-T n=6+2×(22+23+⋯+2n)-(2n+1)⋅2n+1=6+2×22×(1-2n-1)1-2-(2n+1)⋅2n+1=-2-(2n-1)⋅2n+1,所以T n=2+(2n-1)⋅2n+1.22.已知等差数列a n满足a1=1,a2⋅a3=a1⋅a8,数列b n的前n项和为S n,且S n=32b n.(1)求数列a n,b n的通项公式;(2)求数列a n b n的前n项和T n.【答案】(1)a n=1或a n=2n-1;b n=3n;(2)若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.【解析】(1)设等差数列a n的公差为d,∵a1=1,a2⋅a3=a1⋅a8,∴1+d1+2d=1+7d,化简得2d2-4d=0,解得:d=0或d=2,若d=0,则a n=1;若d=2,则a n=2n-1;由数列b n的前n项和为S n=32b n-32①,当n=1时,得b1=3,当n≥2时,有S n-1=32b n-1-32②;①-②有b n=32b n-32b n-1,即b nb n-1=3,n≥2,所以数列b n是首项为3,公比为3的等比数列,所以b n=3n,综上所述:a n=1或a n=2n-1;b n=3n;(2)若a n=1,则a n b n=b n=3n,则T n=3+32+⋯+3n=31-3n1-3=33n-12,若a n=2n-1,则a n b n=2n-13n,则T n=1×3+3×32+⋯+2n-1×3n③;③×3得3T n=1×32+3×33+⋯+2n-1×3n+1④;③-④得:-2T n=3+2×32+2×33+⋯+2×3n-2n-1×3n+1=3+2×32(1-3n-1)1-3-(2n-1)×3n+1整理化简得:T n=n-13n+1+3,综上所述:若a n=1,则T n=33n-13;若a n=2n-1,则T n=n-13n+1+3.。

专题31 数列中错位相减法求和问题(解析版)

专题31 数列中错位相减法求和问题(解析版)

