湖北省孝感市2011年中考数学试题(扫描版,含答案)
2011年湖北省中考数学专题训练(圆)

MPCBA O2011年湖北省中考数学试题精选园一1.(19.咸宁市2011年8分)如图,AB 是⊙O 的直径,过B 点作⊙O 的切线,交弦AE 的延 长线于点C ,作AC OD ⊥,垂足为D ,若︒=∠60ACB ,2=BC ,求DE 的长.2.(23.2011年湖北省孝感市满分10分)如图,等边△ABC 内接于⊙O ,P 是弧AB 上任一点(点P 不与点A 、B 重合),连AP 、BP ,过点C 作CM ∥BP 交PA 的延长线于点M.(1)填空:∠APC=______度,∠BPC=_______度;(2分)(2)求证:△ACM ≅△BCP ;(4分)(3)若PA=1,PB=2,求梯形PBCM 的面积.(4分)3. (23.2011•十堰)如图,AB 是半圆O 的直径,点C 为半径OB 上一点,过点C 作CD 丄AB 交半圆O 于点D ,将△ACD 沿AD 折叠得到△AED ,AE 交半圆于点F ,连接DF .(1)求证:DE 是半圆的切线:(2)迮接0D ,当OC=BC 时,判断四边形ODFA 的形状,并证明你的结论.4.(21.2011年荆门市10分)某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME 、NF 与半圆相切,上、下桥斜面的坡度=1∶3.7,桥下水深OP =5米,水面宽度CD =24米.设半圆的圆心为O ,直径AB 在坡角顶点M 、N 的连线上,求从M 点上坡、过桥、下坡到N 点的最短路径长.(参考数据:π≈3≈1.7,tan15°=321+)(第19题)第21题图5.(22.2011年武汉市8)如图,PA 为⊙O 的切线,A 为切点.过A 作O P 的垂线AB ,垂足为点C ,交⊙O 于点 B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点 E.(1)求证:P B 为⊙O 的切线;(2)若t an ∠ABE=21,求s in E 的值.6.(24.黄石市2011年9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合),直线C B 与⊙1O 交于另一点D 。
2011孝感市九年级联考数学试卷

孝感市2011-2012学年九年级“八校联谊”考试数 学 试 题命题教师:孝南区肖港初中 匡福华温馨提示:1、答题前,考生务必将学校、班级、姓名、考号填写在答卷指定的位置;2、试题答案必须写在答卷的指定位置,在本卷上答题无效;3、本试卷满分120分,考试时间120分钟。
亲爱的同学们:这份卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光,请认真审题,看清要求,仔细答题。
祝你成功! 一、精心选一选,相信你选得准!(每题3分,共36分) 1、下列各式中属于最简二次根式的是( )A 、22y x + B 、xyxC 、 12D 、 2112、方程0122=--x x 的根的情况是( )A 、有两个不等实数根B 、有两个相等实数根C 、无实数根D 、无法判定 3、口袋内装有一些除颜色外其他完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率为0.2,摸出白球的概率为0.5,那么摸出黑球的概率为( ) A 、0、2 B 、 0、7 C 、 0、5 D 、0、3 4、两圆的半径分别为3cm 和5cm ,圆心距为7cm ,则两圆的位置关系为( ) A 、外离 B 、相交 C 、内切 D 、 外切 5、已知132-=-b a ,3=ab 则)1)(1(-+b a 的值为( )A 、-3B 、33C 、322-D 、3-16、已知x 1、x 2是方程032=--x x 的两根,则2221x x +的值是( ) A 、7 B 、 8 C 、9 D 、11 7、若O 为△ABC 的外心,I 为三角形的内心,且∠BIC=110°,则∠BOC=( ) A 、70° B 、80° C 、90° D 、100° 8、若点P (1-2a ,a -1)关于原点对称的点是第一象限的点,则a 的取值范围是( ) A 、 a >21 B 、 a <21 C 、 21<a <1 D 、 21≤a ≤1 9、已知⊙O 的半径为13,AB 、CD 是⊙O 的弦,AB ∥CD 且AB=10,CD=24,则AB 、CD 之间的距离为( )A 、 7B 、 12C 、17D 、 7或1710、如图,在R t △ABC 中,∠A=90°,AB=3,AC=4,以O 为圆心的半圆分别与AB 、AC 边相切于D 、E 两点,且O 点在BC 边上,则图中阴影部分面积S 阴=A、21B 、3πC 、 5-π43 D 、π493649150- 11、用长100cm 的金属丝制成一个矩形框子,框子的面积不可能是( ) A 、325cm 2 B 、 500 cm 2 C 、 625 cm 2 D 、 800 cm 2 12、如图,平面直角坐标系中,⊙P 经过平面直角坐标系的原点O ,且分别交x 轴、y 轴于A 、B 两点。
2011年湖北省武汉市中考真题(word版含答案)

2011年武汉市初中毕业生学业考试数学试卷亲爱的同学,在你答题前,请认真阅读下面以及“答题卡”上的注意事项:1.本试卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成.全卷共6页,三大题,满分120分.考试用时120分钟.2.答题时,请将你的姓名、准考证号填写在“答题卡”相应位置,并在“答题卡”背面左上角填写姓名和准考证号后两位.3.答第Ⅰ卷(选择题)时,选出每小题答案后,用2B 铅笔把“答题卡”上对应题目的答案标号涂黑.如果改动,用橡皮擦干净后,再选涂其他答案.不得答在“试卷”上.4.第Ⅱ卷(非选择题)用0.5毫米黑色笔迹签字笔书写在“答题卡”上,答在..“试卷..”上无效.... 预祝你取得优异成绩!第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案.其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数3-的相反数是( ) A .3 B.3- C.13 D.13-2.