运筹学试卷及答案.doc
运筹学期末试题及答案

运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。
2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。
3. 描述网络流问题中的最短路径算法,并简述其基本原理。
三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。
2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。
边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。
使用最小成本流算法求解此问题,并计算总成本。
四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。
运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。
最新运筹学试题及答案(共两套)

运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学试题及答案

运筹学试题及答案考试时间:120分钟命题人:XXX一、选择题(共60分)1. 运筹学的核心思想是:A. 尽可能地满足需求B. 确定最优决策C. 提高运营效率D. 预测未来趋势答案:B2. 下列哪个不是运筹学的应用领域?A. 生产调度B. 金融风险管理C. 市场营销D. 交通规划答案:C3. 线性规划是研究下列问题的数学方法:A. 最大化目标函数B. 最小化目标函数C. 求解等式系统D. 优化约束条件答案:D4. 整数规划是线性规划的扩展,其特点是:A. 变量只能取整数值B. 变量可以取任意实数值C. 目标函数必须是整数D. 约束条件必须是整数答案:A5. 运筹学中的最短路径问题是指:A. 在有向图中找到从起点到终点的最短路径B. 在无向图中找到连接所有节点的最短路径C. 在网络中找到连接所有节点的最短路径D. 在带权图中找到权值最小的路径答案:A二、计算题(共40分)1. 某工厂有3个生产车间,分别需要完成4个任务。
完成每个任务所需时间如下:车间1:10小时车间2:8小时车间3:6小时为了提高效率,每个车间只能同时进行一个任务。
请问应如何分配任务,才能使得所有任务完成的时间最短?答案:将任务按照时间从大到小排序分配,先将任务分配给车间1和车间2,然后再将任务分配给车间3。
具体分配如下:车间1:10小时(任务1)车间2:8小时(任务2)车间3:6小时(任务3)车间1:18小时(任务1+任务4)车间2:16小时(任务2+任务4)车间3:12小时(任务3)总时间为18小时。
2. 某物流公司需要将货物从发货仓库A送至目的地仓库B。
货物可通过3条不同的路径运送,分别需要的运输时间为:路径1:6小时路径2:8小时路径3:10小时若考虑各路径的运输成本,路径1的运输成本为100元/小时,路径2的运输成本为150元/小时,路径3的运输成本为120元/小时。
请问应如何选择路径,使得运输成本最低?答案:计算各路径的单位成本,并选择单位成本最低的路径。
运筹学模拟试卷及详细答案解析填空(含答案)

运筹学模拟试卷及详细答案解析填空(含答案)一、填空题(每题2分,共40分)1. 线性规划问题中,若决策变量为非负约束,则该约束条件可以表示为______。
2. 在线性规划中,若目标函数为最大化问题,则其标准形式中目标函数的系数应为______。
3. 线性规划问题中,若约束条件为等式约束,则该约束条件对应的松弛变量为______。
4. 在运输问题中,若产地A到销地B的运输成本为2元/吨,则对应的运输成本矩阵中的元素为______。
5. 对偶问题的最优解是原问题的______。
6. 在指派问题中,若甲完成某项工作的时间为3小时,则对应的效率矩阵中的元素为______。
7. 网络图中,若两个节点之间的距离为5,则对应的弧长为______。
8. 在排队论中,若服务时间为负指数分布,则其平均服务时间为______。
9. 随机规划问题中,目标函数和约束条件的参数都是______。
10. 在库存管理中,若每次订购成本为100元,则对应的订购成本系数为______。
11. 在动态规划中,最优策略是______。
12. 在非线性规划中,若目标函数为凹函数,则该问题为______。
13. 线性规划问题中,若目标函数为最小化问题,则其标准形式中目标函数的系数应为______。
14. 在整数规划中,若决策变量为整数变量,则该约束条件可以表示为______。
15. 在排队论中,若到达率为λ,则单位时间内的平均到达人数为______。
16. 在指派问题中,若乙完成某项工作的时间为2小时,则对应的效率矩阵中的元素为______。
17. 在运输问题中,若产地A的供应量为100吨,则对应的供应量矩阵中的元素为______。
18. 在非线性规划中,若目标函数为凸函数,则该问题为______。
19. 在动态规划中,最优子策略是______。
20. 在随机规划问题中,目标函数和约束条件的参数都是______。
二、详细答案解析1. 答案:x ≥ 0解析:线性规划问题中,决策变量通常为非负约束,表示为x ≥ 0。
大学考试试卷《运筹学》及参考答案3套.doc