专题31 数列中错位相减法求和问题【高考真题】 2022年没考查 【方法总结】 错位相减法求和错位相减法:错位相减法是在推导等比数列的前n 项和公式时所用的方法,适用于各项由一个等差数列和一个等比数列对应项的乘积组成的数列.把S n =a 1+a 2+…+a n 两边同乘以相应等比数列的公比q ,得到qS n =a 1q +a 2q +…+a n q ,两式错位相减即可求出S n .用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.(3)在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.【题型突破】1.已知等差数列{a n }的前n 项和为S n ,a 1=2,且S 1010=S 55+5.(1)求a n ;(2)若b n =a n ·4S n a n求数列{b n }的前n 项的和T n .1.解析 (1)设等差数列{a n }的公差为d ,因为S 1010=S 55+5,所以10(a 1+a 10)210-5(a 1+a 5)25=5,所以a 10-a 5=10,所以5d =10,解得d =2.所以a n =a 1+(n -1)d =2+(n -1)×2=2n ;(2)由(1)知,a n =2n ,所以S n =n (2+2n )2=n 2+n .所以b n =a n ·4Sn an=2n ·4n 2+n 2n =2n ·2n +1=n ·2n +2,所以T n =1×23+2×24+2×25+…+n ·2n +2①,所以2T n =1×24+2×25+3×26+…+(n -1)·2n +2+n ·2n +3②, ①-②,得-T n =23+24+…+2n +2-n ×2n +3=23(1-2n )1-2-n ×2n +3=2n +3-8-n ×2n +3所以T n =(n -1)×2n +3+8.2.(2020·全国Ⅰ)设{a n }是公比不为1的等比数列,a 1为a 2,a 3的等差中项. (1)求{a n }的公比;(2)若a 1=1,求数列{na n }的前n 项和.2.解析 (1)设{a n }的公比为q ,∵a 1为a 2,a 3的等差中项,∴2a 1=a 2+a 3=a 1q +a 1q 2,a 1≠0,∴q 2+q -2=0,∵q ≠1,∴q =-2. (2)设{na n }的前n 项和为S n ,a 1=1,a n =(-2)n -1,S n =1×1+2×(-2)+3×(-2)2+…+n (-2)n -1,①-2S n =1×(-2)+2×(-2)2+3×(-2)3+…+(n -1)·(-2)n -1+n (-2)n ,② ①-②得,3S n =1+(-2)+(-2)2+…+(-2)n -1-n (-2)n=1-(-2)n 1-(-2)-n (-2)n=1-(1+3n )(-2)n3,∴S n =1-(1+3n )(-2)n9,n ∈N *.3.(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0, b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).3.解析 (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12,而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2,所以b n =2n .由b 3=a 4-2a 1,可得3d -a 1=8,① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2(n ∈N *).所以数列{a n }的通项公式为a n =3n -2(n ∈N *),数列{b n }的通项公式为b n =2n (n ∈N *).(2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,③4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,④ ③-④,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8,得T n =3n -23×4n +1+83(n ∈N *).所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83(n ∈N *).4.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,2S n =(n +1)a n -2. (1)求a 2,a 3和通项a n ;(2)设数列{b n }满足b n =a n ·2n -1,求{b n }的前n 项和T n . 4.解析 (1)当n =2时,2S 2=2(1+a 2)=3a 2-2,则a 2=4, 当n =3时,2S 3=2(1+4+a 3)=4a 3-2,则a 3=6, 当n ≥2时,2S n =(n +1)a n -2, 当n ≥3时,2S n -1=na n -1-2,所以当n ≥3时,2(S n -S n -1)=(n +1)a n -na n -1=2a n ,即2a n =(n +1)a n -na n -1,整理可得(n -1)a n =na n -1,所以a n n =a n -1n -1,因为a 33=a 22=2,所以a n n =a n -1n -1=…=a 33=a 22=2,因此,当n ≥2时,a n =2n ,而a 1=1,故a n =⎩⎪⎨⎪⎧1,n =1,2n ,n ≥2.(2)由(1)可知b n =⎩⎪⎨⎪⎧1,n =1,n ·2n ,n ≥2,所以当n =1时,T 1=b 1=1,当n ≥2时,T n =b 1+b 2+b 3+…+b n ,则 T n =1+2×22+3×23+…+(n -1)×2n -1+n ×2n , 2T n =2+2×23+3×24+…+(n -1)×2n +n ×2n +1,作差得T n =1-8-(23+24+…+2n )+n ×2n +1=(n -1)×2n +1+1, 易知当n =1时,也满足上式, 故T n =(n -1)×2n +1+1(n ∈N *).5.已知数列{a n }的前n 项和为S n ,且满足S n -n =2(a n -2)(n ∈N *). (1)证明:数列{a n -1}为等比数列;(2)若b n =a n ·log 2(a n -1),数列{b n }的前n 项和为T n ,求T n .5.