湖北省孝感市中考数学试卷(解析版)
2020年湖北省孝感市中考数学试卷(附答案解析)

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.-2℃B.+2℃C.+3℃D.-3℃2.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.(3分)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A.4,6B.6,6C.4,5D.6,56.(3分)已知x1,y1,那么代数式的值是()A.2B.C.4D.27.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位: )是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I B.I C.I D.I8.(3分)将抛物线C1:y=x2-2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=-x2-2B.y=-x2+2C.y=x2-2D.y=x2+29.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD =30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y 关于x的函数图象大致是()A.B.C.D.10.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.(3分)有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是______.13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为______.16.(3分)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y和y(k<0)上,,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)计算:|1|-2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数-1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(-1,5),B(-3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为______;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为______;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为______.21.(10分)已知关于x的一元二次方程x2-(2k+1)x k2-2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1-x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若 <60°,且,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a-6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设-5<t≤m(m<0),求f的最大值.【试题答案】一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.A【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作-2℃.2.B【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°-40°=50°,∴∠AOC=∠BOD=50°.3.C【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;4.C【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,5.B【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,6.D【解答】解:原式=x+y当x1,y1,原式11=2.7.C【解答】解:设I,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I.8.A【解答】解:∵抛物线C1:y=x2-2x+3=(x-1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,-2),∴抛物线C3的解析式为y=-x2-2,9.D【解答】解:①当点P在AB上运动时,y AH×PH AP sin A×AP cos A x2x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=42,同理AH′=2,则y AH×PH(2x-4)×2=24+x,为一次函数;③当点P在CD上运动时,同理可得:y(26)×(4+6+2-x)=(3)(12-x),为一次函数;10.B【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5-x=BF,FG=8-x,∴EG=8-x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8-x)2,解得x,∴CE的长为,二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.1×106【解答】解:100万=1000000=1×106,12.-81【解答】解:设这三个数中的第一个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-81.13.( 1.6)【解答】解:如图,在Rt△DEA中,∵cos∠EDA,∴DA5(m);在Rt△BCF中,∵cos∠BCF,∴CB(m),∴BF BC(m),∵AB+AE=EF+BF,∴AB=3.45 1.6(m).答:AB的长为( 1.6)m.14.C【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100-10-41-100×21%=28(人),1200336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2m2,解得x m,由勾股定理得(m)2+(n m)2=m2,m2-2mn-2n2=0,解得m1=(-1)n(舍去),m2=(-1)n,则的值为.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴()2,∵A点在双曲线y,,∴S△AOM4=2,,∴()2,∴S△ODN,∵D点在双曲线y(k<0)上,∴|k|,∴k=-9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF,三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.)17.【解答】解:原式=-211=-2.18.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【分析】用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3).20.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,cos∠BCE;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,-4);;(0,4).21.【分析】(1)根据根的判别式得出△=[-(2k+1)]2-4×1×(k2-2)=2(k+1)2+7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2k2-2,由x1-x2=3知(x1-x2)2=9,即(x1+x2)2-4x1x2=9,从而列出关于k的方程,解之可得答案.【解答】解:(1)∵△=[-(2k+1)]2-4×1×(k2-2)=4k2+4k+1-2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2k2-2,∵x1-x2=3,∴(x1-x2)2=9,∴(x1+x2)2-4x1x2=9,∴(2k+1)2-4×(k2-2)=9,化简得k2+2k=0,解得k=0或k=-2.22.