土力学1-第三章
土力学第一章(物理力学性质)

土力学第一章(物理力学性质)第一章:土的物理性质及工程分类名词解释1、土粒级配:是指土中各粒组的相对百分含量,或土中中各粒组占总质量的百分数。
2、不均匀系数:用来描述土粒的不均匀性大小的指标。
用公式表示 1060d d C u =3、曲率系数:用来反映颗分曲线的整体形状和细粒含量多少的指标。
用公式表示1060230)(d d d C c =4、液限:是指土体处于可塑态和流动态的界限含水率,用w l 表示。
5、塑限:是指土体处于可塑态和半固态的界限含水率。
用w p 表示。
6、塑性指数:表示粘性土呈可塑状态的含水率的变化范围,其大小等于液限与塑限的差值(去百分号)。
用公式表示100)(?-=p l p w w I7、液性指数:表征了粘性土的天然含水率和界限含水率之间的相对关系,用来区分天然土所处的状态。
用公式表示ppp l p l I w w w w w w I -=--=8、最大干密度:在击实曲线中,当土的含水率增加到某一值时,干密度可以达到了最大值,这一干密度称为最大干密度,用ρdmax 表示。
9、最优含水率:在击实曲线中,当土的含水率增加到某一值时,干密度可以达到了最大值,这一含水率称为最优含水率,用w op 表示。
10、灵敏度:原状土的单轴抗压强度与重塑土的单轴抗压强度之比。
用公式表示uu t q q S =简答1、A 土样的孔隙比小于B 土样的孔隙比,那么A 土样一定比B 土样密实么?为什么?答:不一定;如果对于同一种土来说,孔隙比的大小可以反映出土的密实程度;而对于不同土来说,仅仅用孔隙比是无法判断土的密实程度的,还与土样的物理性质有关。
2、什么是颗分试验?有几种方法?适用范围是什么?答:测定土体中各粒组的质量占总土重百分数,确定各粒径分布范围的试验。
常用方法有:筛分法,适用于粒径d ≥0.075mm 且P ≥90%的粗粒土;密度计法,适用于粒径d ≤0.075mm 且P ≥90%的细粒土。
第三章土中的应力

pm in
F G 6e (1 ) lb l
Dr. Han WX
当e<l/6时,基底压力分布图呈梯形,图(a) 当e=l/6时,则呈三角形,图(b) 当e>l/6时,距偏心荷载较远的基底边缘反力为负
基底边缘最大压力:
pmax
2( F G ) 3bk
矩形基础在双向偏心荷载作用下,如基底最小压力 pmin≥0,则矩形基底边缘四个角点处的压力可按下列公式计算:
土 力 学
第3章 土中的应力
Stress
1
《土力学》 第3章 土中的应力
§3.1 概述
震等)的作用下,均可产生土中应力。
土中应力将引起土体或地基的变形,使土工建筑物(如路堤、土坝等)或建 筑物(如房屋、桥梁、涵洞等)发生沉降、倾斜以及水平位移。
Dr. Han WX
土体在自身重力、建筑物荷载、交通荷载或其他因素(如地下水渗流、地
3
《土力学》 第3章 土中的应力
§3.1 概述
Dr. Han WX
土中应力按其作用原理或传递方式可分为有效应力和孔隙应力两种。
土中有效应力是指土粒所传递的粒问应力,它是控制土的体积(或变形)和 强度两者变化的土中应力。
土中孔隙应力是指土中水和土中气所传递的应力,土中水传递的孔隙水应 力,即孔隙水压力;土中气传递的孔隙气应力,即孔隙气压力。 土是由三相所组成的非连续介质,受力后土 粒在其接触点处出现应力集中现象,即在研究土 体内部微观受力时,必须了解土粒之间的接触应
9
Dr. Han WX
《土力学》 第3章 土中的应力
§3.2 土中自重应力
3.2.1 均质土中的自重力
[例题4-1]某建 筑场地的地质柱 状图和土的有关 指标列于图4-5中。 试计算地面下深
土质土力学习题及思考题