解析 (1)∵S n -n =2(a n -2),当n ≥2时,S n -1-(n -1)=2(a n -1-2), 两式相减,得a n -1=2a n -2a n -1,∴a n =2a n -1-1,∴a n -1=2(a n -1-1), ∴a n -1a n -1-1=2(n ≥2)(常数).又当n =1时,a 1-1=2(a 1-2),得a 1=3,a 1-1=2,∴数列{a n -1}是以2为首项,2为公比的等比数列. (2)由(1)知,a n -1=2×2n -1=2n ,∴a n =2n +1, 又b n =a n ·log 2(a n -1),∴b n =n (2n +1),∴T n =b 1+b 2+b 3+…+b n =(1×2+2×22+3×23+…+n ×2n )+(1+2+3+…+n ), 设A n =1×2+2×22+3×23+…+(n -1)×2n -1+n ×2n , 则2A n =1×22+2×23+…+(n -1)×2n +n ×2n +1, 两式相减,得-A n=2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1, ∴A n =(n -1)×2n +1+2.又1+2+3+…+n =n (n +1)2,∴T n =(n -1)×2n +1+2+n (n +1)2(n ∈N *).6.已知数列{a n }的前n 项和是S n ,且S n +12a n =1(n ∈N *).数列{b n }是公差d 不等于0的等差数列,且满足:b 1=32a 1,b 2,b 5,b 14成等比数列.(1)求数列{a n },{b n }的通项公式;(2)设c n =a n ·b n ,求数列{c n }的前n 项和T n .6.解析 (1)n =1时,a 1+12a 1=1,a 1=23,n ≥2时,⎩⎨⎧S n =1-12a n ,Sn -1=1-12a n -1,S n -S n -1=12()a n -1-a n ,∴a n =13a n -1(n ≥2),{a n }是以23为首项,13为公比的等比数列,a n =23×⎝⎛⎭⎫13n -1=2⎝⎛⎭⎫13n.b 1=1,由b 25=b 2b 14得,()1+4d 2=()1+d ()1+13d ,d 2-2d =0,因为d ≠0,解得d =2,b n =2n -1(n ∈N *). (2)c n =4n -23n ,T n =23+632+1033+…+4n -23n ,①13T n =232+633+1034+…+4n -63n +4n -23n +1,② ①-②得,23T n =23+4⎝⎛⎭⎫132+133+ (13)-4n -23n +1=23+4×19-13n +11-13-4n -23n +1=43-23n -4n -23n +1, 所以T n =2-2n +23n (n ∈N *).7.已知首项为2的数列{a n }的前n 项和为S n ,且S n +1=3S n -2S n -1(n ≥2,n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =n +1a n,求数列{b n }的前n 项和T n .7.解析 (1)因为S n +1=3S n -2S n -1(n ≥2),所以S n +1-S n =2S n -2S n -1(n ≥2), 即a n +1=2a n (n ≥2),所以a n +1=2n +1,则a n =2n ,当n =1时,也满足, 故数列{a n }的通项公式为a n =2n . (2)因为b n =n +12n =(n +1)⎝⎛⎭⎫12n, 所以T n =2×12+3×⎝⎛⎭⎫122+4×⎝⎛⎭⎫123+…+(n +1)×⎝⎛⎭⎫12n ,① 12T n =2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+4×⎝⎛⎭⎫124+…+n ×⎝⎛⎭⎫12n +(n +1)×⎝⎛⎭⎫12n +1,② ①-②得12T n =2×12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1 =12+⎝⎛⎭⎫121+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-(n +1)⎝⎛⎭⎫12n +1 =12+1-⎝⎛⎭⎫12n -(n +1)⎝⎛⎭⎫12n +1=32-n +32n +1.故数列{b n }的前n 项和为T n =3-n +32n .8.已知数列{a n }满足a 1=12,a n +1=a n2a n +1.(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,并求{a n }的通项公式;(2)若数列{b n }满足b n =12n ·a n,求数列{b n }的前n 项和S n .8.解析 (1)因为a n +1=a n 2a n +1,所以1a n +1-1a n=2,所以⎩⎨⎧⎭⎬⎫1a n 是等差数列,所以1a n =1a 1+2(n -1)=2n ,即a n =12n .(2)因为b n =2n 2n =n 2n -1,所以S n =b 1+b 2+b 3+…+b n =1+22+322+…+n2n -1,则12S n =12+222+323+…+n2n , 两式相减得12S n =1+12+122+123+…+12n -1-n 2n =2⎝⎛⎭⎫1-12n -n2n ,所以S n =4-2+n 2n -1. 9.(2020·全国Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n -4n . (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .9.解析 (1)a 2=5,a 3=7.猜想a n =2n +1.证明如下:由已知可得a n +1-(2n +3)=3[a n -(2n +1)],a n -(2n +1)=3[a n -1-(2n -1)],…,a 2-5=3(a 1-3). 因为a 1=3,所以a n =2n +1.(2)由(1)得2n a n =(2n +1)2n ,所以S n =3×2+5×22+7×23+…+(2n +1)×2n .① 从而2S n =3×22+5×23+7×24+…+(2n +1)×2n +1.②①-②得-S n =3×2+2×22+2×23+…+2×2n -(2n +1)×2n +1, 所以S n =(2n -1)2n +1+2.10.在等差数列{a n }中,已知a 6=16,a 18=36.