大学物理C课后答案
大学物理学课后习题标准答案-赵近芳-全

习题及解答(全)习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r ϖϖ-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d ϖϖ=,t v d d 是加速度a 在切向上的分量. ∵有ττϖϖ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττϖϖϖ+=式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τϖϖΘ与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r ϖϖϖ+=,jt y i t x t r a jt y i t x t r v ϖϖϖϖϖϖϖϖ222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a trv ==其二,可能是将22d d d d t r tr 与误作速度与加速度的模。
大学物理C

大学物理C 复习参考一、力学选择题1一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为 (A) t r d d (B) t r d d (C) t r d d (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 2 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中,(1) a t = d /d v , (2) v =t r d /d , (3) v =t S d /d , (4) t a t =d /d v .(A) 只有(1)、(4)是对的.(B) 只有(2)、(4)是对的.(C) 只有(2)是对的.(D) 只有(3)是对的. [ ]3某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 (A) 0221v v +=kt , (B) 0221v v +-=kt , (C) 02121v v +=kt , (D) 02121v v +-=kt [ ] 4质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) td d v . (B) . (C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ] 5水平地面上放一物体A ,它与地面间的滑动摩擦系数为μ.现加一恒力F 如图所示.欲使物体A 有最大加速度,则恒力F 与水平方向夹角θ 应满足(A) sin θ =μ. (B) cos θ =μ.(C) tg θ =μ. (D) ctg θ =μ. [ ] 6 质量为m 的物体自空中落下,它除受重力外,还受到一个与速度平方成正比的阻力的作用,比例系数为k ,k 为正值常量.该下落物体的收尾速度(即最后物体作匀速运动时的速度)将是 (A)k mg . (B) kg 2 . (C) gk . (D) gk . [ ] 7一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定. [ ]8质量分别为m 和4m 的两个质点分别以动能E 和4E 沿一直线相向运动,它们的总动量大小为 (A) 2mE 2 (B) mE 23.(C) mE 25. (D) mE 2)122(- [ ]9 一个作直线运动的物体,其速度v 与时间t 的关系曲线如图所示.设时刻t 1至t 2间外力作功为W 1 ;时刻t 2至t 3间外力作功为W 2 ;时刻t 3至t 4间外力作功为W 3 ,则(A) W 1>0,W 2<0,W 3<0.(B) W 1>0,W 2<0,W 3>0.(C) W 1=0,W 2<0,W 3>0. (D) W 1=0,W 2<0,W 3<0 [ ]10 质量为m =0.5 kg 的质点,在Oxy 坐标平面内运动,其运动方程为x =5t ,y =0.5t 2(SI ),从t =2 s 到t =4 s 这段时间内,外力对质点作的功为(A) 1.5 J . (B) 3 J .(C) 4.5 J .(D) -1.5 J . [ ]11 质量为m 的质点在外力作用下,其运动方程为 j t B i t A r ωωsin cos +=式中A 、B 、ω都是正的常量.由此可知外力在t =0到t =π/(2ω)这段时间内所作的功为(A) )(21222B A m +ω (B) )(222B A m +ω (C) )(21222B A m -ω(D) )(21222A B m -ω [ ] 12 已知两个物体A 和B 的质量以及它们的速率都不相同,若物体A 的动量在数值上比物体B 的大,则A 的动能E KA 与B 的动能E KB 之间(A) E KB 一定大于E KA . (B) E KB 一定小于E KA .(C) E KB =E KA . (D) 不能判定谁大谁小. [ ]13 A 、B 两物体的动量相等,而m A <m B ,则A 、B 两物体的动能(A) E KA <E K B . (B) E KA >E KB .(C) E KA =E K B . (D) 孰大孰小无法确定. [ ]14 一质点在力F = 5m (5 - 2t ) (SI)的作用下,t =0时从静止开始作直线运动,式中m 为质点的质量,t 为时间,则当t = 5 s 时,质点的速率为(A) 50 m ·s -1. . (B) 25 m ·s -1.(C) 0.(D) -50 m ·s -1. [ ]15 一质量为60 kg 的人起初站在一条质量为300 kg ,且正以2 m/s 的速率向湖岸驶近的小木船上,湖水是静止的,其阻力不计.现在人相对于船以一水平速率v 沿船的前进方向向河岸跳去,该人起跳后,船速减为原来的一半,v 应为(A) 2 m/s . (B) 3 m/s .(C) 5 m/s . (D) 6 m/s . [ ]16 在由两个物体组成的系统不受外力作用而发生非弹性碰撞的过程中,系统的(A) 动能和动量都守恒. (B) 动能和动量都不守恒. t(C) 动能不守恒,动量守恒. (D) 动能守恒,动量不守恒. [ ]17 一子弹以水平速度v 0射入一静止于光滑水平面上的木块后,随木块一起运动.对于这一过程正确的分析是(A) 子弹、木块组成的系统机械能守恒.(B) 子弹、木块组成的系统水平方向的动量守恒.(C) 子弹所受的冲量等于木块所受的冲量.(D) 子弹动能的减少等于木块动能的增加. [ ]18 假设卫星环绕地球中心作圆周运动,则在运动过程中,卫星对地球中心的(A) 角动量守恒,动能也守恒.(B) 角动量守恒,动能不守恒.(C) 角动量不守恒,动能守恒.(D) 角动量不守恒,动量也不守恒.(E) 角动量守恒,动量也守恒. [ ]19 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大. (C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]20一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. [ ] 21 一轻绳绕在有水平轴的定滑轮上,滑轮的转动惯量为J ,绳下端挂一物体.物体所受重力为P ,滑轮的角加速度为β.若将物体去掉而以与P 相等的力直接向下拉绳子,滑轮的角加速度β将(A) 不变. (B) 变小.(C) 变大. (D) 如何变化无法判断. [ ]22 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为 (A) 31ω0. (B) ()3/1 ω0. (C) 3 ω0. (D) 3 ω0. [ ] 23 一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A) 动量守恒.(B) 机械能守恒.(C) 对转轴的角动量守恒.(D) 动量、机械能和角动量都守恒.(E) 动量、机械能和角动量都不守恒. [ ]24 质量为m 的小孩站在半径为R 的水平平台边缘上.平台可以绕通过其中心的竖直光滑固定轴自由转动,转动惯量为J .平台和小孩开始时均静止.