运筹学总复习
运筹学复习

3.用单纯形表求解LP问题
例、用单纯形表求解LP问题
max Z 2x1 x2
5x2 15
s.t
6
x1 2x2 x1 x2
24 5
x1, x2 0
解:化标准型
max Z 2x1 x2 0x3 0x4 0x5
5x2 x3
约束系数矩阵A 约束系数矩阵转置A'
6. 弱对偶性 设X 为原问题的可行解,Y '为对偶问题的可行解,则恒有
CX Y 'b
证明: 设X ,Y '分别为原问题和对偶问题的可行解.
AX b AX b Y ' AX Y 'b
A'Y C ' Y ' A C Y 'A C Y 'AX C X
CX Y ' AX Y 'b
CX Y 'b 证毕
推论: (1) max问题(原问题)任一可行解的目标值为min问题(对 偶问题)目标值的一个下界;min问题(对偶问题)任一可行 解的目标值为max问题(原问题)目标值的一个上界。
(2)(无界性)若原问题(对偶问题)为无界解,则对偶问题 (原问题)为无可行解。
15
6
x1 2x2 x1 x2
x4 24 x5 5
x1, , x5 0
单纯形表
单纯形表结构
c j
CX
B
B
b
c1 x1 b '1
cm xm bm'
cj zj
x x x x C c12 c21 0 cm 0 0cn
1
2
m
n min
—
运筹学期末考试复习资料

《运筹学》课程综合复习资料一、判断题1.求解LP 问题时,对取值无约束的自由变量,通常令"-'=j j j x x x ,其中:0≥"'j j x x ,在用单纯形法求得的最优解中,有可能同时出现0>"'j jx x 。
答案:错2.在PERT 计算中,将最早节点时刻等于最迟节点时刻、且满足0)(),()(=--i t j i t j t E L 节点连接而成的线路是关键线路。
答案:对3.在一个随机服务系统中,当其输入过程是一普阿松流时,即有(){}()t n en t n t N P λλ-==!,则同一时间区间内,相继两名顾客到达的时间间隔是相互独立且服从参数为λ的负指数分布,即有()te t X p λλ-==.答案:对4.已知*i y 为线性规划的对偶问题的最优解,若*i y =0,说明在最优生产计划中第i 种资源一定有剩余。
答案:对5.用单纯形法求解单纯形表时,若选定唯一入基变量k x (检验数>0),但该列的1,2...m=i 0ik a ≤,则该LP 问题无解。
答案:对6.对偶单纯形法中,若选定唯一出基变量i x (i x <0),但i x 所在行的元素(系数矩阵中)全部大于或等于0,则此问题无解。
答案:对7.LP 问题的可行域是凸集。
答案:对8.动态规划实质是阶段上枚举,过程上寻优。
答案:对9.动态规划中,定义状态变量时应保证在各个阶段中所做决策的相互独立性。
答案:对10.目标规划中正偏差变量应取正值,负偏差变量应取负值。
答案:错11.LP问题的基可行解对应可行域的顶点。
答案:对12.若LP问题有两个最优解,则它一定有无穷多个最优解。
答案:对13.若线性规划的原问题有无穷多最优解,则其对偶问题也一定有无穷多最优解。
答案:对14.对偶问题的对偶问题一定是原问题。
答案:对15.对于同一个动态规划问题,逆序法与顺序法的解不一样。
《运筹学总复习》课件