(1)求数列{a n }的通项公式a n ;(2)若________,求数列{b n }的前n 项和S n .在①b n =4a n a n +1,②b n =(-1)n ·a n ,③b n =2a n ·a n 这三个条件中任选一个补充在第(2)问中,并对其求解.注:若选择多个条件分别解答,按第一个解答计分.10.解析 (1)由题意,⎩⎪⎨⎪⎧a 1+5d =12,a 1+17d =36,解得d =2,a 1=2.∴a n =2+(n -1)×2=2n .(2)选条件①:b n =42n ·2(n +1)=1n (n +1),S n =11×2+12×3+…+1n (n +1)=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1=nn +1.选条件②:∵a n =2n ,b n =(-1)n a n ,∴S n =-2+4-6+8-…+(-1)n ·2n , 当n 为偶数时,S n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2×2=n ;当n 为奇数时,n -1为偶数,S n =(n -1)-2n =-n -1.∴S n =⎩⎪⎨⎪⎧n ,n 为偶数,-n -1,n 为奇数.选条件③:∵a n =2n ,b n =2a n ·a n ,∴b n =22n ·2n =2n ·4n , ∴S n =2×41+4×42+6×43+…+2n ×4n ,①4S n =2×42+4×43+6×44+…+2(n -1)×4n +2n ×4n +1,② 由①-②得,-3S n =2×41+2×42+2×43+…+2×4n -2n ×4n +1 =8(1-4n )1-4-2n ×4n +1=8(1-4n )-3-2n ×4n +1,∴S n =89(1-4n )+2n 3·4n +1.11.在①b n =na n ,②b n =⎩⎪⎨⎪⎧a n ,n 为奇数,log 2a n ,n 为偶数,③b n =1(log 2a n +1)(log 2a n +2)这三个条件中任选一个,补充在下面问题中,并解答.问题:已知数列{a n }是等比数列,且a 1=1,其中a 1,a 2+1,a 3+1成等差数列. (1)求数列{a n }的通项公式;(2)记________,求数列{b n }的前2n 项和T 2n .11.解析 (1)设数列{a n }的公比为q ,因为a 1,a 2+1,a 3+1成等差数列,所以2(a 2+1)=a 1+a 3+1.又因为a 1=1,所以2(q +1)=2+q 2,即q 2-2q =0,所以q =2或q =0(舍去),所以a n =2n -1. (2)由(1)知a n =2n -1,若选择条件①,则b n =n ·2n -1, 所以T 2n =1×20+2×21+…+2n ×22n -1, 则2T 2n =1×21+2×22+…+2n ×22n , 两式相减得-T 2n=1×20+1×21+…+1×22n -1-2n ×22n =1-22n1-2-2n ×22n =(1-2n )×22n -1, 所以T 2n =(2n -1)·22n +1. 由(1)知a n =2n -1,若选择条件②,则b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,n -1,n 为偶数,所以T 2n =(20+1)+(22+3)+…+(22n -2+2n -1)=(20+22+…+22n -2)+(1+3+…+2n -1) =1-4n 1-4+n (1+2n -1)2=4n 3+n 2-13.由(1)知a n =2n -1,若选择条件③,则b n =1n (n +1),所以T 2n =11×2+12×3+…+12n (2n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12n -12n +1=1-12n +1=2n2n +1. 12.在①b 2n =2b n +1,②a 2=b 1+b 2,③b 1,b 2,b 4成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{a n }中a 1=1,a n +1=3a n .公差不等于0的等差数列{b n }满足________,________,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和S n .注:如果选择不同方案分别解答,按第一个解答计分.12.解析 因为a 1=1,a n +1=3a n ,所以{a n }是以1为首项,3为公比的等比数列,所以a n =3n -1.选①②时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3. 因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,解得b 1=23,b 2=73,所以d =53,所以b n =5n -33,满足b 2n =2b n +1.所以b n a n =5n -33n .S n =b 1a 1+b 2a 2+…+b n a n =231+732+1233+…+5n -33n ,(1)所以13S n =232+733+1234+…+5n -83n +5n -33n +1,(2)(1)-(2),得23S n =23+5⎝⎛⎭⎫132+133+…+13n -5n -33n +1=23+56-152×3n +1-5n -33n +1=32-10n +92×3n +1, 所以S n =94-10n +94×3n.选②③时,设数列{b n }的公差为d ,因为a 2=3,所以b 1+b 2=3,即2b 1+d =3.因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而d =b 1=1,所以b n =n ,所以b n a n =n3n -1,S n =b 1a 1+b 2a 2+…+b n a n =130+231+332+…+n3n -1,(1)所以13S n =131+232+333+…+n -13n -1+n 3n ,(2)(1)-(2),得23S n =1+131+132+133+…+13n -1-n 3n =32⎝⎛⎭⎫1-13n -n 3n =32-2n +32×3n ,所以S n =94-2n +34×3n -1.选①③时,设数列{b n }的公差为d ,因为b 2n =2b n +1,所以n =1时,b 2=2b 1+1,所以d =b 1+1. 