当小孩突然以相对于地面为v 的速率在台边缘沿逆时针转向走动时,则此平台相对地面旋转的角速度和旋转方向分别为19 20(A) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,顺时针. (B) ⎪⎭⎫ ⎝⎛=R J mR v 2ω,逆时针. (C) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,顺时针. (D) ⎪⎭⎫ ⎝⎛+=R mR J mR v 22ω,逆时针. [ ] 25 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒.(B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]一.答案:1-5 DDCDC6-10 AABCB11-15 CDBCD16-20 CBAAC21-25 CDCAC二.波1.机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则(A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播.2.一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s .3. 已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a .4. 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如图.则该时刻 (A) A 点振动速度大于零. (B) B 点静止不动.(C) C 点向下运动. (D) D 点振动速度小于零.5. 若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B .6. 在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定 (A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.7. 一横波沿绳子传播时, 波的表达式为 )104cos(05.0t x y π-π= (SI),则(A) 其波长为0.5 m . (B) 波速为5 m/s .(C) 波速为25 m/s . (D) 频率为2 Hz .8.频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .(C) 0.5 m . (D) 0.25 m .9. 如图所示,一平面简谐波沿x 轴正向传播,已知P 点的振动方程为)cos(0φω+=t A y ,则波的表达式为(A) }]/)([cos{0φω+--=u l x t A y . (B) })]/([cos{0φω+-=u x t A y . (C) )/(cos u x t A y -=ω. (D) }]/)([cos{0φω+-+=u l x t A y .10. 图示一简谐波在t = 0时刻的波形图,波速 u = 200m/s ,则P 处质点的振动速度表达式为 (A) )2cos(2.0π-ππ-=t v (SI).(B) )cos(2.0π-ππ-=t v (SI). (C) )2/2cos(2.0π-ππ=t v (SI). (D) )2/3cos(2.0π-ππ=t v (SI).11. 一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2= λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 312.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.13. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处,则它的能量是(A) 动能为零,势能最大. (B) 动能为零,势能为零.(C) 动能最大,势能最大. (D) 动能最大,势能为零.14. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A) 它的动能转换成势能.(B) 它的势能转换成动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大.(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小.15. 图示一平面简谐机械波在t 时刻的波形曲线.若此时A 点处媒质质元的振动动能在增大,则(A) A 点处质元的弹性势能在减小. (B) 波沿x 轴负方向传播.(C) B 点处质元的振动动能在减小.(D) 各点的波的能量密度都不随时间变化.16. 如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.17. 在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4.二.答案1B 2C 3D 4D 5C 6A 7A 8C 9A 10A11A 12C 13B 14D 15B 16D 17C三、电场和磁场1. 在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为:(A) 2012a Q επ. (B) 206a Q επ. (C) 203a Q επ. (D) 20aQ επ.2. 一电场强度为E 的均匀电场,E 的方向与沿x 轴正向,如图所示.则通过图中一半径为R 的半球面的电场强度通量为(A) πR 2E . (B) πR 2E / 2.(C) 2πR 2E .(D) 0.3. 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,有一电荷为q 的正点电荷,如图所示,则通过该平面的电场强度通量为(A) 03εq . (B)4επq(C) 03επq . (D) 06εq4. 半径为R 的均匀带电球面的静电场中各点的电场强度的大小E 与距球心的距离r 之间的关系曲线为:5. 静电场中某点电势的数值等于(A)试验电荷q 0置于该点时具有的电势能.(B)单位试验电荷置于该点时具有的电势能.(C)单位正电荷置于该点时具有的电势能.(B) 把单位正电荷从该点移到电势零点外力所作的功6. 在点电荷+q 的电场中,若取图中P 点处为电势零点 ,则M 点的电势为(A) a q 04επ. (B) aq 08επ. (C) a q 04επ-. (D) a q 08επ-.7. 如图所示,边长为l 的正方形,在其四个顶点上各放有等量的点电荷.若正方形中心O 处的场强值和电势值都等于零,则:(A) 顶点a 、b 、c 、d 处都是正电荷. (B) 顶点a 、b 处是正电荷,c 、d 处是负电荷. (C) 顶点a 、c 处是正电荷,b 、d 处是负电荷. (D) 顶点a 、b 、c 、d 处都是负电荷.8. 如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,rQ U 04επ=. (B) E =0,R Q U 04επ=. q E O r (D) E ∝1/r 2b a(C) 204r Q E επ=,rQ U 04επ= . (D) 204r Q E επ=,R Q U 04επ=.9. 图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . (B) E A <E B <E C ,U A <U B <U C .(C) E A >E B >E C ,U A <U B <U C .(D) E A <E B <E C ,U A >U B >U C .10. 一带正电荷的物体M ,靠近一原不带电的金属导体N ,N 的左端感生出负电荷,右端感生出正电荷.若将N 的左端接地,如图所示,则(A) N 上有负电荷入地.(B) N 上有正电荷入地.(C ) N 上的电荷不动.(D) N 上所有电荷都入地.11. 图示一均匀带电球体,总电荷为+Q ,其外部同心地罩一内、外半径分别为r 1、r 2的金属球壳.设无穷远处为电势零点,则在球壳内半径为r 的P 点处的场强和电势为:(A) 204r Q E επ=,rQ U 04επ=. (B) 0=E , 104r Q U επ= (C) 0=E ,rQ U 04επ=. (D) 0=E ,204r Q U επ=.12. 两个半径相同的金属球,一为空心,一为实心,把两者各自孤立时的电容值加以比较,则(A) 空心球电容值大. (B) 实心球电容值大.