【分析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,∴40-3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40-3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【分析】(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF-S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°-60°-60°=60°=∠OAD,∴OA∥DF,∴∠F=180°-∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∴阴影部分的面积为:S梯形AODF-S扇形OADπ;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠F AO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB-DE=9-5=5.24.【分析】(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,进而求出点E(2,0),利用tan∠AED,即可求解;(3)①证明△FJH∽△ECO,故,则FH,即可求解;②f(t+3)2(-5<t≤m且m<0),即可求解.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=-1或-3;当x=0时,y=18,函数的对称轴为x=-2,故点A、B、C、D的坐标分别为(-3,0)、(-1,0)、(0,18)、(-2,-6);故答案为:(-3,0)、(-1,0)、(0,18)、(-2,-6);(2)y=ax2+4ax+4a-6,令x=0,则y=4a-6,则点C(0,4a-6),函数的对称轴为x=-2,故点D的坐标为(-2,-6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,令y=0,则x2,故点E(2,0),则OE2,tan∠AED,解得:a,故点C、E的坐标分别为(0,)、(,0),则CE;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y x2x,故点A、C的坐标分别为(-5,0)、(0,),则点N(0,),由点A、N的坐标得,直线AN的表达式为:y x;设点P(t,t2t),则点F(t,t);则PF t2-3t,由点E(,0)、C的坐标得,直线CE的表达式为:y x,则点J(t,t),故FJ t,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH,f=PF+FH t2-3t(-t+1)t2-4t;②f t2-4t(t+3)2(-5<t≤m且m<0);∴当-5<m<-3时,f max m2-4m;当-3≤m<0时,f max.。
2021年湖北省孝感市中考数学试题及参考答案(word解析版)

孝感市2021年高中阶段学校招生考试数学试卷(满分120分,考试时间120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.﹣3的相反数是()A.﹣3 B.C.﹣D.32.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×1093.下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形B.正方形C.正六边形D.圆4.下列计算正确的是()A.a3+a2=a5B.a3÷a2=a C.3a3•2a2=6a6D.(a﹣2)2=a2﹣45.如图是由四个相同的正方体组成的几何体,其俯视图是()A.B.C.D.6.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()A.样本容量为400 B.类型D所对应的扇形的圆心角为36°C.类型C所占百分比为30% D.类型B的人数为120人7.如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10 B.8 C.6 D.48.如图,AC为矩形ABCD的对角线,已知AD=3,CD=4,点P沿折线C﹣A﹣D以每秒1个单位长度的速度运动(运动到D点停止),过点P作PE⊥BC于点E,则△CPE的面积y与点P运动的路程x间的函数图象大致是()A.B.C.D.二、细心填一填(本大题共8小题,每小题3分,满分24分).9.式子在实数范围内有意义,则a的取值范围是.10.正五边形的一个内角是度.11.东方红学校举行“学党史,听党话,跟党走”讲故事比赛,七位评委对其中一位选手的评分分别为:85,87,89,91,85,92,90.则这组数据的中位数为.12.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是.(写出一个即可)13.在Rt△ABC中,∠C=90°,∠B=30°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点E,F;再分别以点E,F为圆心,大于EF的长为半径画弧,两弧交于点P,作射线AP交BC于点D.则CD与BD的数量关系是.14.如图,建筑物BC上有一高为8m的旗杆AB,从D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则建筑物BC的高约为m(结果保留小数点后一位).(参考数据:sin53°≈0.80,cos53°≈0.60,tan53≈1.33)15.人们把这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设a=,b=,得ab=1,记S1=,S2=,…,S10=,则S1+S2+…+S10=.16.如图,正方形ABCD中,AB=1,连接AC,∠ACD的平分线交AD于点E,在AB上截取AF=DE,连接DF,分别交CE,CA于点G,H,点P是线段GC上的动点,PQ⊥AC于点Q,连接PH.下列结论:①CE⊥DF;②DE+DC=AC;③EA=AH;④PH+PQ的最小值是,其中所正结论的序号是.三、专心解一解(本大题共8小题,满分72分,请认真读题,冷静思考,解答题应写出必要的文字说明、证明过程或演算步骤.)17.(7分)计算:0.18.(7分)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC:S△DEC=4:9,BC=6,求EC的长.19.(8分)2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1)黄冈在第一轮抽到语文学科的概率是;(2)用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.20.(9分)如图,反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)两点.(1)求反比例函数和一次函数的解析式;(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点,过点N作NM⊥x轴交反比例函数y=的图象于点M,连接CN,OM.若S四边形COMN>3,求t的取值范围.21.(9分)如图,在Rt△ABC中,∠ACB=90°,⊙O与BC,AC分别相切于点E,F,BO平分∠ABC,连接OA.(1)求证:AB是⊙O的切线;(2)若BE=AC=3,⊙O的半径是1,求图中阴影部分的面积.22.(10分)2021年是中国共产党建党100周年,红旗中学以此为契机,组织本校师生参加红色研学实践活动,现租用甲、乙两种型号的大客车(每种型号至少一辆)送549名学生和11名教师参加此次实践活动,每辆汽车上至少要有一名教师.甲、乙两种型号的大客车的载客量和租金如表所示:甲种客车乙种客车载客量/(人/辆)40 55租金/(元/辆)500 600 (1)共需租辆大客车;(2)最多可以租用多少辆甲种型号大客车?(3)有几种租车方案?哪种租车方案最节省钱?23.(10分)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件,一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.24.(12分)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C,点N(n,0)是x轴上的动点.