《土力学》思考题及习题清华大学土力学1第一章土的物理性质一思考题1.什么是土的灵敏度?灵敏度反映土的什么性质?如何测定土的灵敏度?2.粗粒土与细粒土如何区分?3.什么叫做粒径级配累积曲线,曲线上一点代表什么意思?4.土中水分几种类型?各有什么特点?与土的状态什么关系?5.如果试验结果表明某天然砂层的相对密度Dr>1,这是否有可能,为什么?6.什么是粘性土的最优含水量?它与击实能有什么关系?7.什么叫土的液性指数?如果试验结果表明某天然粘土层的液性指数大于1,但该土并不呈流动状态而仍有一定的强度,这是否可能,为什么?8.片架结构和片堆结构性质有何不同?9.已知某粘土层的天然含水量值,能否判断该土的软硬程度,为什么?二习题1.有一土体,测定的天然密度为ρ=1.85g/cm3,含水量为ω=14%,土颗粒的比重为G s=2.67。
计算其孔隙比e。
2.在某土层中用体积为72cm3的环刀取样。
经测定,土样质量为129.1g,烘干后土样质量为121.5g,土粒比重为2.7,求该土样的含水量、湿容重、饱和容重、干容重和浮容重,并比较该土在各种情况下的容重值有何区别?3.饱和土孔隙比为0.7,比重为2.72。
用三相草图计算干容重、饱和容重和浮容重。
并求当该土的饱和度变为75%时的容重和含水量。
4.有一湿土样质量为200g,已知含水量为15%,要制备含水量为20%的土样需加多少水?5.某料场的天然含水量w=22%,G s=2.70,土的压密标准为ρd=1.7g/cm3,为避免过度碾压而产生剪切破坏,压密土的饱和度不宜超过0.85。
问该料场的土料是否适合筑坝,如果不适合应采用什么措施?6.8度地震区要求砂压到相对密度达0.7以上,经试验某料场砂的最大干密度为1.96g/cm3,最小干密度为1.46g/cm3,问这类砂碾压到多大的干密度才能满足抗震的要求?(砂的比重为2.65)7.装在环刀内的饱和土样加垂直压力后高度自2.0cm压缩至1.95cm,取出土样测得其含水量为28%,已知土粒比重为2.7,求压缩前土的孔隙比?第二章 土的渗透性一 思考题1.举例说明流土发生的现象和原因,并说明工程上如何防止流土的发生。
土力学第四版习题答案

土力学第四版习题答案第一章:土的物理性质和分类1. 土的颗粒大小分布曲线如何绘制?- 通过筛分法或沉降法,测量不同粒径的土颗粒所占的比例,然后绘制颗粒大小分布曲线。
2. 如何确定土的密实度?- 通过土的干密度和最大干密度以及最小干密度,计算土的相对密实度。
3. 土的分类标准是什么?- 根据颗粒大小、塑性指数和液限等指标,按照统一土壤分类系统(USCS)进行分类。
第二章:土的力学性质1. 土的应力-应变关系是怎样的?- 土的应力-应变关系是非线性的,通常通过三轴试验或直剪试验获得。
2. 土的强度参数如何确定?- 通过土的三轴压缩试验,确定土的内摩擦角和凝聚力。
3. 土的压缩性如何影响地基沉降?- 土的压缩性越大,地基沉降量越大,反之亦然。
第三章:土的渗透性1. 什么是达西定律?- 达西定律描述了土中水流的速度与水力梯度成正比的关系。
2. 如何计算土的渗透系数?- 通过渗透试验,测量土样在一定水力梯度下的流速,计算渗透系数。
3. 土的渗透性对边坡稳定性有何影响?- 土的渗透性增加可能导致边坡内部水压力增加,降低边坡的稳定性。
第四章:土的剪切强度1. 什么是摩尔圆?- 摩尔圆是一种图解方法,用于表示土的应力状态和剪切强度。
2. 土的剪切强度如何影响基础设计?- 土的剪切强度决定了基础的承载能力,是基础设计的重要参数。
3. 土的剪切强度与哪些因素有关?- 土的剪切强度与土的类型、密实度、含水量等因素有关。
第五章:土的压缩性与固结1. 固结理论的基本原理是什么?- 固结理论描述了土在荷载作用下,孔隙水逐渐排出,土体体积减小的过程。