又因为b 1,b 2,b 4成等比数列,所以b 22=b 1b 4,即(b 1+d )2=b 1(b 1+3d ),化简得d 2=b 1d ,因为d ≠0,所以b 1=d ,从而无解,所以等差数列{b n }不存在,故不符合题意.13.在①已知数列{a n }满足:a n +1-2a n =0,a 3=8;②等比数列{a n }中,公比q =2,前5项和为62,这两个条件中任选一个,并解答下列问题: (1)求数列{a n }的通项公式;(2)设b n =na n ,数列{b n }的前n 项和为T n ,若2T n >m -2 022对n ∈N *恒成立,求正整数m 的最大值.注:如果选择两个条件分别解答,则按第一个解答计分. 13.解析 (1)选择条件①,设等比数列{a n }的首项为a 1,公比为q .由a n +1-2a n =0,a 3=8,得{a n }为等比数列,q =2,a 1=2,所以a n =2n . 选择条件②,设等比数列{a n }的首项为a 1,由公比q =2,前5项和为62,得a 1(1-25)1-2=62,解得a 1=2,所以a n =2n . (2)因为b n =n a n =n2n ,所以T n =12+222+323+…+n2n ,①12T n =122+223+324+…+n2n +1,② ①-②得12T n =12+122+123+124+…+12n -n 2n +1=1-12n -n2n +1,所以T n =2-2+n 2n .因为T n +1-T n =⎝ ⎛⎭⎪⎫2-2+n +12n +1-⎝⎛⎭⎫2-2+n 2n =n +12n +1>0,所以数列{T n }单调递增,T 1最小,最小值为12.所以2×12>m -2 022.所以m <2 023.故正整数m 的最大值为2 022.14.(2021·全国乙)设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n2.14.解析 (1)设{a n }的公比为q ,则a n =q n -1.因为a 1,3a 2,9a 3成等差数列,所以1+9q 2=2×3q ,解得q =13,故a n =13n -1,b n =n3n .(2)由(1)知S n =1×⎝⎛⎭⎫1-13n 1-13=32⎝⎛⎭⎫1-13n ,T n =13+232+333+…+n3n ,①13T n =132+233+334+…+n -13n +n3n +1,② ①-②得23T n =13+132+133+…+13n -n 3n +1,即23T n =13⎝⎛⎭⎫1-13n 1-13-n 3n +1=12⎝⎛⎭⎫1-13n -n3n +1, 整理得T n =34-2n +34×3n ,则2T n -S n =2⎝ ⎛⎭⎪⎫34-2n +34×3n -32⎝⎛⎭⎫1-13n =-n 3n <0,故T n<S n 2.15.已知数列{a n }的首项a 1=3,前n 项和为S n ,a n +1=2S n +3,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =log 3a n ,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n ,并证明:13≤T n <34.15.解析 (1)由a n +1=2S n +3,得a n =2S n -1+3(n ≥2),两式相减得a n +1-a n =2(S n -S n -1)=2a n ,故a n +1=3a n (n ≥2), 所以当n ≥2时,{a n }是以3为公比的等比数列.因为a 2=2S 1+3=2a 1+3=9,a 2a 1=3,所以{a n }是首项为3,公比为3的等比数列,a n =3n .(2)a n =3n ,故b n =log 3a n =log 33n =n ,b n a n =n3n =n ·⎝⎛⎭⎫13n , T n =1×13+2×⎝⎛⎭⎫132+3×⎝⎛⎭⎫133+…+n ×⎝⎛⎭⎫13n ,① 13T n =1×⎝⎛⎭⎫132+2×⎝⎛⎭⎫133+3×⎝⎛⎭⎫134+…+(n -1)×⎝⎛⎭⎫13n +n ×⎝⎛⎭⎫13n +1.② ①-②,得23T n =13+⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -n ×⎝⎛⎭⎫13n +1=13-⎝⎛⎭⎫13n +11-13-n ×⎝⎛⎭⎫13n +1=12-32+n ⎝⎛⎭⎫13n +1, 所以T n =34-12⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n. 因为⎝⎛⎭⎫32+n ⎝⎛⎭⎫13n >0,所以T n <34.又因为T n +1-T n =n +13n +1>0, 所以数列{T n }单调递增,所以(T n )min =T 1=13,所以13≤T n <34.16.已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.(1)当n ∈N *时,求f (n )的表达式;(2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2.16.解析 (1)因为函数f (x )满足f (x +y )=f (x )·f (y ),所以令y =1,得f (x +1)=f (x )·f (1),所以f (n +1)=f (n )·f (1).又因为f (1)=12,所以f (n +1)f (n )=12,所以f (n )=⎝⎛⎭⎫12n(n ∈N *). (2)由(1)得a n =n ·⎝⎛⎭⎫12n,设T n =a 1+a 2+a 3+…+a n -1+a n , 则T n =1×12+2×⎝⎛⎭⎫122+3×⎝⎛⎭⎫123+…+(n -1)×⎝⎛⎭⎫12n -1+n ×⎝⎛⎭⎫12n ,① 所以12T n =1×⎝⎛⎭⎫122+2×⎝⎛⎭⎫123+…+(n -2)⎝⎛⎭⎫12n -1+(n -1)×⎝⎛⎭⎫12n +n ×⎝⎛⎭⎫12n +1,② 所以由①-②得12T n =12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n -1+⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12-n ·⎝⎛⎭⎫12n +1=1-⎝⎛⎭⎫12n -n ·⎝⎛⎭⎫12n +1=1-2+n 2n +1,所以T n =2-n +22n <2,即a 1+a 2+a 3+…+a n -1+a n <2.17.已知各项均不相等的等差数列{a n }的前4项和为14,且a 1,a 3,a 7恰为等比数列{b n }的前3项.