难点:计算复杂度高,难以找到最优解。
生产与存储问题
问题描述:生产与存储问题是指在给定时间内,如何安排生产计划和存储策略,以最小化生产成本和存 储成本。 经典模型:经济批量模型(EOQ)、生产存储模型(P-S模型)、生产存储模型(P-S模型)等。
求解方法:动态规划、线性规划、整数规划等。
非线性规划的求解方法:非线性规划的求解方法包括梯度下降法、牛顿法、遗传算法等。
整数规划
定义:整数规划是一种特殊的线性规划,其中所有变量都必须是整数
目标函数:整数规划的目标函数通常是线性的,表示为决策变量的 线性组合 约束条件:整数规划的约束条件通常是线性的,表示为决策变量的线 性不等式或不等式 求解方法:整数规划的求解方法包括分支定界法、割平面法、遗传 算法等
MATL AB在运筹学中的应 用包括优化问题、决策问题、
排队论等
Python在运筹学中的应用
Python语言简介:一种广泛应用于科学计算、数据分析和机器学习等领域的编程语言 Python在运筹学中的应用:可以用于求解线性规划、整数规划、非线性规划等运筹学问题 Python库介绍:如scipy、numpy、pandas等,可以用于进行运筹学计算和可视化 Python代码示例:展示如何使用Python编写运筹学问题的求解代码
Gurobi优化器介绍与使用
Gurobi优化器是一款功能强大的优化工具,广泛应用于运筹学、数学规划等领域。
Gurobi优化器支持多种编程语言,如Python、C++、Java等,方便用户进行编程实 现。
Gurobi优化器提供了丰富的优化算法,如线性规划、非线性规划、整数规划等,满足 不同问题的求解需求。
《运筹学》复习资料整理总结

《运筹学》复习资料整理总结1. 建立线性规划模型的步骤。
确定决策变量 确定目标函数 确定约束条件方程2. 线性规划问题的特征。
都有一个追求的目标,这个目标可表示为一组变量的线性函数,按照问题的不同,追求的目标可以为最大,也可以为最小。
问题中有若干个约束条件,用来表示问题中的限制或要求,这些约束条件可以用线性等式或线性不等式表示。
问题中用一组决策变量来表示一种方案。
3. 线性规划问题标准型的特征。
4. 化标准型的方法。
123123123123min z 2+223-8340,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≤⎨⎪≤≥⎩为自由变量123123123123min z 2+223-634,0,x x x x x x x x x x x x =+-+=⎧⎪-+-≥⎨⎪≥⎩为自由变量5. 基本解:令其余的变量取值为0,则得到Ax=b 的一个解y,称此解为线性规划问题的基本解。
6. 基本可行解:若基本解y 满足y ≥0,则称这个解为基本可行解。
7. 可行解:满足约束条件的解x=(x1、x2、……xn )T 称为线性规划问题的可行解。
8. 最优解:函数达到最优的可行解叫做最优解。
9.图解法适合于变量个数为2个的线性规划问题。
10.单纯形法解线性规划问题如何确定初始基本可行解。
(1)约束条件为≤,先加入松弛变量x1、x2……xm后变为等式,取松弛变量为基本变量(2)约束条件为=,先加入人工变量xm+1、xm+2……xm+n,人工变量价值系数为m(3)约束条件为≥,先加入多于变量xn+1、xn+2……xm+n后变为等式,在添加人工变量xn+m+111.单纯形法最优解的检验准则。
(1)若基本可行解x’对应的典式的目标函数中非基变量的系数全部满足cN-cBB-1Pj≤0,则基本可行解x’为原问题的最优解。
(2)若基本可行解x’对应的典式的目标函数中所有非基变量的系数满足cN-cBB-1Pj≤0,且有一非基变量的系数满足Ck-Zk=0,则原问题有无穷多组最优解12.对目标函数为极小(min)型的线性规划问题,用单纯形法解的三种处理方法。
(完整word版)最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。
表示约束条件的数学式都是线性等式或不等式;(3)。
表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。
2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。
4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。
7.线性规划问题有可行解,则必有基可行解。
8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。
10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。
11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。
12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。
13.线性规划问题可分为目标函数求极大值和极小_值两类。
14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。
15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。
18。
如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。
19。
如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。
运筹学复习整理(保准管用)