函数y =x 的取值范围是( )A .0x ≥ B.2x -≥ C.2x ≥ D.2x -≤3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A .1030x x +>⎧⎨->⎩ B.1030x x +>⎧⎨->⎩ C.1030x x +<⎧⎨->⎩ D.1030x x +<⎧⎨->⎩4.下列事件中,为必然事件的是( ) A .购买一张彩票,中奖B.打开电视,正在播放广告 C.抛掷一枚硬币,正面向上D.一个袋中只装有5个黑球,从中摸出一个球是黑球5.若12x x ,是一元二次方程2430x x ++=的两个根,则12x x ,的值是( ) A . 4 B.3 C.4- D.3-6.据报道,2011年全国普通高等学校招生计划约675万人,数6750000用科学记数法表示为( )A .467510⨯ B.567.510⨯ C.66.7510⨯ D.70.67510⨯7.如图,在梯形ABCD 中,AB DC ∥,AD DC CB ==,若25ABD ∠=°,则BAD ∠的大小是( )A .40° B.45° C.50° D.60° 8.右图是某物体的直观图,它的俯视图是( )9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点,且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形;边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为( )A .64 B.49 C.36 D.2510.如图,铁路MN 和公路PQ 在点O 处交汇,30QON ∠=°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿ON 方向以 72千米/时的速度行驶时,A 处受噪音影响的时间为( )A .12秒 B.16秒 C.20秒 D.24秒11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②2009年购置器材投入资金比2010年购置器材投入资金多8%;③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元.其中正确判断的个数是( )A .0 B.1 C.2 D.312.如图,在菱形ABCD 中,,AB BD =点E F,分别在AB AD ,上,且.AE DF=连接BF 与DE 相交于点,G 连接CG 与BD 相交于点,H 下列结论:①AED DFB △≌△;②2DCBG S =四边形;③若2AF DF =,则6.BG GF =其中正确的结论( )A . 只有①② B.只有①③ C.只有②③ D.①②③第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin 30°的值为 .14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110,这组数据的中位数是 ,众数是 ,平均数是 .15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示,关停进水管后,经过 分钟,容器中的水恰好放完.16.如图,AB C D Y 的顶点A B ,的坐标分别是()()1002A B --,,,,顶点C D ,在双曲线ky x=上,边AD 交y 轴于点E ,且四边形BCDE 的面积是ABE △面积的5倍,则k = .三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:2310.x x ++=18.(本题满分6分)先化简,再求值:224x x x x x -⎛⎫÷- ⎪⎝⎭,其中 3.x =19.(本题满分6分)如图,D E ,分别是AB AC ,上的点,且.AB AC AD AE ==,求证:.B C ∠=∠20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左或向右转.如果这三种可能性大小相同.现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果; (2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,ABC △的顶点坐标是()()7111A B -,,,,()17.C ,线段DE 的端点坐标是()()7117D E -,-,,-.(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将ABC △绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的DEF △,并和ABC △同时绕坐标原点O 逆时针旋转90°.画出旋转后的图形.22.(本题满分8分)如图,PA 为O ⊙的切线,A 为切点,过A 作OP 的垂线AB ,垂足为点,C 交O ⊙于点B ,延长BO 与O ⊙交于点D ,与PA 的延长线交于点.E (1)求证:PB 为O ⊙的切线; (2)若1tan2ABE ∠=,求sin E 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在ABC △中,点D E Q 、、分别在AB AC BC ,,上,且DE BC AQ ∥,交DE 于点P ,求证:DP PEBQ QC=. (2)如图,在ABC △中,90BAC ∠=°,正方形DEFG 的四个顶点在ABC △的边上.连接,AG AF 分别交DE 于,M N 两点.①如图2,若1,AB AC ==直接写出MN ②如图3,求证:2.MN DMEN =·25.(本题满分12分)如图1,抛物线23y ax bx =++经过()()3010A B --,,,两点. (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线29y x =-+与y 轴交于点C ,与直线OM 交于点.D 现将抛物线平移,保持顶点在直线OD 上,若平移的抛物线与射线CD (含端为C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过()03Q ,作不平行于x 轴的直线交抛物线于E F ,两点.