2012年9月份考试运筹学第一次作业一、单项选择题(本大题共100分,共40小题,每小题2. 5分)1.•个无()、但允许多重边的图称为多重图。
A.边B.孤C.环D.路2.运筹学是一门()。
A.决策科学B.数学科学C.应用科学D.逻辑科学3.基可行解对应的基,称为()。
A.最优基B.可行基C.最优可行基D.极值基4.运筹学用()来描述问题。
A.拓补语言B.计算机语言C.机器语言D 数学语言5.隐枚墓最是省去若干目标函数不占优势的()的一种检验过程。
A.基本可行解B.最优解C.基本解D.可行解6.对偶问题与原问题研究出自()目的。
A.不同B.相似C.相反D.同一7.资源价格大于影子价格时,应该()该资源。
A.头入B.卖出C.保持现状D 借贷出8.敏房性分析假定()不变,分析参数的波动对最优解有什么影响。
A.可行基B.基本基C.非可行基D.最优基9.从系统工程或管理信息预测决辅助系统的角度来看,管理科学与()就其功能而言是等同或近似的。
A 纬汁学B:计算机辅助科学C,运筹学D.人工智能科学10.闭回路的特点不包括()。
A.每个顶点都是直角B.每行或每列有且仅有两个顶点C.每个顶点的连线都是水平的或是垂直的D.起点终点可以不同11.运输问题分布m*n矩阵表的横向约束为()。
A.供给约束B.需求约束C.以上两者都有可能C.超额约束12.动态规划综合了()和“最优化原理”。
A.一次决策方法B.二次决策方法C.系统决策方法D.分级决策方法13.线性规划问题不包括()。
A.资源优化配置B.复杂系统结构性调整C,混沌系统分析D,宏、微观经济系统优化14.运输问题分布m*n矩阵表的纵向约束为()。
A.供给约束B.需求约束C.以上两者都有可D.超额约束15.路的第一个点和最后一个点相同,称为()oA.通路B,环路C.回路D,连通路16.对偶问题与原问题研究的是()对象。
A.2种B.不同的C.1种D.相似的17.运输问题的求解方法不包括()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运
筹
学
考
卷
1 / 51 / 5
考试时间: 第十六周
题号一二三四五六七八九十总分
评卷得分
:
名
一、单项选择题。
下列每题给出的四个答案中只有一个是正确的,将表示正确
姓
答案的字母写这答题纸上。
(10 分, 每小题2 分)
1、使用人工变量法求解极大化线性规划问题时,当所有的检验数j 0 ,在
线
基变量中仍含有非零的人工变量,表明该线性规划问题()
A. 有唯一的最优解;
B. 有无穷多个最优解;
C. 无可行解;
D. 为无界解
2、对偶单纯形法解最大化线性规划问题时,每次迭代要求单纯形表中():
号
A.b 列元素不小于零B.检验数都大于零
学
C.检验数都不小于零D.检验数都不大于零
3、在产销平衡运输问题中,设产地为m 个,销地为n 个,那么基可行解中非
零变量的个数()
订
A. 不能大于(m+n-1);
B. 不能小于(m+n-1);
C. 等于(m+n-1);
D. 不确定。
4、如果要使目标规划实际实现值不超过目标值。
则相应的偏离变量应满足()
A. d 0
B. d 0
C. d 0
D. d 0,d 0
5、下列说法正确的为()
:
业
A.如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解
专
B.如果线性规划的对偶问题无可行解,则原问题也一定无可行解
装
C.在互为对偶的一对原问题与对偶问题中,不管原问题是求极大或极小,原
问题可行解的目标函数值都一定不超过其对偶问题可行解的目标函数
D.如果线性规划问题原问题有无界解,那么其对偶问题必定无可行解
:
院
学
2 / 52 / 5
二、判断下列说法是否正确。
正确的在括号内打“√”,错误的打“×”。
(18 分,每
小题2 分)