(1)分别求数列{a n },{b n }的前n 项和S n ,T n ;(2)设K n 为数列{a n b n }的前n 项和,若不等式λS n T n ≥K n +n 对一切n ∈N *恒成立,求实数λ的最小值.17.解析 (1)设数列{a n }的公差为d ,则⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ),解得d =1或d =0(舍去),a 1=2, 所以a n =n +1,S n =n (n +3)2.b n =2n ,T n =2n +1-2.(2)由题意得K n =2×21+3×22+…+(n +1)×2n ,① 则2K n =2×22+3×23+…+n ×2n +(n +1)×2n +1,②①-②得-K n =2×21+22+23+…+2n -(n +1)×2n +1,∴K n =n ×2n +1.要使λS n T n ≥K n +n 对一切n ∈N *恒成立,即λ≥K n+n S n T n =2n +1+1(n +3)(2n -1)恒成立,设g (n )=2n +1+1(n +3)(2n -1),因为g (n +1)g (n )=(n +3)(2n -1)(2n +2+1)(n +4)(2n +1-1)(2n +1+1)=(n +3)(22n +2-1-3·2n )(n +4)(22n +2-1)<(n +3)(22n +2-1)(n +4)(22n +2-1)<1, 所以g (n )随n 的增加而减小,所以g (n )max =g (1)=54,所以当λ≥54时不等式恒成立,因此λ的最小值为54.18.(2021·浙江)已知数列{a n }的前n 项和为S n ,a 1=-94,且4S n +1=3S n -9(n ∈N *).(1)求数列{a n }的通项公式;(2)设数列{b n }满足3b n +(n -4)a n =0(n ∈N *),记{b n }的前n 项和为T n .若T n ≤λb n 对任意n ∈N *恒成立,求实数λ的取值范围.18.解析 (1)因为4S n +1=3S n -9,所以当n ≥2时,4S n =3S n -1-9,两式相减可得4a n +1=3a n ,即a n +1a n =34. 当n =1时,4S 2=4⎝⎛⎭⎫-94+a 2=-274-9,解得a 2=-2716,所以a 2a 1=34. 所以数列{a n }是首项为-94,公比为34的等比数列,所以a n =-94×⎝⎛⎭⎫34n -1=-3n +14n . (2)因为3b n +(n -4)a n =0,所以b n =(n -4)·⎝⎛⎭⎫34n .所以T n =-3×34-2×⎝⎛⎭⎫342-1×⎝⎛⎭⎫343+0×⎝⎛⎭⎫344+…+(n -4)·⎝⎛⎭⎫34n ,① 所以34T n =-3×⎝⎛⎭⎫342-2×⎝⎛⎭⎫343-1×⎝⎛⎭⎫344+0×⎝⎛⎭⎫345+…+(n -5)·⎝⎛⎭⎫34n +(n -4)·⎝⎛⎭⎫34n +1,② ①-②得14T n =-3×34+⎝⎛⎭⎫342+⎝⎛⎭⎫343+…+⎝⎛⎭⎫34n -(n -4)·⎝⎛⎭⎫34n +1 =-94+916⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫34n -11-34-(n -4)·⎝⎛⎭⎫34n +1=-n ·⎝⎛⎭⎫34n +1, 所以T n =-4n ·⎝⎛⎭⎫34n +1. 因为T n ≤λb n 对任意n ∈N *恒成立,所以-4n ·⎝⎛⎭⎫34n +1≤λ(n -4)·⎝⎛⎭⎫34n 恒成立,即-3n ≤λ(n -4)恒成立. 当n <4时,λ≤-3n n -4=-3-12n -4,此时λ≤1; 当n =4时,-12≤0恒成立;当n >4时,λ≥-3n n -4=-3-12n -4,此时λ≥-3. 所以-3≤λ≤1,即实数λ的取值范围为[-3,1].19.已知递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n 12log a n ,S n =b 1+b 2+…+b n ,求使S n +n ·2n +1>62成立的正整数n 的最小值.19.解析 (1)由题意,得⎩⎪⎨⎪⎧ a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2a 1q 2+2,解得⎩⎪⎨⎪⎧ a 1=2,q =2或⎩⎪⎨⎪⎧ a 1=32,q =12,∵{a n }是递增数列,∴a 1=2,q =2,∴数列{a n }的通项公式为a n =2·2n -1=2n .(2)∵b n =a n 12log a n =2n ·12log 2n =-n ·2n ,∴S n =b 1+b 2+…+b n =-(1×2+2×22+…+n ·2n ), ① 则2S n =-(1×22+2×23+…+n ·2n +1),②②-①,得S n =(2+22+…+2n )-n ·2n +1=2n +1-2-n ·2n +1, 则S n +n ·2n +1=2n +1-2,解2n +1-2>62,得n >5,∴n 的最小值为6.20.已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =12log n n a a ,S n =b 1+b 2+…+b n ,求使S n +n ×2n +1>30成立的正整数n 的最小值.20.解析 (1)设等比数列{a n }的首项为a 1,公比为q .由题意知2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,可得a 3=8,所以a 2+a 4=20,所以⎩⎪⎨⎪⎧ a 1q 2=8,a 1q +a 1q 3=20,解得⎩⎪⎨⎪⎧ q =2,a 1=2或⎩⎪⎨⎪⎧ q =12,a 1=32.又数列{a n }单调递增,所以q =2,a 1=2,所以数列{a n }的通项公式为a n =2n .(2)因为b n =1122log 2log 2n n n n a a ==-n ×2n ,所以S n =-(1×2+2×22+…+n ×2n ),2S n =-[1×22+2×23+…+(n -1)×2n +n ×2n +1],两式相减,得S n =2+22+23+…+2n -n ×2n +1=2n +1-2-n ×2n +1. 又S n +n ×2n +1>30,可得2n +1-2>30,即2n +1>32=25, 所以n +1>5,即n >4.所以使S n +n ×2n +1>30成立的正整数n 的最小值为5.。