问在y 轴的负半轴上是否存在点,P 使PEF △的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年武汉市初中毕业生数学学业考试参考答案一、选择题1.A2.C3.B 4.D 5.B 6.C 7.C 8.A 9.B 10.B 11.C 12.D 二、填空题 13.1214. 105;105;100 15. 8 16. 12 三、解答题17.解:∵1,3, 1.a b c === ∴24941150b ac ∆=-=-⨯⨯=>∴x =∴12x x == 18.解:原式=()()()222x x x x x x-+-÷ ()()()222x x xx x x -=+-·=.2x x + ∴当3x =时,原式=3.519.证明:在ABE △和ACD △中,AB AC A A AE AD =⎧⎪∠=∠⎨⎪=⎩,,,∴,ABE ACD △≌△∴.B C ∠=∠ 20.解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果.(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等.∴P (至少有一辆汽车向左转)=59. 解法2:根据题意,可以列出如下的表格:以下同解法1(略).21.(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可). (2)()1,1.F --(3)画出如图所示的正确图形.22.(1)证明:连接OA ,∵PA 为O ⊙的切线,∴90PAO ∠=°. ∵OA OB OP AB =⊥,于,C ∴,.BC CA PB PA == ∴.PBO PAO △≌△∴90PBO PAO ∠=∠=°. ∴PB 为O ⊙的切线. (2)解法1:连接.AD∵BD 是直径,90BAD ∠=°.由(1)知90BCO ∠=°,∴.AD OP ∥∴.ADE POE △∽△∴.EA ADEP OP= 由AD OC ∥得2.AD OC =∵1tan 2ABE ∠=,∴12OC BC =,设,OC t =则2,2.BC t AD t ==由,PBC BOC △∽△得24,5.PC BC t OP t === ∴2.5EA AD EP OP == 可设2,5,EA m EP m ==则3.PA m = ∵,PA PB =∴3,PB m =∴3sin .5PB E EP == (2)解法2:连接,AD 则90BAD ∠=°.由(1)知90BCO ∠=°.∵由AD OC ∥,∴2.AD OC = ∵1tan ,2ABE ∠=∴1,2OC BC =设,2,4.OC t BC t AB t ===由,PBC BOC △∽△得24.PC BC t ==∴PA PB ==过A 作AF PB ⊥于,F 则.AFPB AB PC =··∴.AF =进而由勾股定理得.PF = ∴3sin sin .5PF E FAP PA =∠== 23.解:(1)()302615.y x x =-<≤ (2)设矩形苗圃园的面积为.S 则()2302230S xy x x x x ==-=-+∴()227.5112.5,S x =--+ 由(1)知,615.x <≤ ∴当7.5x =时,112.5.S =最大值即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5. (3)611.x ≤≤24.(1)证明:在ABQ △中,由于,DP BQ ∥∴.ADP ABQ △∽△∴.DP AP CQ AQ= 同理在ACQ △中,.EP AP BQ AQ =∴.DP EP BQ CQ= (2)9(3)证明:∵90B C ∠+∠=°.90CEF C ∠+∠=°.∴,B CEF ∠=∠又∵BGD EFC ∠=∠,∴.BGD EFC △∽△ ∴DG BG CF EF=,∴.DG EF CF BG =·· 又∵,DG GF EF ==∴2.GF CFBG =· 由(1)得DM MN EN BG GF CF ==, ∴2MN DM EN GF BG CF ⎛⎫= ⎪⎝⎭·, ∴2.MN DMEN =· 25.解:(1)抛物线23y ax bx =++经过()()3,0,1,0A B --两点,∴933030.a b a b -+=⎧⎨-+=⎩, 解得1,4.a b =⎧⎨=⎩∴抛物线的解析式为24 3.y x x =++(2)由(1)配方得()221y x =+-,∴抛物线的顶点()21.M --,∴直线OD 的解析式为1.2y x =于是设平移的抛物线的顶点坐标为1,2h h ⎛⎫ ⎪⎝⎭, ∴平移的抛物线解析式为()21.2y x h h =-+①当抛物线经过点C 时,∵()09C ,,∴219,2h h +=解得h =h <CD 只有一个公共点. ②当抛物线与直线CD 只有一个公共点时,由方程组()21,229.y x h h y x ⎧=-+⎪⎨⎪=-+⎩得()2212290,2x h x h h +-+++-= ∴()22122490,2h h h ⎛⎫∆=-+-+-= ⎪⎝⎭解得 4.h = 此时抛物线()242y x =-+与射线CD 唯一的公共点为(3,3),符合题意.综上,平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是4h =或1144h --< (3)方法1将抛物线平移,当顶点至原点时,其解析式为2,y x =设EF 的解析式为()30.y kx k =+≠假设存在满足题设条件的点()0P t ,,如图,过P 作GH x ∥轴,分别过,E F 作GH 的垂线,垂足为,.G H∵PEF △的内心在y 轴上,∴.GEP EPQ QPF HFP ∠=∠=∠=∠∴,GEP HFP △∽△ ∴,GP GE PH HF=∴3,3E E E F F F x y t kx t x y t kx t--+-==-+- ∴()()23.E F E F kx x t x x =-+·由2,3y x y kx ⎧=⎨=+⎩得230.x kx --= ∴,3,E F E F x x k x x +==-·∴()()233,k t k -=-∵0k ≠,∴ 3.t =-∴y 轴的负半轴上存在点()03,P -,使PEF △的内心在y 轴上.方法2:设EF 的解析式()30,y kx k =+≠点,E F 的坐标分别为()()22,,,m m n n 由方法1知: 3.mn =-作点E 关于y 轴的对称点()2,R m m -,作直线FR 交y 轴于点,P 由对称性知,E P Q F P Q ∠=∠∴点P 就是所求的点.由,F R 的坐标,可得直线FR 的解析式为(),y n m x mn =-+当0,3x y mn ===-,∴()0,3.P -∴y 轴的负半轴上存在点()0,3,P -使PEF △的内心在y 轴上.。