1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。
()
2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一
个基变量的值为负。
()
3、任何线性规划问题存在并具有惟一的对偶问题。
()
4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。
()5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之
一:有惟一最优解,有无穷多最优解,无界解,无可行解。
()
6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数k ,
最有调运方案将不会发生变化。
()
7、目标规划模型中,应同时包含绝对约束与目标约束。
()
8、线性规划问题是目标规划问题的一种特殊形式。
()
9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。
()
三、解答题。
(72 分)
max z 3x 3x
1 2
1、(20分)用单纯形法求解
x x
1 2
x x
1 2
4
2
;并对以下情况作灵敏度分析:(1)求
6x 2 x 18
1 2
x 0, x 0
1 2
5
c 的变化范围;(2)若右边常数向量变为2 b ,分析最优解的变化。
2
20
2、(15 分)已知线性规划问题:
max z x 2x 3x 4x
1 2 3 4
s. t. x 2x 2x 3x 20
1 2 3 4
2x x 3x 2x 20
1 2 3 4
x x x x
, , , 0
1 2 3 4
其对偶问题最优解为y1 1.2, y2 0.2 ,试根据对偶理论来求出原问题的最优解。
3 / 53 / 5
3、(15 分)用表上作业法求下表中给出的运输问题的最优解。
销地
甲乙丙丁产量
产地
Ⅰ 3 2 7 6 50
Ⅱ7 5 2 3 60
Ⅲ 2 5 4 5 25
销量60 40 20 15
4、(12分)求下表所示效率矩阵的指派问题的最小解,
工作
A B C D E 工人
甲12 7 9 7 9
乙8 9 6 6 6
丙7 17 12 14 9
丁15 14 6 6 10
戊14 10 7 10 9
min z x
1 1.5x
2
5、(10分)用大M 法求解s.t. x
1
x
1
3x
2
x
2
3
2
x
1
0, x
2
4 / 54 / 5
参考答案及评分标准( A 卷)
课程名称: 运筹学
考试时间: 2 ( 第16 周
一、单项选择题:
1-5 CDABD (每题2 分)
二、判断题:
1-5 √√√√×6-10 ××√×√(每题2 分)
三、解答题:
1、解:
加入人工变量,化问题为标准型式如下:
max z 3x 3x 0x 0x 0x
1 2 3 4 5
x x x
1 2 3
4
s.t
x x x
2
1 2 4
6x 2x x 18
1 2 5
x ,x ,x ,x ,x 0
1 2 3 4 5
(3 分)
下面用单纯形表进行计算得终表为:
c 3 3 0 0 0
j
C 基b B x x2 x3 x4 x5 1
0 x 1 0 2/3 1 0 -1/6
3
0 x 5 0 4/3 0 1 1/6
4
3 x 3 1 1/3 0 0 1/6
1
c z 0 0 0 0 -1/2
j j
(5 分)
所以原最优解为
* T
X (3,0,1,5,0) (2 分)
(1)设c2 变化,将c2 得变化带入最终单纯形表得c2 的变化范围为c2 1;
(5 分)
5
(2)若右边常数向量变为b,将变化带入最终单纯形表得:最优基解不
2
5 / 55 / 5
20
变,最优解的值由(3,0)T 变为(10/3,0)T。
(5 分)。