2. 如何计算土的固结沉降?- 通过固结理论,结合土的压缩性指标和排水条件,计算土的固结沉降量。
3. 固结过程对土工结构有何影响?- 固结过程可能导致土工结构产生不均匀沉降,影响结构的稳定性和使用寿命。
第六章:土的应力路径和强度准则1. 什么是应力路径?- 应力路径是土体在加载过程中应力状态的变化轨迹。
土力学复习要点#

第一章 土的组成土是岩石风化的产物。
风化作用主要包括物理风化和化学风化。
1. 土具有三个主要特点:散体性、多相性(多样性)、自然变异性。
2. 土是由固体颗粒、水和气体组成的三相体系。
3. 粗大的土粒其形状呈块状或粒状;细小的土粒主要呈片状。
4. 土粒的大小称为粒度,通常以粒径表示;介于一定粒度范围内的土粒,称为粒组;划分粒组的分界尺寸称为界限粒径,据界限粒径200、60、2、0.075、0.005mm 把土粒分成六大粒组:漂石或块石颗粒、卵石或碎石颗粒、圆砾或角砾颗粒、砂粒、粉粒、黏粒。
5. 土中各个粒组的相对含量(土样各粒组的质量占土粒总质量的百分数)称为粒度成分或者颗粒级配。
6. 粒度成分分析常用筛分法(>0.075)和沉降分析法(<0.075).7. 粒度成分分布曲线:曲线较陡,说明粒径大小相差不多,颗粒较均匀,级配不良;曲线平缓,说明粒径大小相差悬殊,土粒不均匀,级配良好。
8. 不均匀系数,曲率系数,不均匀系数越大,表示粒度的分布范围越大,颗粒越不均匀,其级配越良好。
9. 把的土看作是均粒土,级配不良;把的土,级配良好。
10. 砾类土或砂类土同时满足和两个条件时,则为良好级配砾或良好级配砂。
11. 土中固体颗粒的矿物成分绝大部分是矿物质,或多或少含有有机质。
矿物质分为原生矿物和次生矿物,其中原生矿物主要是石英、长石和云母等,次生矿物主要是黏土矿物、可溶盐和无定形氧化物胶体。
黏土矿物主要是蒙脱石、伊利石和高岭石。
12. 一般液态土中水可视为中性、无色、无味、无臭的液体,其质量密度在4℃时为1g/cm ³ ,重力密度9.81kN/m ³。
存在于土粒矿物的晶体格架内部或是参与矿物构造中的水称为矿物内部结合水,可以把矿物内部的结合水当作矿物颗粒的一部分。
13. 存在土中的液态水可以分为结合水和自由水两大类。
土中水是成分复杂的电解质水溶液。
14. 结合水进一步可分为强结合水和弱结合水。
土力学期末知识点总结

土是由完整坚固岩石答:强度低;压缩性大;透水性大。
)多相性3)成层性4)变异性【其自土的工程上常用不同粒径颗粒的相对含量来描述土的颗粒组成情况,这种指标称y与土粒粒径x的关系为y=0.5x,6,土体级配不好(填好、不好、一般)。
)土的密度测定方法:环刀法;2)土的含水量测定方法:=m/v;土粒密度sat=(mw+ms)/v;浮重;4.35g/ cm3。
1.塑限:粘性土2.液限:粘性土由可塑状态变化到流动状态的分界含水量,称为液限。
用“锥式液限仪”测定;3.塑性(1)粘性土受悬浮状态而失稳,则产生流沙现象;处理方法为采用人工降低地下水位的方法进行施工。
2.路堤两侧有水位差时可能产生管涌现象;原因是水在砂性土中渗流时,土中的一些细260 g,恰好成为液态时质量为m/s,则当2动水力答:其主要原因是,冻结时土中,水的因素,温度的因素第三章土中应力计算3)荷要来源于季节性冻土的冻融,影响因素如下:1.土的因素:土粒较细,亲水性强,毛细作用明显,水上升高度大、速度快,水分迁移阻力小,土体含水量增大,导致强度降低,路面松软、冒泥;2.水的因素:地下水位浅,水分补给充足,所以冻害严重,导致路面开裂;3.温度的因素。
冬季温度降低,土体冻胀,导致路面鼓包、开裂。
春季温度升高,。