(1)求抛物线的解析式;(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,交直线BC于点G.过点P作PD ⊥BC于点D,当n为何值时,△PDG≌△BNG;(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点,然后将它向上平移个单位长度,得到直线OB1.①tan∠BOB1=;②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.答案与解析一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的)1.﹣3的相反数是()A.﹣3 B.C.﹣D.3【知识考点】相反数.【思路分析】根据只有符号不同的两个数互为相反数,可得答案.【解答过程】解:﹣3的相反数是3,故选:D.【总结归纳】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.2021年5月15日07时18分,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆在火星上,从此,火星上留下中国的脚印,同时也为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为()A.47×107B.4.7×107C.4.7×108D.0.47×109【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:470000000=4.7×108,故选:C.【总结归纳】此题考查科学记数法的表示方法,关键是确定a的值以及n的值.3.下列图形中,是轴对称图形但不是中心对称图形的是()A.正三角形B.正方形C.正六边形D.圆【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.【解答过程】解:A.正三角形是轴对称图形但不是中心对称图形,故本选项符合题意;B.正方形既是轴对称图形,又是中心对称图形,故本选项不合题意;C.正六边形既是轴对称图形,又是中心对称图形,故本选项不合题意;D.圆既是轴对称图形,又是中心对称图形,故本选项不合题意.故选:A.【总结归纳】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列计算正确的是()A.a3+a2=a5B.a3÷a2=a C.3a3•2a2=6a6D.(a﹣2)2=a2﹣4【知识考点】合并同类项;同底数幂的除法;单项式乘单项式;完全平方公式.【思路分析】根据同底数幂的除法运算法则,单项式乘单项式运算法则以及完全平方公式的展开。
2021年湖北省孝感市数学中考真题含答案解析(解析版)

湖北省孝感市2021年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.(3分)(2013•孝感)计算﹣32的值是( ) A.9B.﹣9C.6D.﹣6考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.(3分)(2013•孝感)太阳的半径约为696000km,把696000这个数用科学记数法表示为( ) A.6.96×103B.69.6×105C.6.96×105D.6.96×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数。
当原数的绝对值<1时,n是负数.解答:解:将696000用科学记数法表示为6.96×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于( ) A.120°B.130°C.140°D.40°考点:平行线的判定与性质.分析:首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.点评:此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行。
2020年湖北省孝感市中考数学试卷(含解析)

2020年湖北省孝感市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.某公司有10名员工,每人年收入数据如下表:年收入/万元 4 6 8 10人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为()A.4,6 B.6,6 C.4,5 D.6,56.已知x=﹣1,y=+1,那么代数式的值是()A.2 B.C.4 D.27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=B.I=C.I=D.I=8.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+29.如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C →D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4 D.二、填空题(每小题3分,共18分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为.12.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为m.(结果保留根号)14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为.16.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、解答题(共72分)17.(6分)计算:+|﹣1|﹣2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg 甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为;②当⊙O的半径为2时,直接写出图中阴影部分的面积为;(2)如图2,若α<60°,且=,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A ,B ,C ,D ;(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.参考答案与试题解析一1.【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.4.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.5.【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.6.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.7.【解答】解:设I=,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=.故选:C.8.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.【解答】解:①当点P在AB上运动时,y=AH×PH=×APsinA×APcosA=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.10.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.二11.【解答】解:100万=1000000=1×106,故答案:1×106.12.【解答】解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.13.【解答】解:如图,在Rt△DEA中,∵cos∠EDA=,∴DA==5(m);在Rt△BCF中,∵cos∠BCF=,∴CB==(m),∴BF=BC=(m),∵AB+AE=EF+BF,∴AB=3.4+﹣5=﹣1.6(m).答:AB的长为(﹣1.6)m.故答案为:(﹣1.6),14.【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100﹣10﹣41﹣100×21%=28(人),1200×=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2=m2,解得x=m,由勾股定理得(m)2+(n+m)2=m2,m2﹣2mn﹣2n2=0,解得m1=(﹣1﹣)n(舍去),m2=(﹣1+)n,则的值为.故答案为:.