数列求和错位相减

数列求和错位相减

数列求和错位相减数列求和错位相减随着数学技能的不断提高,我们经常会遇到各种数列问题。

其中,求和问题是最基本的一种问题,而本文将介绍的是一种特殊的求和方法——数列求和错位相减。

一、什么是数列求和错位相减数列求和错位相减是一种求解数列问题的方法。

它的具体方法是将数列按照一定的规律错位相减,然后将差值加起来得到求和结果。

这一方法通常适用于一些存在周期性变化的数列问题。

例如,对于一个等差数列:1, 3, 5, 7, 9…如果采用传统的求和方法,其公式为:Sn = n(2a+(n-1)d)/2其中,Sn为前n项和,a为首项,d为公差。

则该序列前5项之和为:S5 = 5(2*1+(5-1)*2)/2=25而采用数列求和错位相减的方法,则可以按照如下步骤进行:1. 将数列分成两部分,如下所示:1, 5, 9…3, 7, 11…2. 对两部分数列进行相减:(5-1) + (9-5) + … = 4 + 4 + … = 2n-1(7-3) + (11-7) + … = 4 + 4 + … = 2n+13. 将两部分差值相加:(2n-1) + (2n+1) = 4n得出的结果为求和结果的n倍,因此需要除以n得到真正的结果:Sn = 4n/n = 4二、数列求和错位相减的应用数列求和错位相减在实际问题中常常会被应用。