2m,宽1m,自重5kN,上部载荷20kN,当载荷轴线与矩形中心重合1/12土土体中的总【】压缩试验过程:现场1.装置;2.实验方法:P1=const p1=rd s1;P2=const p2 s2;;3.加载及观测标准:(1)n>=8;(2)在每级荷载下定时观测下沉速率《=0.1mm\h(连续两个小时可以提高荷载级数)4.破坏标准:(1)承压板周围的土明显侧向挤出或产生裂缝(2)p-s曲线出现陡降(3)在某级荷载下,24小时内某沉降速率仍=0.08b(荷载板宽或直径),即静力法和动力法;前者采用静三轴仪,测得二是土的压缩特1.计算结果更精1.渗透系数2.压缩模量ES值3.时间4.渗流路径。
土力学
目录第一章土的物理性质 (1)第二章土的渗透性和水的渗流 (11)第三章土中应力和地基应力分布 (14)第四章土的压缩性及地基沉降计算 (23)第五章土的抗剪强度 (34)第六章天然地基承载力 (43)第七章土压力 (51)第一章土的物理性质一、内容简介土的力学性质由其物理性质所决定,而土的物理性质又取决于土的成分、结构和形成过程等。
在本章中将介绍土的生成、矿物组成、结构及其联结、三相含量指标、土体状态、土(岩)的工程分类等。
二、基本内容和要求1 .基本内容( 1 )土的形成;( 2 )土的粒径组成及物质成分;( 3 )土中的水及其对土性的影响(粘粒与水的表面作用);( 4 )土的结构及联结;( 5 )土的三相含量指标及换算关系;( 6 )土的物理状态及有关指标;( 7 )土(岩)的工程分类。
2 .基本要求★ 概念及基本原理【掌握】土的粒径组成(或颗粒级配、粒度成分);粒组划分;粒径分析;粒径分布曲线(级配曲线)及其分析应用;土的三相含量指标;砂土及粘性土的物理状态及相应指标;砂土的相对密实度及状态划分;粘性土的稠度和可塑性;稠度和稠度界限;塑性指数及液性指数;【理解】土的形成过程;粒径分析方法(筛分法、比重计法);不均匀系数;曲率系数;土的矿物成分及相应的物理性质;土中水的形态及相应的性质;粗粒土、粉土、粘性土的结构及对土性的影响;重塑土;粘性土的灵敏度及触变性;标准贯入试验及标贯数;塑限及液限的确定方法;土(岩)的工程分类★ 计算理论及计算方法【掌握】土的三相含量指标关系的推导;土的三相含量指标的计算;相对密实度的计算;塑性指数及液性指数的计算;★ 试验【掌握】三个基本指标容重、比重、含水量的确定方法;塑限及液限的确定(搓条法及锥式液限仪法)三、重点内容介绍1 .土的生成土的多相性、分布不均匀性的主要原因就是因为其生成的原因和历史不同。
总的来说,土是由地壳表层的岩石(完整的)经长期的变为碎屑,原地堆积或经风力水流等搬运后沉积而形成。
土力学重点
土力学重点(仅供参考)第一章(土的成因)土的三相系:固、液、气。
常见到的粘土矿物:高岭石、伊利石、蒙脱石不均匀系数Cu曲率系数Cc土的结构类型:单粒、絮凝、分散。
填空题1.根据土的颗粒级配曲线,当颗粒级配曲线较较平缓时表示土的级配良好。
2.工程中常把CU >10的土称为级配良好的土,把CU<5的土称为级配均匀的土,其中评价指标叫不均匀系数。
3.不同分化作用产生不同的土,分化作用有:物理风化、化学风化、生物分化。
4. 粘土矿物基本上是由两种原子层(称为晶片)构成的,一种是:硅氧晶片(硅片),它的基本单元是Si—0四面体,另一种是:铝氢氧晶片(铝片),它的基本单元是A1—OH八面体。
5.不均匀系数Cu、曲率系数Cc 的表达式为Cu=d60/ d10、Cc=d230/ (d60×d10)。
6. 砂类土样级配曲线能同时满足Cu ≧5 及Cc = 1~3的土才能称为级配良好的土。
7. 土是岩石分化的产物,是各种矿物颗粒的集合体。
土与其它连续固体介质相区别的最主要特征就是它的:散粒性和多相性。
8.最常用的颗粒分析方法有筛分法和水分法。
选择题1.在毛细带范围内,土颗粒会受到一个附加应力。
这种附加应力性质主要表现为( C )(A)浮力; (B)张力; (C)压力。