1. 简答题(1) 运筹学的工作步骤提出和形成问题:即要弄清问题的目标,可能的约束,问题的可控变量以及相关的参数,搜集相关资料;建立模型:即把问题中可控变量,参数,目标与约束之间的关系用模型表示出来;求解:用各种手段将模型求解,解可以是最优解,次优解,满意解。
复杂模型的求解需用计算机,解得精度要求可有决策者提出;解的检验:首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题;解的控制:通过控制解的变化过程决定对解是否做一定的改变; 解的实施:是指将解用到实际中必须考虑的实际问题,如向实际部门讲清解的用法,在实施中可能产生的问题和修改。
(2)退化产生原因及解决办法单纯形法计算中用θ规则确定换出变量时,有时存在两个以上相同的最小比值,这样在下一次迭代中就有一个或几个基变量等于零,这就出现退化解。
勃兰特规则:1.选取cj-zj >0中下标最小的非基变量xk 为换入变量,即k=min(j |cj-zj >0)2. 当按θ规则计算存在两个和两个以上最小比值时,选取下标最小的基变量为换出变量。
(3)对偶问题的经济解释• 这说明yi 是右端项bi 每增加一个单位对目标函数Z 的贡献。
• 对偶变量 yi 在经济上表示原问题第i 种资源的边际价值。
• 对偶变量的值 yi*所表示的第i 种资源的边际价值,称为影子价值。
∑∑=====n j mi i i j j y b x c Z 11ωiiy b Z=∂∂若原问题的价值系数Cj 表示单位产值,则yi 称为影子价格; 若原问题的价值系数Cj 表示单位利润,则yi 称为影子利润。
影子价格不是资源的实际价格,而是资源配置结构的反映,是在其它数据相对稳定的条件下某种资源增加一个单位导致的目标函数值的增量变化。
(4)分枝定界法步骤a) 先求出整数规划相应的LP(即不考虑整数限制)的最优解, b) 若求得的最优解符合整数要求,则是原IP 的最优解; c) 若不满足整数条件,则任选一个不满足整数条件的变量来构造新的约束,在原可行域中剔除部分非整数解。
运筹学复习

例如:max z=3x1+4x2-2x3+5x4 s.t 4x1-x2+2x3-x4=4
x1+x2+3x3-x4≤14 -2x1+3x2-x3+2x4≥3 x1≥0,x2≥2,x3≤0,x4:unr
线性规划的图解
– 画约束直线 – 确定满足约束条件的半平面 – 所有半平面的交集—凸多边形—线性规划的
• Max z=4x1+5x2+x3 S.t 3x1+2x2+x3≥18
2x1+x2 ≤ 4 x1+x2-x3 =5
X1,x2,x3 ≥0
线形规划问题的应用
• 某车间有一批长度为180cm的钢管,且数量充足.为制造 零件的需要,要将其截成三种不同长度的管料,分别为 72cm,52cm,35cm.生产任务规定这三种不同的需要量分 别不少于100,150和100根.问如何下料才能使消耗的钢 管数量最少?试建立此问题的线形规划模型.
单纯形表的运算
Step 0 获得一个初始的单纯形表,确定基变量和非基变量
Step 1 检查基变量在目标函数中的系数是否等于0,在约束条件 中的系数是否是一个单位矩阵
Step 2 如果表中非基变量在目标函数中的系数全为负数,则已得 到最优解。停止。否则选择系数为正数且绝对值最大的变 量进基。
Step 3 如果进基变量在约束条件中的系数全为负数或0,可行域 开放,目标函数无界。停止。否则选取右边常数和正的系 数的最小比值,对应的基变量离基。
x4=0 6
x2=0 9
最优解(x1,x2,x3,x4)=(8,2,0,0)
运筹学-总复习(整理全部重点题目)-