(C) 两球电容值相等. (D) 大小关系无法确定.13. 一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距离拉大,则两极板间的电势差U 12、电场强度的大小E 、电场能量W 将发生如下变化:(A) U 12减小,E 减小,W 减小.(B) U 12增大,E 增大,W 增大.(C) U 12增大,E 不变,W 增大.(D) U 12减小,E 不变,W 不变.14. 真空中有“孤立的”均匀带电球体和一均匀带电球面,如果它们的半径和所带的电荷都相等.则它们的静电能之间的关系是(A) 球体的静电能等于球面的静电能.(B) 球体的静电能大于球面的静电能.(C) 球体的静电能小于球面的静电能.(D) 球体内的静电能大于球面内的静电能,球体外的静电能小于球面外的静电能.15. 如图,边长为a 的正方形的四个角上固定有四个电荷均为q 的点电荷.此正方形以角速度ω 绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度ω 绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为(A) B1 = B 2. (B) B 1 = 2B 2. (C) B 1 = 21B 2. (D) B 1= B 2 /4.16. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为(A)l I π420μ. (B) l I π220μ. (C) l I π02μ. (D) 以上均不对.17. 通有电流I 的无限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的大小B P ,B Q ,B O 间的关系为:(A) B P > B Q >B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .18. 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感强度为(A) R 140πμ. (B) R120πμ.(C) 0. (D) R 140μ.19. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中哪一个是正确的? (A) I l H L 2d 1=⎰⋅ . (B)I l H L =⎰⋅2d (C) I l H L -=⎰⋅3d . (D)I l H L -=⎰⋅4d .20. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动轨道所围的面积内的磁通量将 (A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2.(C) 正比于B ,反比于v . (D) 反比于B ,反比于v . C q421. 四条皆垂直于纸面的载流细长直导线,每条中的电流皆为I .这四条导线被纸面截得的断面,如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示.则在图中正方形中心点O 的磁感强度的大小为 (A) I a B π=02μ. (B) I aB 2π=02μ. (C) B = 0. (D) I a B π=0μ.22. 无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A) R Iπ20μ. (B) RI 40μ. (C) 0. (D) )11(20π-R I μ. (E) )11(40π+R I μ.23. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺线管,两螺线管单位长度上的匝数相等.设R = 2r ,则两螺线管中的磁感强度大小B R 和B r 应满足:(A) B R = 2 B r . (B) B R = B r .(C) 2B R = B r . (D) B R = 4 B r .三.答案1. C2. D3. D4. B5. C6. D7. C8. B9. D 10. B11. D 12. C 13. C 14. B 15. C 16. A 17. D 18. D 19. D 20. B 21 C 22. D 23. B四、电磁感应I1. 如图所示,一矩形金属线框,以速度v 从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)2. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向.(C) 线圈中感应电流为逆时针方向.(D) 线圈中感应电流方向不确定.3. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将(A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.(C) 对磁场不起作用. (D) 使铜板中磁场反向.4. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是(A) 线圈绕自身直径轴转动,轴与磁场方向平行.(B) 线圈绕自身直径轴转动,轴与磁场方向垂直.(C) 线圈平面垂直于磁场并沿垂直磁场方向平移.(D) 线圈平面平行于磁场并沿垂直磁场方向平移.5. 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角 =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关.6. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势.(B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大.(D) 两环中感应电动势相等.B I O(D)IO(C)O (B)II7. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.(C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ]8. 在两个永久磁极中间放置一圆形线圈,线圈的大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择下列哪一个方法?(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度. (C) 把线圈向上平移.(D) 把线圈向右平移.9. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场B 中,另一半位于磁场之外,如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.(C) 线环向左平移. (D) 磁场强度减弱.10. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A) 载流螺线管向线圈靠近.(B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯.11. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为(A) 2abB | cos ω t |. (B) ω abB(C)t abB ωωcos 21. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |.12. 如图所示,导体棒AB 在均匀磁场B 中 绕通过C 点的垂直于棒长且沿磁场方向的轴OO ' 转动(角速度ω 与B 同方向),BC 的长度为棒长的31,则 (A) A 点比B 点电势高. (B) A 点与B 点电势相等.(B) A 点比B 点电势低. (D) 有稳恒电流从A 点流向B 点.b c d b c d bc d v v v ⅠⅢⅡ I O ′S N O iBi I O B a b ωO O ′ B B A C13. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. 14. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B 平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势E 和a 、c 两点间的电势差U a – U c 为 (A) E =0,U a – U c =221l B ω. (B) E =0,U a – U c =221l B ω-. (C) E =2l B ω,U a – U c =221l B ω. (D) E =2l B ω,U a – U c =221l B ω-. 15.圆铜盘水平放置在均匀磁场中,B 的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动.(C) 铜盘上产生涡流.(D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.(E) 铜盘上有感应电动势产生,铜盘中心处电势最高.16. 一根长度为L 的铜棒,在均匀磁场 B 中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图所示.设t =0时,铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),则在任一时刻t 这根铜棒两端之间的感应电动势是: (A) )cos(2θωω+t B L . (B) t B L ωωcos 212. (C) )cos(22θωω+t B L . (D) B L 2ω.(F) B L 221ω.17. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(C) 两线圈中电流方向相反.18. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.l b a v α B a bc l ω BOB ω L O θ b(B) 两线圈平面都垂直于两圆心连线.(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反.19. 用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m = (A) 只适用于无限长密绕螺线管.(B) 只适用于单匝圆线圈.(C) 只适用于一个匝数很多,且密绕的螺绕环.(E) 适用于自感系数L一定的任意线圈.20. 两根很长的平行直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截面的半径均为r 0.设用L 表示两导线回路单位长度的自感系数,则沿导线单位长度的空间内的总磁能W m 为(A)221LI . (B) 221LI ⎰∞+π-+0d π2])(2π2[2002r r r r d I r I I μμ (C) ∞.(D) 221LI 020ln 2r d I π+μ21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21aI πμμ (B) 200)2(21a I πμμ (C) 20)2(21Ia μπ (D) 200)2(21a I μμ四.答案1C 2B 3B4B5A 6D7B8C9C10B11D12 A13D14 B15 D16 E17C 18C19D 20A21B五、波动光学1. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为(A) 1.5 λ. (B) 1.5 λ/ n .(C) 1.5 n λ. (D) 3 λ.2. 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图所示,若薄膜的厚度为e ,且n 1<n 2>n 3,λ1为入射光在n 1中的波长,则两束反射光的光程差为 (A) 2n 2e . (B) 2n 2 e - λ1 / (2n 1). (C) 2n 2 e - n 1 λ1 / 2. (D) 2n 2 e - n 2 λ1 / 2.n 1n 23入射光反射光1反射光2eI I d 2r 03. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等.(B) 传播的路程相等,走过的光程不相等.(C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.4. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 使两缝的间距变小.(C) 把两个缝的宽度稍微调窄.(D) 改用波长较小的单色光源.6. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹.若将缝S 2盖住,并在S 1 S 2连线的垂直平分面处放一高折射率介质反射面M ,如图所示,则此时 (A) P 点处仍为明条纹. (B) P 点处为暗条纹.(C) 不能确定P 点处是明条纹还是暗条纹.(D) 无干涉条纹.7. 在双缝干涉实验中,光的波长为600 nm (1 nm =10-9 m ),双缝间距为2 mm ,双缝与屏的间距为300 cm .在屏上形成的干涉图样的明条纹间距为(A) 0.45 mm . (B) 0.9 mm .(C) 1.2 mm (D) 3.1 mm .8. 在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一个缝,若玻璃纸中光程比相同厚度的空气的光程大2.5 λ,则屏上原来的明纹处(A) 仍为明条纹; (B) 变为暗条纹;(C) 既非明纹也非暗纹; (D) 无法确定是明纹,还是暗纹.9. 在图示三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为 (A) 全明. (B) 全暗. (C) 右半部明,左半部暗. (D) 右半部暗,左半部明.10. 一束波长为λ的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为(A) λ / 4 . (B) λ / (4n ).(C) λ / 2 . (D) λ / (2n ).图中数字为各处的折射11. 若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹(A) 中心暗斑变成亮斑. (B) 变疏.(C) 变密. (D) 间距不变.12. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分(A) 凸起,且高度为λ / 4.(B) 凸起,且高度为λ / 2. (C) 凹陷,且深度为λ / 2. (D) 凹陷,且深度为λ / 4.13. 如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A) 向右平移. (B) 向中心收缩.(C) 向外扩张. (D) 静止不动. (E) 向左平移.14. 在迈克耳孙干涉仪的一条光路中,放入一折射率为n ,厚度为d 的透明薄片,放入后,这条光路的光程改变了(A) 2 ( n -1 ) d . (B) 2nd .(C) 2 ( n -1 ) d +λ / 2. (D) nd .(F) ( n -1 ) d .15. 在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A) 2 个. (B) 4 个.(C) 6 个. (D) 8 个.16. 一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .17. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的(A) 振动振幅之和. (B) 光强之和.(C) 振动振幅之和的平方. (D) 振动的相干叠加.18. 波长为λ的单色平行光垂直入射到一狭缝上,若第一级暗纹的位置对应的衍射角为θ=±π / 6,则缝宽的大小为(A) λ / 2. (B) λ.。
大学物理C-练习三静电场答案