2.对粘性土性质影响最大的是土中的( C )。
(A)强结合水; (B)弱结合水; (C)自由水; (D)毛细水。
3.土中所含“不能传递静水压力,但水膜可缓慢转移从而使土具有一定的可塑性的水,称为( D )。
(A)结合水; (B)自由水; (C)强结合水; (D)弱结合水。
4.下列粘土矿物中,亲水性最强的是( C )。
(A)高岭石; (B)伊里石; (C)蒙脱石; (D)方解石。
5.毛细水的上升,主要是水受到下述何种力的作用?(C )(A)粘土颗粒电场引力作用; (B)孔隙水压力差的作用6.图粒大小及级配,通常用颗粒级配曲线表示,土的颗粒级配曲线越平缓,则表示( C )。
土力学-第三章土的渗透性及渗流
天津城市建设学院土木系岩土教研室
3.4.2 流砂或流土现象
土力学
在向上的渗流力的作用下,粒间的有效应力为零时,颗粒群 发生悬浮、移动的现象称为流砂现象或流土现象。
说明:流砂现象的产生不仅取决于渗流力的大小,同时与土的 颗粒级配、密度及透水性等条件有关
使土开始发生流砂现象时的水力梯度称为临界水力梯度icr
常用的有现场井孔抽水试验或井孔注水试验。 对于均质粗粒土层,现场测出的k值比室内试验得出的值要准确
观测孔 r2
Q
r r1
r处过水断面积为A=2πrh,假设该处
水力梯度i为常数,且等于地下水位
在该处的坡度时,i=dh/则dr
q=kAi=2πrhkdh/dr
dr
qdr/r=2πkhdh
d
分离变量积分
h
h h1
k3
q3y H3
总水头损失等于各层水头损失之和 Hi H1i1 H 2i2 H ni n
代入
垂直渗 透系数
ky
1 H
(i1H1
i2H2
inHn )
k1i1
k2i2
knin
整个土层与层面垂 直的平均渗透系数
k y
H1
H H2
Hn
H n ( Hi )
k1 k2
kn
k i1 iy
天津城市建设学院土木系岩土教研室
土力学
渗透系数k既是反映土的渗透能力的定量指标,也是渗流计算 时必须用到的一个基本参数。测定方法有:室内和现场
1.室内渗透试验测定渗透系数 (1)常水头试验————整个试 验过程中水头保持不变
适用于透水性大(k>10-3cm/s) 的土,例如砂土。
时间t内流出的水量 Q qt kiAt k h At L
《土力学》1-6章作业参考答案
第一章 土的物理性质及其工程分类P 60[2-2] 解:V=21.7cm 3,m=72.49-32.54=39.95g ,m S =61.28-32.54=28.74g ,m W =72.49-61.28=11.21g7.2195.39==V m ρ=1.84g/ cm 3,74.2821.11==sw m m w =39% 07.1184.1)39.01(174.21)1(=-+⨯⨯=-+=ρωρW S d eP 60[2-3] 解:963.0185.1)34.01(171.21)1(=-+⨯⨯=-+=ρωρWS d e 963.01963.071.21++=++=e e d s sat ρ=1.87 g/ cm 3,87.0187.1=-=-='W sat ρρρ g/ cm 3g ργ'='=0.87×10=8.7 kN/m 3P 60[2-4] 解:已知77.1=ρg/cm 3, w =9.8%,s d =2.67,461.0min =e ,943.0max =e∴656.0177.1)098.01(167.21)1(=-+⨯⨯=-+=ρωρW S d e ,∈=--=--=6.0461.0943.0656.0943.0min max max e e e e D r (0.33,0.67)∴该砂土处于中密状态。