2011年武汉中考数学试题(含答案)

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑. 1.有理数-3的相反数是 A.3. B.-3. C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A .x≥0. B.x≥-2. C.x≥2. D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是 A.x+1>0,x-3>0. B.x+1>0,3-x>0. C.x+1<0,x-3>0. D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是 A.4. B.3. C.-4. D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为 A.64. B.49. C.36. D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为 A.12秒. B.16秒. C.20秒. D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论: ①△AED ≌△DFB ; ②S四边形B C D G =43CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置. 13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口. (1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线; (2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPEBQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF 的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4³1³1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x² x/(x+2)(x-2)= x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA 为⊙O的切线,∴∠PAO=90°∵OA=OB ,OP⊥AB 于C∴BC=CA ,PB =PA 左 直 右 左 (左,左) (左,直) (左,右) 直 (直,左) (直,直) (直,右) 右 (右,左) (右,直) (右,右)∴△PBO≌△PAO∴∠PBO=∠PAO=90° ∴PB 为⊙O 的切线(2)解法1:连接AD ,∵BD 是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA /EP =AD/OP 由AD∥OC 得AD =2OC ∵tan∠ABE=1/2 ∴OC /BC=1/2,设OC =t,则BC =2t,AD=2t 由△PBC∽△BOC,得PC =2BC =4t ,OP =5t∴EA /EP=AD/OP=2/5,可设EA =2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB /EP=3/5(2)解法2:连接AD ,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD =2OC ∵tan∠ABE=1/2,∴O C/BC=1/2,设OC =t ,BC =2t ,AB=4t 由△PBC∽△BOC,得PC =2BC =4t ,∴PA=PB =25t 过A 作AF⊥PB 于F ,则AF²PB=AB²PC ∴AF=558t 进而由勾股定理得PF =556t ∴sinE=sin∠FAP=PF /PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S 则S=xy=x(30-2x)=-2x 2+30x∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S 最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ 中,由于DP∥BQ ,∴△ADP∽△ABQ, ∴DP /BQ =AP/AQ.同理在△ACQ 中,EP/CQ =AP/AQ.∴DP /BQ =EP/CQ.(2) 92 9.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF ,又∵∠BGD=∠EFC ,∴△BGD∽△EFC.……3分∴DG /CF =BG/EF ,∴DG²EF =CF²BG又∵DG=GF =EF ,∴GF 2=CF²BG由(1)得DM/BG =MN/GF =EN/CF∴(MN/GF )2=(DM/BG)²(EN/CF)∴MN 2=DM²EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451- . (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ²x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ²x F =-3.∴2k (-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.方法 2 设EF 的解析式为y=kx+3(k≠0),点E ,F的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y 轴的对称点R (-m,m 2),作直线FR 交y 轴于点P ,由对称性知∠EPQ=∠FPQ,∴点P 就是所求的点.由F,R的坐标,可得直线FR 的解析式为y=(n-m )x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.武汉市光谷三初冉瑞洪整理。