练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S 为闭合曲面,则通过该闭合曲面的电场强度通量sE dS ⎰r r g Ñ=____120()q q ε+________,式中的E r是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Q a πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______2λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04Q Rπε_______.5.在点电荷q 的电场中,把一个-×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功×10-5 J ,则该点电荷q =_____ -2×10-7C___________.(真空介电常量0=×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qq rπε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,3q •SA q • 1q •2q •1q • 1q •则电场力所作的_______06q Rπε______________。
大学物理教程课后习题答案

物理部分课后习题答案(标有红色记号的为老师让看的题)27页 1-2 1-4 1-121-2 质点的运动方程为22,(1)x t y t ==-,,x y 都以米为单位,t 以秒为单位,求:(1) 质点的运动轨迹;(2) 从1t s =到2t s =质点的位移的大小; (3) 2t s =时,质点的速度和加速度。
解:(1)由运动方程消去时间t 可得轨迹方程,将t =21)y =或 1=(2)将1t s =和2t s =代入,有11r i =, 241r i j =+213r r r i j =-=-位移的大小231r =+=(3) 2x dxv t dt== 2(1)y dy v t dt==-22(1)v ti t j =+-2xx dv a dt==, 2y y dv a dt == 22a i j =+当2t s =时,速度和加速度分别为42/v i j m s =+22a i j =+ m/s 21-4 设质点的运动方程为cos sin ()r R ti R t j SI ωω=+,式中的R 、ω均为常量。
求(1)质点的速度;(2)速率的变化率。
解 (1)质点的速度为sin cos d rv R ti R t j dtωωωω==-+ (2)质点的速率为v R ω==速率的变化率为0dv dt= 1-12 质点沿半径为R 的圆周运动,其运动规律为232()t SI θ=+。
求质点在t 时刻的法向加速度n a 的大小和角加速度β的大小。
解 由于 4d t dtθω== 质点在t 时刻的法向加速度n a 的大小为2216n a R Rt ω==角加速度β的大小为 24/d rad s dtωβ==77页2-15, 2-30, 2-34,2-15 设作用于质量1m kg =的物体上的力63()F t SI =+,如果物体在这一力作用下,由静止开始沿直线运动,求在0到2.0s 的时间内力F 对物体的冲量。
《大学物理C1(上、下)》练习册及答案

大学物理C(上、下)练习册✧质点动力学✧刚体定轴转动✧静电场电场强度✧电势静电场中的导体✧稳恒磁场✧电磁感应✧波动、振动✧光的干涉✧光的衍射注:本习题详细答案,结课后由老师发放一、质点动力学一、选择题1. 以下几种运动形式中,加速度a保持不变的运动是:(A )单摆的运动; (B )匀速率圆周运动;(C )行星的椭圆轨道运动; (D )抛体运动 。
[ ] 2. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2 R /T , 2 R/T . (B) 0 , 2 R /T(C) 0 , 0. (D) 2 R /T , 0. [ ]3. 质点作曲线运动,r表示位置矢量,v 表示速度,a 表示加速度,S 表示路程,a 表示切向加速度,下列表达式中, (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v.(A) 只有(1)、(4)是对的. (B) 只有(2)、(4)是对的. (C) 只有(2)是对的. (D) 只有(3)是对的. [ ]4. 一运动质点在某瞬时位于矢径r的端点处,其速度大小的表达式为(A )t d dr ; (B )dt r d ; (C )dt r d || ; (D )222dt dz dt dy dt dx ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛[ ] 5. 质点作半径为R 的变速圆周运动时的加速度大小为(v 表示任一时刻质点的速率)(A) t d d v . (B)2V R.(C) R t 2d d v v +. (D) 2/1242d d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛R t v v . [ ]6. 质量为m的质点,以不变速率v沿图中正三角形ABC的水平光滑轨道运动.质点越过A角时,轨道作用于质点的冲量的大小为(A) mv. (B).(C) . (D) 2mv.[]7. 在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A) 总动量守恒.(B) 总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒.(C) 总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒.(D) 总动量在任何方向的分量均不守恒.[]8. 一炮弹由于特殊原因在水平飞行过程中,突然炸裂成两块,其中一块作自由下落,则另一块着地点(飞行过程中阻力不计)(A) 比原来更远. (B) 比原来更近.(C) 仍和原来一样远. (D) 条件不足,不能判定.[]9. 如图,在光滑水平地面上放着一辆小车,车上左端放着一只箱子,今用同样的水平恒力F拉箱子,使它由小车的左端达到右端,一次小车被固定在水平地面上,另一次小车没有固定.试以水平地面为参照系,判断下列结论中正确的是(A)在两种情况下,F做的功相等.(B)在两种情况下,摩擦力对箱子做的功相等.(C)在两种情况下,箱子获得的动能相等.(D)在两种情况下,由于摩擦而产生的热相等.[]10. 质量为m的一艘宇宙飞船关闭发动机返回地球时,可认为该飞船只在地球的引力场中运动.已知地球质量为M,万有引力恒量为G,则当它从距地球中心R 1处下降到R 2处时,飞船增加的动能应等于(A)2R GMm(B)22R GMm(C) 2121R R R R GMm - (D) 2121R R R GMm - (E) 222121R R R R GMm -[ ]二 填空11. 灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = .12. 质量分别为m 1、m 2、m 3的三个物体A 、B 、C ,用一根细绳和两根轻弹簧连接并悬于固定点O ,如图.取向下为x 轴正向,开始时系统处于平衡状态,后将细绳剪断,则在刚剪断瞬时,物体B 的加速度B a=_______;物体A 的加速度A a=______.13. 两个相互作用的物体A 和B ,无摩擦地在一条水平直线上运动.物体A 的动量是时间的函数,表达式为 P A = P 0 – b t ,式中P 0 、b 分别为正值常量,t是时间.在下列两种情况下,写出物体B 的动量作为时间函数的表达式:(1) 开始时,若B 静止,则 P B 1=__________________; (2) 开始时,若B的动量为 – P 0,则P B 2 = _____________.三、计算题14. 有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度;(3) 第2秒内的路程.15. 质量为m的子弹以速度v 0水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为K,忽略子弹的重力,求:(1) 子弹射入沙土后,速度随时间变化的函数式;(2) 子弹进入沙土的最大深度.16. 一人从10 m深的井中提水.起始时桶中装有10 kg的水,桶的质量为1 kg,由于水桶漏水,每升高1 m要漏去0.2 kg的水.求水桶匀速地从井中提到井口,人所作的功.二、刚体定轴转动一、选择题1. 人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的 (A)动量不守恒,动能守恒. (B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒. [ ] 2. 一质点作匀速率圆周运动时,(A) 它的动量不变,对圆心的角动量也不变. (B) 它的动量不变,对圆心的角动量不断改变. (C) 它的动量不断改变,对圆心的角动量不变.(D) 它的动量不断改变,对圆心的角动量也不断改变. [ ] 3. 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为 A 和 B ,不计滑轮轴的摩擦,则有(A) A = B . (B) A > B .(C) A < B . (D) 开始时 A = B ,以后 A < B .[ ] 4. 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度(A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为 0.然后她将两臂收回,使转动惯量减少为31J 0.这时她转动的角速度变为(A) 310. (B) ()3/1 0.(C) 3 0. (D) 3 0. [ ] 6. 如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统(A) 只有机械能守恒. (B) 只有动量守恒. (C) 只有对转轴O 的角动量守恒.(D) 机械能、动量和角动量均守恒. [ ]二、填空题7. 在光滑的水平面上,一根长L =2 m 的绳子,一端固定于O 点,另一端系一质量m =0.5 kg 的物体.开始时,物体位于位置A ,OA 间距离d =0.5 m ,绳子处于松弛状态.现在使物体以初速度v A =4 m ·s 1垂直于OA 向右滑动,如图所示.设以后的运动中物体到达位置B ,此时物体速度的方向与绳垂直.则此时刻物体对O点的角动量的大小L B =____________,物体速 度的大小v =__________________.8. 如图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动.今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的____________________守恒,原因是______________________.木球被击中后棒和球升高的过程中,木球、子弹、细棒、地球系统的__________守恒.三、计算题9. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系.10. 一长为1 m 的均匀直棒可绕过其一端且与棒垂直的水平光滑固定轴转动.抬起另一端使棒向上与水平面成60°,然后无初转速地将棒释放.已知棒对轴的转动惯量为231ml ,其中m 和l 分别为棒的质量和长度.求:(1) 放手时棒的角加速度; (2) 棒转到水平位置时的角加速度.11. 如图所示,A和B两飞轮的轴杆在同一中心线kg·m2.开始时,A轮转速为600 rev/min,B轮静止.C为摩擦啮合器,其转动惯量可忽略不计.A、B分别与C的左、右两个组件相连,当C的左右组件啮合时,B轮得到加速而A轮减速,直到两轮的转速相等为止.设轴光滑,求:(1) 两轮啮合后的转速n;(2) 两轮各自所受的冲量矩.三、静电场 电场强度一、选择题1. 高斯定理 ⎰⎰⋅=VSV S E 0/d d ερ(A) 适用于任何静电场. (B) 只适用于真空中的静电场. (C) 只适用于具有球对称性、轴对称性和平面对称性的静电场.(D) 只适用于虽然不具有(C)中所述的对称性、但可以找到合适的高斯面的静电场. []2.如图所示,一个电荷为q 的点电荷位于立方体的A角上,则通过侧面abcd 的电场强度通量等于:(A) 06εq . (B) 012εq .(C) 024εq . (D) 048εq . [ ]3. 电荷面密度均为+ 的两块“无限大”均匀带电的平行平板如图放置,其周围空间各点电场强度E随位置坐标x 变化的关系曲线为:(设场强方向向右为正、向左为负) [ ]02εx4. 将一个试验电荷q 0 (正电荷)放在带有负电荷的大导体附近P 点处(如图),测得它所受的力为F .若考虑到电荷q 0不是足够小,则(A) F / q 0比P 点处原先的场强数值大. (B) F / q 0比P 点处原先的场强数值小. (C) F / q 0等于P 点处原先场强的数值.(D) F / q 0与P 点处原先场强的数值哪个大无法确定. [ ] 5. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为1和 2,则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小E 为:(A) r0212ελλπ+. (B) 20210122R R ελελπ+π(C) 1012R ελπ. (D) 0. []6. 点电荷Q 被曲面S 所包围 , 从无穷远处引入另一点电荷q 至曲面外一点,如图所示,则引入前后:(A) 曲面S 的电场强度通量不变,曲面上各点场强不变. (B) 曲面S 的电场强度通量变化,曲面上各点场强不变. (C) 曲面S 的电场强度通量变化,曲面上各点场强变化. (D) 曲面S 的电场强度通量不变,曲面上各点场强变化. [ ]7. 根据高斯定理的数学表达式⎰∑⋅=Sq S E 0/d ε可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零. (B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.P+q 0(D) 闭合面上各点场强均为零时,闭合面内一定处处无电 [ ] 二、填空题7. 三个平行的“无限大”均匀带电平面,其电荷面密度都是+ ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_________,E D =___________ (设方向向右为正).8. 一半径为R 的带有一缺口的细圆环,缺口长度为d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E =__________________ __________,场强方向为______________________.9. 如图所示,真空中两个正点电荷Q ,相距2R .若以其中一点电荷所在处O 点为中心,以R 为半径作高斯球面S ,则通过该球面的电场强度通量=______________;若以 0r表示高斯面外法线方向的单位矢量,则高斯面上a 、b 两点的电场强度分别为________________________. 三、计算题10. 带电细线弯成半径为R 的半圆形,电荷线密度为 = 0sin ,式中 0为一常数, 为半径R 与x 轴所成的夹角,如图所示.试求环心O 处的电场强度.11.图中虚线所示为一立方形的高斯面,已知空间的场强分布为:E x =bx , E y+σ+σ+σABCD=0,E z=0.求立方体六个面的电场强度通量。
大学物理实验c思考题部分答案2

⼤学物理实验c思考题部分答案2物体密度测量1、⽤天平称得物体在空⽓中的质量为M ,若⼿提物体全部浸没在⽔中(⽔的密度 0ρ)时的质量为m ,则此时电⼦天平显⽰的数值是多少?如果⼿不提着物体,让物体沉⼊⽔中,此时电⼦天平显⽰的数值⼜是多少?(假设烧杯及⽔的质量为M 0) 10%答:若⼿提物体时:M 0+(M-m) (5分)⼿不提着物体时:M 0+M (5分)2、⽤数字显⽰仪表(如电⼦天平)测量物理量时,连续记下⼀定时间间隔的各个显⽰值。
如各个显⽰值不同是否为偶然误差?如各个显⽰值相同是否认为没有误差。
10%答:如各个显⽰值不同是为偶然误差。
(5分)如各个显⽰值相同不能认为没有误差。
(5分)扭摆法测物体转动惯量1、物体的转动惯量与哪些因素有关? 10%答:转动惯量与物体质量、转轴的位置和质量分布(即形状、⼤⼩和密度分布)有关。
(10分)2、实验过程中要进⾏多次重复测量对每⼀次摆⾓应做如何处理? 10%答:为了降低实验时由于摆动⾓度变化过⼤带来的系统误差,在测定各种物体的摆动周期时,摆⾓不宜过⼩、也不宜变化过⼤,整个测量过程宜使摆⾓在900左右。
(10分)静电场描绘1、⽤电流场模拟静电场的条件是什么? 10%答:⼏何形态完全⼀样,物理表达式⼀样,边界条件⼀样。
(10分)2、如果电源电压Ua 减⼩⼀倍,等位线和电⼒线的形状是否发⽣变化?电场强度和电位分布是否发⽣变化?为什么? 10%答:如果电源电压Ua 减⼩⼀倍,等位线和电⼒线的形状没有发⽣变化。