P 60[2-5] 解:已知s d =2.73,w =30%,=L w 33%,=P w 17%土样完全饱和→1=r S ,sat ρρ=819.073.23.01=⨯=⇒==e e wd S S r ,819.01819.073.21++=++=e e d s sat ρ=1.95 g/ cm 3 3.0195.11+=+=w d ρρ=1.5 g/ cm 3,161733=-=-=P L p w w I 81.0161730=-=-=P P LI w w I 10<16=p I ≤17→该土为粉质粘土0.75<81.0=L I ≤1→该土处于软塑状态[附加1-1]证明下列换算公式:(1)w s d e d ρρ+=1;(2)γee S sw r ++=1γγ;(3)n n w S w s r γγ)1(-=(1)证明:设e V V V V V Ve V S V V SV S +=+===⇒=1,1w s s w s s s s d ed V V d V V V m ρρρρ+====1 (2)证明:设e V V V V V Ve V S V V SV S +=+===⇒=1,1V g V V V g m m V mg V G s s w w s w )()(ρργ+=+===ee S V V V S sw r s s w v r ++=+=1γγγγ (3)证明:设n V n V n VVV s v v -==⇒==1,,1∴nn w gV gV w V V w V V m m V m V V S w s v w s s v w s s ss v w s wv w w v w r γγρρρρρρρ)1(-====== [附加1-2]解:V=72cm 3,m=129.5g ,m S =121.5g ,m W =129.5-121.5=8g%6.65.1218===⇒S W m m ω 6.0172/5.129)066.01(17.21)1(=-+⨯⨯=-+=ρωρW S d e %7.296.07.2066.0=⨯==e d S S r ω 0.1872105.129=⨯===V mg V G γkN/m 36.20106.16.07.21=⨯+=++=W S sat e e d γγkN/m 36.10106.20=-=-='W sat γγγkN/m 39.16106.17.21=⨯=+=W S d e d γγkN/m 3∴γγγγ'>>>d sat[附加1-3]解:已知s d =2.68,w =32%,土样完全饱和→1=r S86.068.232.01=⨯=⇒==e ed S Sr ω02.1986.1)32.01(1068.286.01)1(=+⨯⨯=⇒=-+=γγωγW S d e kN/m 3[附加1-4]解:已知66.1=ρg/cm 3,s d =2.69,(1)干砂→w =0 ∴62.0166.1)01(169.21)1(=-+⨯⨯=-+=ρρw d e W S(2)置于雨中体积不变→e 不变∴%2.969.262.04.04.0=⨯=⇒==w e wd S S r [附加1-5]解:已知m=180g ,1w =18%,2w =25%,sss s s w m m m m m m m w -=-==18011=18%→s m =152.54g∴)(12w w m m s w -=∆=152.54×(0.25-0.18)=10.68g[附加1-6]实验室内对某土样实测的指标如下表所示,计算表土中空白部分指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叠加原理
地基中的附加应力
14
§3.3 附加应力
竖直集中力-布辛内斯克课题
P
α
o
x
x
r y M β z M
2 2 2
z zx yz y xy
R
y
x
z
2 2 2
R r z x y z