2011年中考数学试题及解析171套试题试卷_113

2011年湖北省武汉市中考数学试题一、选择题(共12小题,每小题3分,共36分)1.有理数-3的相反数是A.3.B.-3.C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.二、填空题(共4小题,每小题3分,共12分).13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长; ②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y 轴上.若存在,求出点P的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题 17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x· x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C 20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)∴MN2=DM·EN25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ·x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ·x F =-3.∴2k (-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.方法 2 设EF 的解析式为y=kx+3(k≠0),点E ,F的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y 轴的对称点R (-m,m 2),作直线FR 交y 轴于点P ,由对称性知∠EPQ=∠FPQ,∴点P 就是所求的点.由F,R的坐标,可得直线FR 的解析式为y=(n-m )x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.。
2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年襄阳市初中毕业、升学统一考试数学试题一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1. 2-的倒数是A .2-B .2C .12-D .122. 下列运算正确的是 A .2a a a -= B .236()a a -=-C .632x x x ÷=D .222()x y x y +=+3. 若x y 、为实数,且110x y ++-=,则2011()x y的值是 A .0 B .1 C .1- D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;月用水量(吨)5 6 7 户数 2 6 2则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。
湖北省2011年中考数学专题8:平面几何基础
湖北省2011年中考数学专题8:平面几何基础一、选择题1.(湖北黄石3分)平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n个点最多可确定21条直线,则n的值为A. 5B. 6C. 7D. 8【答案】C。
【考点】分类归纳,一元二次方程的应用(几何问题)。
【分析】找出规律:平面上不同的n个点,每一个点最多可确定n-1条直线,n个点最多可确定()12 n n-条直线(因为每一条直线都重复计算了两次)。
因此,根据题意,得()1212n n-=,解得n=7或n=-6(舍去)。
故选C。
2.(湖北十堰3分)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE//AB,若∠ACD=500,则∠B的度数是A.50° B.40° C.30° D.25°【答案】B。
【考点】平行线的性质,三角形内角和定理。
【分析】∵DE∥AB,∴∠A=∠ACD=50°。
又∠ACB=90°,∴∠A+∠B=90°。
∴∠B=90°-50°=40°。
故选B。
3.(湖北十堰3分)现有边长相同的正三角、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【答案】A。
【考点】平面镶嵌(密铺),多边形内角和定理。
【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4-43n ,显然n 取任何正整数时,m 不能得正整数,故不能铺满;B 、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故能铺满;C 、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故能铺满;D 、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故能铺满。
湖北省各市县2011年中考数学试题分类解析专题(1-12)