(3分)电场强度和电位分布发⽣变化。
(3分)因为根据物理表达式rr r uE a ba r 1ln ?=,可以得出同⼀位置电场强度也减⼩⼀倍,等电位分布也变得更稀疏。
(4分)惠斯登电桥研究1、电桥灵敏度是否越⾼越好?哪些量关系到电桥灵敏度?答:不是。
与电桥灵敏度S 相关的物理量有:电源电压⼤⼩、桥臂电阻⼤⼩、桥臂电阻⼤⼩分配⽐例、监测仪表的灵敏度和内阻。
大学物理课后习题答案(高教版共三册)
⼤学物理课后习题答案(⾼教版共三册)第⼆章动量及其守恒定律1、⼀质点的运动轨迹如图所⽰,已知质点的质量为20g ,在A 、B ⼆位置处的速率都为20m/s ,A v与 x 轴成045⾓,B v垂直于 y 轴,求质点由A 点到B 点这段时间内,作⽤在质点上外⼒的总冲量?解:由动量定理知质点所受外⼒的总冲量I =12v v v m m m )(由A →B A B Ax Bx x m m m m I v v v v cos45°=-0.683 kg·m·s 1 1分I y =0m v Ay = m v A sin45°= 0.283 kg·m·s 1I =s N 739.022y x I I 3分⽅向: 11/tg x y I I 202.5° ( 1为与x 轴正向夹⾓) 1分2、质量为m 的物体,以初速0v 从地⾯抛出,抛射⾓030 ,如忽略空⽓阻⼒,则从抛出到刚要接触地⾯的过程中,物体动量增量的⼤⼩为多少?物体动量增量的⽅向如何?解:由斜⾯运动可知,落地速度⼤⼩与抛出速度⼤⼩相等,⽅向斜向下,与X 轴正向夹⾓为300,所以,动量增量⼤⼩:0030sin 2mv mv mv动量增量的⽅向竖直向下3、设作⽤在质量为1kg 的物体上的⼒F =6t +3(SI ).如果物体在这⼀⼒的作⽤下,由静⽌开始沿直线运动,在0到2.0 s 的时间间隔内,这个⼒作⽤在物体上的冲量⼤⼩为多少? 解:I=Fdt =.20)36(dt t =(3t 2+3t)0.20=3 2.02+3 2.0=18(S N )A vxyOBA4、⼀个质量为m 的质点,沿x 轴作直线运动,受到的作⽤⼒为i F Ft cos 0 (SI),0t 时刻,质点的位置坐标为0x ,初速度00 v,求质点的位置坐标和时间的关系式?解:由⽜顿第⼆定律tm F dt dx v tdtm F dv dtdv mt F dt v d m a m F t vsin cos cos 00000 ⼜有故tdt m F dx txx sin 000则: t m Fx xcos 1005、电动列车⾏驶时每千克质量所受的阻⼒N v F 2210)5.05.2( ,式中,v 为列车速度,以s m /计。
大学物理C-04热学练习题答案
练 习 四 热 学一、填空题1.质量为M ,摩尔质量为mol M ,分子数密度为n 的理想气体,处于平衡态时,状态方程为___RT M MpV mol=___,状态方程的另一形式为___nkT p =___,其中k 称为____玻尔兹曼___常数。
2.两种不同种类的理想气体,其分子的平均平动动能相等,但分子数密度不同,则它们的温度 相同 ,压强 不同 ;如果它们的温度、压强相同,但体积不同,则它们的分子数密度 相同 ,单位体积的气体质量 不同 ,单位体积的分子平动动能 相同 。
(填“相同”或“不同”)。
3. 宏观量温度T 与气体分子的平均平动动能ω的关系为ω=___kT 23_,因此,气体的温度是__气体分子的平均平动动能__的量度。
4.设氮气为刚性分子组成的理想气体,其分子的平动自由度数为__3___,转动自由度为___2___。
5.2mol 氢气,在温度为27℃时,它的分子平动动能为 7479J ,分子转动动能为 4986J 。
6.1mol 氧气和2mol 氮气组成混合气体,在标准状态下,氧分子的平均能量为__211042.9-⨯__,氮分子的平均能量为_211042.9-⨯__;氧气与氮气的内能之比为__1:2__。
7.)(v f 为麦克斯韦速率分布函数,⎰∞pv dv v f )(的物理意义是__速率在p υ以上的分子数占总分子数的百分比__,⎰∞02)(2dv v f mv 的物理意义是____分子平均平动动能___,速率分布函数归一化条件的数学表达式为____1d )(0=⎰∞υυf ____,其物理意义是__速率在∞~0内的分子数占总分子数的百分之百____。
8.同一温度下的氢气和氧气的速率分布曲线如右图所示,其中曲线1为__氧气_的速率分布曲线,___氢气___的最概然速率较大(填“氢气”或“氧气”)。
若图中曲线表示同一种气体不同温度时的速率分布曲线,温度分别为T 1和T 2且T 1<T 2;则曲线1代表温度为__ T 1__的分布曲线(填T 1或T 2)。
大学物理C练习三静电场答案
练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S为闭合曲面,则通过该闭合曲面的电场强度通量s E dS ⎰=____120()q q ε+________,式中的E 是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Qa πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______02λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04QR πε_______.5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qqr πε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______06qR πε______________。
二、选择题1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。
大学物理智慧树知到课后章节答案2023年下三峡大学
大学物理智慧树知到课后章节答案2023年下三峡大学第一章测试1.某质点的运动方程为x=3t-5t3+6(SI),则该质点作( )。
A:变加速直线运动,加速度沿x轴正方向。
B:匀加速直线运动,加速度沿x轴负方向。
C:匀加速直线运动,加速度沿x轴正方向。
D:变加速直线运动,加速度沿x轴负方向。
答案:变加速直线运动,加速度沿x轴负方向。
2.一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度()。
A:等于-2m/s B:不能确定 C:等于零 D:等于2m/s 答案:不能确定3.某物体的运动规律为,式中的k为大于零的常数.当t=0时,初速为v0,则速度v与时间t的函数关系是( )。
A: B:C: D:答案:4.某质点沿半径为1米的圆周运动,运动方程为,2秒末质点的切向加速的大小为()。
A:6 B:24 C:12 D:48 答案:245.曲线运动一定有加速度() A:错 B:对答案:对6.讨论地球公转时可视为质点,而讨论地球自转时不能视为质点。
()A:对 B:错答案:对7.位移的大小等于路程。
()A:对 B:错答案:错第二章测试1.某质点在力(SI)的作用下沿x轴作直线运动。
在从x=0移动到x=5m的过程中,力做功为()。
A:125J B:75J C:50J D:25J 答案:75J2.质点系的内力可以改变()。
A:系统的总动量 B:系统的总质量 C:系统的总动能 D:系统的总角动量答案:系统的总质量3.力作用在质量为1kg的物体上,使物体由静止开始做直线运动,则它在2s末的动量大小为()。
A:54 B:28 C:24 D:56 答案:244.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将()A:保持静止 B:向右加速运动 C:向左加速运动 D:向右匀速运动答案:保持静止5.对于一个物体系来说,在下列的哪种情况下系统的机械能守恒?( )A:外力和保守内力都不作功 B:外力和非保守内力都不作功 C:合外力为0 D:合外力不作功答案:外力和非保守内力都不作功6.质点做匀速圆周运动时,它的动量变化,而相对于圆心的角动量不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题5
题5-2图
题5-2图
5-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ,如题5--2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.