(P;x,y,z;R, α, β)
集中荷载的附加应力
15
§3.3 附加应力
竖直集中力-布辛内斯克课题
y
yz
xy
x
zx xz x
垂直于y轴断面的几何形状与应力状态相同 沿y方向有足够长度,L/B≧10 在x, z平面内可以变形,但在y方向没有变形
y 0 yx yz 0
地基中的应力状态(2)
6
§3.1 应力状态及应力应变关系
二维应力状态(平面应变状态) 应变条件 y 0
0 y 0
xz 0 z
独立变量
x , z , xz ; x , z , xz ; x , z
地基中的应力状态(2)
7
§3.1 应力状态及应力应变关系
侧限应力状态:指侧向应变为零的一种应力状态
• 水平地基半无限空间体 • 半无限弹性地基内的自重 应力只与Z有关 • 土质点或土单元不可能有 侧向位移侧限应变条件 • 任何竖直面都是对称面
z
矩形竖直向均布荷载角点下的应力分布系数Ks:表3-2
矩形分布荷载的附加应力
19
§3.3 附加应力
矩形面积竖直均布荷载
任意点的垂直附加应力—角点法 叠加原理
B C a
A D b
荷载与应 力间满足 线性关系
角点计算公式
任意点的计算公式
A B D • 矩形内: z ( K s K s K C K s )p s
基底压力计算
29
§3.4 基底压力计算
基底压力是地基和 基础在上部荷载作 用下相互作用的结 果,受荷载条件、 基础条件和地基条 件的影响
暂不考虑上部结构的影 响,用荷载代替上部结 构,使问题得以简化
•大小 荷载条件: •方向 •分布 • • • • 刚度 形状 大小 埋深
基础条件:
• 土类 地基条件: • 密度 • 土层结构等
z
B 0
dP pdxdy
L
0
d z z (p t , m, n)
y
pt
o
B
L
z K tpt
L z K t F( B, L, z ) F( , ) F( m, n) B B
x
z
M
z
矩形面积竖直三角分布荷载角点下的 应力分布系数:表3-3
矩形分布荷载的附加应力
法国数学家布辛内斯克(J. Boussinesq)1885年
推出了该问题的理论解,包括六个应力分量和三 个方向位移的表达式 教材P70~71页 其中,竖向应力z:
3P z 3 3 1 P P z K 2 5 2 5/ 2 2 2 R 2 [1 (r / z ) ] z Z
24
§3.3 附加应力
条形面积竖直均布荷载
任意点的附加应力:F氏解的应用 p
B
z K s p z x K p
s x
x y
xz K s p xz
Ks , Ks , Ks z x xz F( B , x , z ) x z F( , ) F( m, n ) B B
z
23
§3.3 附加应力
竖直线布荷载 - 弗拉曼解
- B氏解的应用
2 pz 3 z ( x 2 z 2 ) 2 2 px 2 z x ( x 2 z 2 ) 2 zx 2pxz ( x 2 z 2 ) 2
2
p
x
z
y
x
z
M
y x z
条形分布荷载的附加应力
o y z
y x 0 xy yz zx 0
x
应变条件
地基中的应力状态(3)
8
§3.1 应力状态及应力应变关系
侧限应力状态:侧向应变为零的一种应力状态 应变条件
y x 0 xy yz zx 0
xy yz zx 0 x x y z 0 E E x y z K 0 z 1
连续介质 (宏观平均) 线弹性体 (应力较小时) 均质各向同性体 (土层性质变化不大) E、与位置和方向无关
加载
线弹性
成层土 各向异性
卸载
εp
εe
理论:弹性力学解求解“弹性”土体中的应力 方法:解析方法优点:10
§3.2
自重应力
定义:在修建建筑物以前,地基中由土体本身 的有效重量而产生的应力 目的:确定土体的初始应力状态 假定:水平地基 半无限空间体 半无限弹性体 有侧限应变条件 一维问题 计算: 地下水位以上用天然容重 地下水位以下用浮容重