《管理运筹学》总复习第一天:1)(★★★★★)课本Page59第5题(租赁问题):某公司在今后四个月内需租用仓库堆放物资。
已知各个月所需的仓库面积数字如下所示:设第个月签订的打算租用个月合同仓库面积为,那么这个月共有可能有如下合同:第一个月:第二个月:第三个月:第一个月:因此目标函数为:约束条件为:2)(★★★)讲义Page8例1(人力资源问题):福安商场是个中型百货商场,他对销售员的需求经过统计分析如下表。
为了保证售货人员充分的休息,售货人员每周工作5天,休息2天,并且要求休息的两天是连续的。
问如何安排售货人员的工作作息,才能做到既满足工作需要,又使配备的工作人员最少?解:设在星期开始休息的人数为,表示星期一到星期日那么,目标函数为:约束条件为:周一:周二:周三:周四:周五:周六:周日:非负约束:3)(★)【据说出题时会和整数规划相融合】讲义Page10例5(投资问题):某部门现有资金200万,今后五年内考虑给以下项目投资。
已知,项目A:从第一年到第五年都每年年初都可以投资,当年末能收回本利110%;项目B:从第一年到第四年都每年年初都可以投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万;项目C:需在第三年初投资,第五年末收回本利140%,但规定最大投资额不能超过80万;项目D:须知第二年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万;据测定每万元每次投资的风险指数如下表:1)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?2)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万的基础上使得其投资总的风险系数最小?解:设第年初投资在项目上的金额为,其中,。
第一年初:,,不能浪费资金,所以有,第一年年末收回:第二年初:,,,用第一年年末的收回投资,所以有:,第二年年末收回:第三年初:,,,用第二年年末收回投资,所以有:,第三年年末收回:第四年初:,,用第三年年末收回进行投资,所以有:,第四年年末收回:第五年初:用第四年年末回收进行投资,所以有:,第五年年末收回:同时,根据项目的要求,有:第(1)问答如下:目标函数为:约束条件为:第(2)问答如下:目标函数为:约束条件为:4)(★★★★)讲义Page11分析讨论题3(工厂布局问题):设有某种原料产地A1,A2,A3,把这种原料经过加工,制成成品,再运往销地。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1掌握最小树问题 2、熟练掌握最短有向
路问题 3、熟练掌握最大流问
题及最小费用流问题
.
三三、、第二章内容演练
• 1、化标准形:
.
.
1、
目标函数最大 决策变量非负
约束条件等式 资源限量非负
.
大题的来源:
图解法
几何意义
线性规划
求解线性规划问题 的基本方法
单纯形法
计算步骤、单纯形 表、两阶段算法
对偶单纯形法
运筹学总复习
讲解人:刁鹏
.
总览:
1、考试分值及题型分类 2、考试重点内容 3、第二章内容演练
.
一,题型分布
选择题(8个左右) 简答题(1-2) 计算题(5-6)
.
二、各章重点内容:
1、掌握线性规划的标 准型 2、掌握线性规划图解 法及几何意义 3、了解单纯形法原理 4、熟练掌握单纯形法 求解步骤 5、能运用两阶段算法 求解线性规划问题 6、掌握线性规划几种 解得性质及判定定理
7、熟练掌握原问题与 对偶问题的转化 8、运用对偶单纯形法 求解线性规划问题 9、熟练掌握灵敏度分 析
1熟练掌握分枝定 界法的基本思想和 计算步骤
.
各章重点内容:
1、掌握凸函数、凸规
划的性质 2、掌握一维搜索方法 3、熟练掌握最速下降
法
1、熟练掌握用递推法 求解最短路问题 2、用动态规划法求解 多阶段决策问题的一般 步骤
希望大家运筹学高分通过
.
.
.
判断: .
• 下面命题正确的是() • A、线性规划问题的最优解是基可行解 • B、基可行解不一定是基解 • C、线性规划一定有可行解 • D、线性规划的最优值至多有一个
.
单纯形表求解线性规划问题:
.
两阶段算法求解线性规划问题:
.
本次课程结束,谢谢聆听
注意区别
.
• 2、图解法
.
单击此处添加标题
可行域一定是凸集
最优解一定在凸集的某个顶点上
唯一最优解、无穷最优解、无界 解、无可行解
.
.
多选
• 例、线性规划的最优解在( )
• A、可行集内
B、可行集边界上
• C、可行集顶点上 D、满足其约束条件的区域上
• 例、线性规划的可行集可以( ) • A、不含任何可行解 B、只含一个可行解 • C、只含两个可行解 D、含无数可行解