解: 如题5-2图示
⎪⎩
⎪
⎨⎧
===220)sin 2(π41
sin cos θεθθl q F T mg T e
解得 θπεθtan 4sin 20mg l q =
5-4 长l =15.0 cm 的直导线AB 上均匀地分布着线密度9
5.010C m λ-=⨯的正电荷.试求:(1)在导线的延长线上与导线B 端相距1 5.0a cm =处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2 5.0d cm =处Q 点的场强. 解: 如题5-4图所示
题5-4图
(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为
2
0)
(d π41d x a x
E P -=
λε 2
22
)
(d π4d x a x
E E l l P P -=
=⎰
⎰-ελ
]2
12
1[π40
l a l a +
--=
ελ
)
4(π220l a l
-=
ελ
用15=l cm ,9
10
0.5-⨯=λ1m C -⋅, 5.12=a cm 代入得
21074.6⨯=P E 1C N -⋅ 方向水平向右
(2)
22
20d d π41d +=
x x
E Q λε 方向如题5-4图所示
由于对称性⎰
=l Qx E 0d ,即Q E
只有y 分量,
∵ 22
2
222
20d d d d π41d ++=
x x x
E Qy
λε
2
2π4d d ελ
⎰==l
Qy
Qy E E ⎰
-+22
2
3
222)
d (d l l x x
22
2
0d
4π2+=
l l
ελ
以9
10
0.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得
21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向
5-7 半径为1R 和2R (21R R >)的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1) 1r R <;(2) 12R r R <<;(3) 2r R >处各点的场强.
解: 高斯定理0
d ε∑⎰=⋅q
S E s
取同轴圆柱形高斯面,侧面积rl S π2=
则 rl E S E S
π2d =⋅⎰
对(1) 1R r <
0,0==∑E q
(2) 21R r R << λl q =∑
∴ r
E 0π2ελ
=
沿径向向外
(3) 2R r >
=∑q
∴ 0=E
5-9 如题5-9图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力做的功. 解: 如题5-9图示
0π41ε=
O U 0)(=-R
q
R q 0π41ε=
O U )3(R q
R q -R
q 0π6ε-
= ∴ R
q
q U U q A o C O 00π6)(ε=
-=
题5-9图 题5-10图
5-10 如题5-10图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两段直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.
解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =
则θλd d R q =产生O 点E
d 如图,由于对称性,O 点场强沿y 轴负方向
题5-10图
θεθ
λπ
π
cos π4d d 22
2
0⎰⎰-==R R E E y
R 0π4ελ=
[)2sin(π-2
sin π
-]
R
0π2ελ
-=
(2) AB 电荷在O 点产生电势,以0=∞U
⎰
⎰===A
B
20
0012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π40
2ελ
=
U 半圆环产生 0
034π4πελ
ελ==
R R U
∴ 0
032142ln π2ελελ+=
++=U U U U O 86)35
25
1(5021=+
=+=U U U AB V 习题6
6-5 在真空中,有两根互相平行的无限长直导线L 1和L 2,相距0.10 m ,通有方向相反的电流,120A I =,210A I =,如题6-5图所示.A ,B 两点与导线在同一平面内.这两点与导线L 2的距离均为5.0 cm.试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.
题6-5图
解:如题6-5图所示,A B
方向垂直纸面向里
42
01
0102.105
.02)
05.01.0(2-⨯=⨯+
-=
πμπμI I B A T
(2)设0=B
在2L 外侧距离2L 为r 处 则
02)
1.0(22
0=-
+r
I r I
πμπμ 解得 1.0=r m
6-7 设题6-7图中两导线中的电流均为8 A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论:
(1)在各条闭合曲线上,各点的磁感应强度B 的大小是否相等? (2)在闭合曲线c 上各点的B 是否为零?为什么?
题6-7图
解: ⎰
μ=⋅a
l B 0
8d
⎰
μ=⋅ba
l B 08d
⎰=⋅c
l B 0d
(1)在各条闭合曲线上,各点B
的大小不相等.
(2)在闭合曲线C 上各点B 不为零.只是B
的环路积分为零而非每点0=B .
题6-10图
6-10 如题6-10图所示,在长直导线AB 内通以电流120A I =,在矩形线圈CDEF 中通有电流210A I =,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0 cm ,b =20.0 cm ,d =1.0 cm ,求:
(1)导线AB 的磁场对矩形线圈每边所作用的力; (2)矩形线圈所受合力和合力矩.
解:(1)CD F
方向垂直CD 向左,大小
41
02100.82-⨯==d
I b
I F CD πμ N 同理FE F 方向垂直FE 向右,大小
51
02100.8)
(2-⨯=+=a d I b
I F FE πμ N
CF F
方向垂直CF 向上,大小为
⎰
+-⨯=+πμ=πμ=a
d d
CF d
a
d I I r r I I F 5210210102.9ln 2d 2 N ED F
方向垂直ED 向下,大小为
5
102.9-⨯==CF ED F F N
(2)合力ED CF FE CD F F F F F
+++=方向向左,大小为
4102.7-⨯=F N
合力矩B P M m
⨯= ∵ 线圈与导线共面
∴ B P m
//
0=M
.
题6-12图
6-12 一长直导线通有电流120A I =,旁边放一导线ab ,其中通有电流210A I =,且两者共面,如题6-12图所示.求导线ab 所受作用力对O 点的力矩. 解:在ab 上取r d ,它受力
ab F ⊥
d 向上,大小为
r
I r
I F πμ2d d 1
02= F d 对O 点力矩F r M ⨯=d M
d 方向垂直纸面向外,大小为
r I I F r M d 2d d 2
10π
μ=
= ⎰⎰
-⨯==
=b
a b
a
r I I M M 6210106.3d 2d π
μ m N ⋅
题6-13图
6-13 电子在4
7010T B -=⨯的匀强磁场中作圆周运动,圆周半径r =3.0 cm.已知B 垂直于纸面向外,某时刻电子在A 点,速度v 向上,如题6-13图所示.
(1)试画出这电子运动的轨道; (2)求这电子速度v 的大小; (3)求这电子的动能k E . 解:(1)轨迹如图。