z
sz sx
容重: 地下水位以上用天然容重 地下水位以下用浮容重
土体的自重应力
12
§3.2 自重应力
分布规律
地面
1 H1 2 H2
地下水
1H1
sz
2H2 2H3
z
2 H3
sy
sz sx z
分布线的斜率是容重 在等容重地基中随深度呈直线分布
自重应力在成层地基中呈折线分布
x
z
M
条形面积竖直均布荷载作用时 的应力分布系数:表3-5
条形分布荷载的附加应力
25
§3.3 附加应力
条形面积其它分布荷载 P85页:表3-6 圆形面积均布荷载作用
• 圆心下的附加应力计算
z F(r / z )p K 0p
P88页:表3-9
其它荷载的附加应力
26
§3.3 附加应力
集中力作用下的 应力分布系数 查表3-1
集中荷载的附加应力
16
§3.3 附加应力
竖直集中力-布辛内斯克课题
z 3 1 P P K 2 2 [1 (r / z ) 2 ]5 / 2 z 2 Z
P
σz与α无关,呈轴 对称分布 P作用线上
在某一水平面上 在r﹥0的竖直线上 z等值线-应力泡
22
§3.3 附加应力
矩形面积水平均布荷载
角点下的垂直附加应力:C氏解的应用 B ph L
z K hph
z
L z K h F( B, L, z ) F( , ) F( m, n) B B
Z
z
矩形面积作用水平均布荷载时角 点下的应力分布系数:表3-4
矩形分布荷载的附加应力
应力泡
0.1P 0.05P 0.02P 0.01P
集中荷载的附加应力
17
§3.3 附加应力
水平集中力-西罗提课题
o
P
x
α
x
r
M β z M y
z zx
R
yz
y
xy x
y
z
3Ph xz 2 z 2 R 5
集中荷载的附加应力
18
§3.3 附加应力
矩形面积竖直均布荷载
dP pdxdy
土体的自重应力
11
§3.2 自重应力
竖直向自重应力:土体中无剪应力存在,故地基中Z深 度处的竖直向自重应力等于单位面积上的土柱重量
• 均质地基:
• 成层地基:
sz z
sz
地面
i Hi
1 H1 2 H2 3 H3 sy
地下水
水平向自重应力: sx sy K 0sz K0 1
影响土中应力分布的因素
28
§3.4 基底压力计算
上部 结构 建筑物 设计
基础结构 的外荷载
基底反力
基础
地基
基底压力
附加应力 地基沉降变形
基底压力:基础底面传递给地基表面的压
力,也称基底接触压力。
基底压力既是计算地基中附加应力的外荷
载,也是计算基础结构内力的外荷载,上 部结构自重及荷载通过基础传到地基之中
BD D • 矩形外: z ( K abcd K s K CD K s )p s s
C
A c
D
B d
矩形分布荷载的附加应力
20
例题:已知均布受荷基底面积如图 所示, 求基底下8m处M点的附加应力。 p0=100kPa。基底面积为3m×2m
21
§3.3 附加应力
矩形面积竖直三角形分布荷载
成层 均匀 E2<E1
影响土中应力分布的因素
27
§3.3 附加应力
非线性和弹塑性
• 对竖直应力计算值的影响不大 • 对水平应力有显著影响
变形模量随深度增大的地基
• 是一种连续非均质现象,在砂土地基中尤为常见 • 使应力向力的作用线附近集中
各向异性地基
• Ex/Ez<1 时,Ex相对较小,不利于应力扩散 应力集中 • Ex/Ez>1 时,Ex相对较大,有利于应力扩散 应力扩散
正应力
剪应力
顺时针为正 逆时针为负
zx
土力学
z +
x
xz
-
拉为正 压为负
-
xz
x
压为正 拉为负
逆时针为正 顺时针为负
土力学中应力符号的规定
3
§3.1 应力状态及应力应变关系
三维应力状态(一般应力状态)