湖北省2011年中考数学专题12:押轴题 解答题1.(湖北武汉12分)如图1,抛物线23y ax bx =++经过A (-3,0),B (-1,0)两点. (1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线29y x =-+与y 轴交于点C ,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线23y ax bx =++经过A (-3,0),B (-1,0)两点 ∴933030a b a b -+=⎧⎨-+=⎩,解得14a b =⎧⎨=⎩。
∴抛物线的解析式为243y x x =++。
(2)由(1)配方得()221y x =+-,∴抛物线的顶点M (-2,,1)。
∴直线OD 的解析式为12y x =。
∴设平移的抛物线的顶点坐标为(h ,12h ),∴平移的抛物线解析式为()21h h2y x =-+. ①当抛物线经过点C 时,∵C (0,9),∴h2+21h=9, 解得h=11454±-。
∴ 当 11454--≤h<11454+- 时,平移的抛物线与射线CD 只有一个公共点。
②当抛物线与直线CD 只有一个公共点时,由()21h h 292x x -+=-+y 得()2212h 2h h 902x x +-+++-=,∴△=(-2h +2)2-4(h2+21h -9)=0, 解得h=4。
此时抛物线y=(x -4)2+2与射线CD 唯一的公共点为(3,3),符合题意。
综上所述:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或11454--≤h<11454+-.(3)将抛物线平移,当顶点至原点时,其解析式为2y x =设EF 的解析式为y =k x +3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P 作GH ∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H .∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP 。
湖北省各市县2011年中考数学试题分类解析专题(1-12)-6
湖北省2011年中考数学专题6:函数的图像与性质 选择题1. (湖北黄石3分)双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是A.12k >B. 12k <C. 12k =D. 不存在【答案】B 。
【考点】反比例函数的性质。
【分析】据反比例函数的图象经过第二、四象限得到关于k 的不等式:210k <-,解之即求出k 的取值范围12k <。
故选B 。
2.(湖北黄石3分)设一元二次方程(1)(2)(0)x x m m --=>的两根分别为 , αβ,且αβ<,则 , αβ满足A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β> 【答案】 D 。
【考点】抛物线与x 轴的交点,一元二次方程根与系数的关系,图象平移的性质。
【分析】一元二次方程(1)(2)(0)x x m m --=>的根可以理解为二次函数(1)(2)(0)y x x m m =--->与x 轴的交点的横坐标。
令m =0,则函数(1)(2)y x x =--的图象与x 轴的交点分别为(1,0),(2,0),∴由平移的性质,(1)(2)(0)y x x m m =--->的图象可以理解为由(1)(2)y x x =--的图象向下平移得到。
∴它与x 轴的交点总在点(1,0)和(2,0)之外,即α<1,β>2。
故选D 。
3.(湖北黄石3分)已知梯形ABCD 的四个顶点的坐标分别为A (-1,0),B (5,0),C (2,2),D(0,2),直线2y kx =+将梯形分成面积相等的两部分,则k 的值为A.23-B.29-C. 47-D. 27-【答案】A 。
【考点】一次函数综合题。
【分析】根据题目提供的点的坐标求得梯形的面积,利用直线将梯形分成相等的两部分,求得直线与梯形的边围成的三角形的面积,从而求得其解析式即可:∵梯形ABCD 的四个顶点的坐标分別为A (-1,0),B (5,0),C (2,2),D (0,2),∴梯形的面积为:62282+⨯= 。
湖北省各市县2011年中考数学试题分类解析专题(1-12)-10
湖北省2011年中考数学专题3:方程(组)和不等式(组)一、选择题1.(湖北武汉3分)如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x +1>0,x -3>0.B.x +1>0,3-x >0.C.x +1<0,x -3>0.D.x +1<0,3-x >0.【答案】B 。
【考点】在数轴上表示不等式的解集【分析】分别求出四个选项中不等式组的解集,找出符合条件的不等式组即可。
由数轴上不等式解集的表示方法可知,此不等式组的解集为:-1<x <3。
故选B 。
2.(湖北武汉3分)若x 1,x 2是一元二次方程x 2+4x +3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】根据一元二次方程的根与系数的关系,得x 1x 2=331c a ==。
故选B 。
3.(湖北荆州3分)对于非零的两个实数a 、b ,规定11a b b a ⊗=-.若1(1)1x ⊗+=,则x 的值为 A.23 B.31 C.21 D.21- 【答案】D 。
【考点】解分式方程,代数式变形。
【分析】根据规定运算,将1(1)1x ⊗+=转化为分式方程,解分式方程即可:由规定运算,1(1)1x ⊗+=可化为,11111x -=+,解并检验得,12x =-。
故选D 。
4.(湖北荆州、荆门3分)关于x 的方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有a x x x x -=+-12211,则a 的值是A.1B.1-C. 1或1-D.2【答案】B 。
【考点】一元二次方程根与系数的关系和根的判别式。
【分析】依题意△>0,即()()231810a a a >+-+,即()22210 , 10a a >a >-+-,∴1a ≠。
∵由一元二次方程根与系数的关系,得1x +2x =31a a+,1x ·2x =()21a a +, 且a x x x x -=+-12211 ∴()21311a a a a a++-=-,解并检验,得1a =± 又1a ≠,∴1a =-。