比如,我们常常会遇到以下类型的问题:1. 求一个周期性变化的数列的前n项和。

2. 求某个阶段内两个连续数相邻的差值之和。

3. 求某个阶段内两个连续数相邻的比值之和。

这些问题都可以通过数列求和错位相减来解决。

下面我们以一个例子来说明其应用:假设有以下数列:1, 5, 9, 13, 17, 21, 25, 29, 33现在需要求出该数列中,连续两项之间的差值之和。

按照数列求和错位相减的方法,我们可以将数列分成两部分:1, 9, 17, 25, 335, 13, 21, 29对两部分进行相减:8 + 8 + 8 + 8 = 324 + 4 + 4 = 12将两部分相加:32 + 12 = 44得到的结果即为连续两项之间的差值之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n=1时,也适合上式.
∴an=4n﹣15.
(2)cn= = = •(4n﹣15),
∴Tn= + + +…+ •(4n﹣15),①
= + +…+ + ②
①﹣②,得: Tn=﹣ +4( + +…+ )﹣(4n﹣15)•( )n+1
=﹣ +4• ﹣(4n﹣15)•( )n+1
=﹣ ﹣ ,
∴Tn=﹣7﹣ .
【点评】本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
6.(Ⅰ) ;(Ⅱ)2,3,4
【解析】
试题分析:(Ⅰ)已知 ,要求等差数列的通项公式,可先求得公差 ,可把已知条件 用 表示出来,然后写出通项公式;(Ⅱ)由等差数列前 项和公式写出 ,再解不等式 即可.
高一数学第七周周考
一、解答题
1.已知数列 是等差数列,数列 是各项均为正数的等比数列,且 , , .
(1)求数列 , 的通项公式;
(2)设 ,求数列 的前 项和 .
2.已知等差数列 的前 项和为 , .
(1)求数列 的通项公式;
(2)求数列 的前 项和为
3.已知数列 满足 ,
(1)求证:数列 是等比数列,并求其通项公式;
6.等差数列 的首项 ,其前 项和为 ,且 .
(Ⅰ)求 的通项公式;
(Ⅱ)求满足不等式 的 的值.
7.已知数列{an}的前n项和为Sn,a1=2.当n≥2时,Sn-1+1,an,Sn+1成等差数列.
(1)求证:{Sn+1}是等比数列;
(2)求数列{nan}的前n项和Tn.
8.已知数列 的前 项和为 ,且 , .
(2)求数列 的通项公式及前 项和公式 .
17.(12分)已知数列 的前 项和为 ,点 均在二次函数 的图象上.
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和
18.已知公差不为零的等差数列 ,若 ,且 成等比数列.
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和 .
19.已知数列 满足 ,令 .
(2)设 ,求数列 的前 项和 ;
4.已知等差数列 的公差大于 ,且 是方程 的两根,数列 的前 项的和为 ,且 .(12分)
(1) 求数列 , 的通项公式;
(2) 记 ,求数列 的前 项和
5.已知数列{an}的前n项和sn满足Sn=2n2﹣13n(n∈N*).
(1)求通项公式an;
(2)令cn= ,求数列{cn}的前n项和Tn.
(1)求证:数列 是等差数列;
(2)求数列 的通项公式.
参考答案
1.(1) , .(2)
【解析】
试题分析:(1)求等差与等比数列通项公式,一般方法为待定系数法,即根据条件列关于公差与公比的方程组: 解得 , ,再代入通项公式即得 , .(2)因为 ,所以利用错位相减法求和,注意作差时,错项相减,最后一项的符号变化,中间等比项求和时注意项数,最后不要忘记除以
试题解析:(1)设等差数列 的公差为 ,等比数列 的公比为 ( ),
由题意得 解得 ,或 (舍去), .
∴ , .
(2)由题意得 ,
所以 ,①
,②
① ②得 ,
所以 .
考点:错位相减法求和
2.(1) ;(2)
【解析】
试题分析:(1)利用等差数列的通项公式,前 项和公式,得到关于 的二元一次方程组,解之,即可得到 ,则数列 通项公式可求;
(1)求 的值;
(2)猜想 的通项公式,并用数学归纳法证明.
9.已知 为等差数列 的前 项和,且 .
(Ⅰ)求 的通项公式;
(Ⅱ)求数列 的前 项和 .
10.已知 为数列 的前 项和,若 且 .
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项之和.
11.已知等差数列 的前3项和为6,前8项和为 .
(2)由(1)可知 的通项为 ,则利用错位相减法即可求出其前 项和
试题解析:(1)等差数列{an}, .
(2)
考点:等差数列的通项公式,前 项和公式,错位相减法
3.(1)形为 ,利用等比数列的定义及其通项公式即可得出.(2)由 ,可得 .当n≤8时, <0,当n≥9时, >0.对n分类讨论,去掉绝对值符号,利用等差数列的求和公式即可得出
试题解析:
(Ⅰ)设数列 的公差为 .
因为 ,所以 .
因为 ,所以 ,即 ,
所以 .
(Ⅱ)因为 , ,所以 ,
所以 ,所以 ,
解得 ,所以 的值为 .
考点:等差数列的通项公式与前 项和公式.
7.(1)见解析
(2)Tn=
【解析】解:(1)证明:∵Sn-1+1,an,Sn+1成等差数列,
∴2an=Sn+Sn-1+2(n≥2).
14.(本题满分12分)
已知公差不为零的等差数列 的前4项和为10,且 成等比数列.
(Ⅰ)求通项公式 ;
(Ⅱ)设 ,求数列 的前 项和 .
15.已知数列 是等差数列,且 , .
⑴ 求数列 的通项公式;
⑵ 令 ,求数列 的前 项和.
16.已知数列 , 满足 , ,且 .
(1)令 ,求数列 的通项公式;
又当n=1时,有b1=S1=1-

∴数列{bn}是等比数列,
∴ …………6分
(Ⅱ)由(Ⅰ)知 所以 …………12分
5.(1)an=4n﹣15(2)Tn=﹣7﹣
【解析】解:(1)①当n=1时,a1=S1=﹣11,
②当n≥2时,an=Sn﹣Sn﹣1=2n2﹣13n﹣[2(n﹣1)2﹣13(n﹣1)]=4n﹣15,
∴2(Sn-Sn-1)=Sn+Sn-1+2,即Sn=3Sn-1+2,
∴Sn+1=3(Sn-1+1)(n≥2).
∴{Sn+1}是首项为S1+1=3,公比为3的等比数列.
(1)求数列 的通项公式;
(2)设 ,求数列 的前 项和
12.已知数列 的各项均是正数,其前 项和为 ,满足 .
(I)求数列 的通项公式;
(II)设 数列 的前 项和为 ,求证: .
13.等比数列{an}中,已知a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)若a3,a5分别为等差数列{bn}的第3项和第5项,试求数列{bn}的通项公式及前n项和Sn.
试题解析:(1) ,
, 为等比数列
(2) ,
当 时, ,当 时, 。
设数列 的前 项和为 ,则
当 时,
所以,
当 时
所以,
综上,
考点:等差数列与等比数列的定义通项公式及其求和公式
4.(1) ,
(2) ,
【解析】解:(Ⅰ)∵ 是方程 的两根,且数列 的公差d>0,
∴a3=5,a5=9,公差
∴ ………………3分
相关文档
最新文档