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,∴S△AOM=×4=2,=,∴=()2,∴S△ODN=,∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=+=,故答案为.三17.【解答】解:原式=﹣2+﹣1﹣+1=﹣2.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为=,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)==.20.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).21.【解答】解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.22.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40﹣3m)kg,∴40﹣3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40﹣3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,∴OA∥DF,∴∠F=180°﹣∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴=,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF﹣S扇形OAD=﹣==π;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB﹣DE=9﹣5=5.24.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max=﹣m2﹣4m+;当﹣3≤m<0时,f max=。
湖北省孝感市中考数学真题试题(含解析)

湖北省孝感市2017年中考数学真题试题一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.13- 的绝对值是( ) A .3- B .3 C .13 D .13- 【答案】C 【解析】试题分析:根据绝对值的意义即可求出答案. |﹣13|=13,故选C. 考点:查绝对值的意义2. 如图,直线a b ,直线c 与直线,a b 分别交于点,D E ,射线DF ⊥直线c ,则图中1∠互余的角有 ( )A .4 个B .3个C .2 个D .1 个 【答案】A 【解析】考点:1.平行线的性质;2.余角 3. 下列计算正确的是( )A .3332b b b = B .()()2224a a a +-=-C .()326abab = D .()()8745412a b a b a b ---=-【答案】B 【解析】故选B考点:整式的混合运算.4. 一个几何体的三视图如图所示,则这个几何体可能是 ( )A .B .C .D .【答案】C 【解析】试题分析:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱, 故选C .考点:由三视图判断几何体. 5. 不等式30240x x -≥⎧⎨+>⎩的解集在数轴上表示正确的是 ( )A .B .C .D .【答案】D【解析】可得:在数轴上表示不等式组的解集.6. 方程2131x x=+-的解是()A.53x= B.5x= C.4x= D.5x=-【答案】B【解析】试题分析:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.考点:分式方程的解法.7. 下列说法正确的是()A.调查孝感区域居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C. “打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为1 2【答案】A 【解析】考点:1.抽样调查;2.众数;3.随机事件;4.概率.8. 如图,在平面直角坐标系中,点A 的坐标为(- ,以原点O 为中心,将点A 顺时针旋转150得到点'A ,则点'A 坐标为( )A .()0,2-B .(1, C.()2,0 D .)1-【答案】D 【解析】试题分析:作AB ⊥x 轴于点B ,∴ 、OB=1,则tan ∠AOB=1∴将点A 顺时针旋转150°得到点A′后,如图所示,,∠A′OC=30°,∴A′C=1、,即,﹣1), 故选D .考点:坐标与图形的变化﹣旋转.9. 如图,在ABC ∆中,点O 是ABC ∆的内心,连接,OB OC 过点O 作EFBC 分别交,AB AC 于点,E F ,已知ABC ∆的周长为8,,BC x AEF =∆的周长为y ,则表示y 与x 的函数图象大致是 ( )A .B .C .D .【答案】B 【解析】考点:1.动点问题的函数图象;2.三角形的内心;3.平行线的性质;4.等腰三角形的判定;5.三角形的周长.10. 如图,六边形ABCDEF 的内角都相等,60,DAB AB DE ∠==,则下列结论成立的个数是 ①AB DE ;②E F A D B C;③A F C D =;④四边形ACDF 是平行四边形;⑤六边形ABCDEF 即是中心对称图形,又是轴对称图形( )A .2B .3 C.4 D .5 【答案】 【解析】试题分析:∵六边形ABCDEF 的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,故选D .考点:1.平行四边形的判定和性质;2.平行线的判定和性质;3.轴对称图形;4.中心对称图形. 二、填空题(每题3分,满分18分,将答案填在答题纸上)11. 我国是世界上人均拥有淡水资源较少的国家,全国淡水资源的总量约为27500亿3m ,应节约用水,数27500用科学记数法表示为 . 【答案】2.75×104. 【解析】试题分析:27500=2.75×104. 考点:科学记数法——表示较大的数.12. 如图所示,图1是一个边长为a 的正方形剪去一个边长为1 的小正方形,图2,是一个边长为()1a -的正方形,记图1,图2中阴影部分的面积分别为12,S S ,则12S S 可化简为 .【答案】1-1a a + 【解析】试题分析:()2122S 1=S 1a a -- =11a a +- 考点:1.平方公式的几何背景;2.分式的化简.13. 如图,将直线y x =- 沿y 轴向下平移后的直线恰好经过点()2,4A - ,且与y 轴交于点B ,在x 轴上存在一点P 使得PA PB +的值最小,则点P 的坐标为 .【答案】(23,0) 【解析】设直线AB'的解析式为y=kx+b ,把A (2,﹣4),B'(0,2)代入可得,422k b b -=+⎧⎨=⎩ ,解得32k b =-⎧⎨=⎩ ,∴直线AB'的解析式为y=﹣3x+2, 令y=0,则x=23 ,∴P (23,0).考点:1.最短路线问题;2.一次函数图象与几何变换的运用.14. 如图,四边形ABCD 是菱形,24,10,AC BD DH AB ==⊥ 于点H ,则线段BH 的长为 .【答案】5013【解析】∴5013 .考点:1.菱形的性质;2.勾股定理.15. 已知半径为2的O 中,弦2AC =,弦AD =COD ∠的度数为 .【答案】150°或30° 【解析】考点:1.垂径定理;2.解直角三角形;3.等边三角形的判定与性质;4.圆周角定理. 16. 如图,在平面直角坐标系中,,90OA AB OAB =∠=,反比例函数()0ky x x=>的图象经过,A B 两点,若点A 的坐标为(),1n ,则k 的值为 .【解析】试题分析:作AE ⊥x 轴于E ,BF ⊥x 轴于F ,过B 点作BC ⊥y 轴于C ,交AE 于G ,如图所示: 则AG ⊥BC ,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB ,在△AOE 和△BAG 中,90AOE GAB AOE AGB AO AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△AOE ≌△BAG (AAS ),∴OE=AG ,AE=BG ,考点:1.全等三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.解方程. 三、解答题 (本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.) 17.计算:22cos 45-+ . 【答案】-5 【解析】试题分析:根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可. 试题解析:原式=﹣4﹣×2=﹣4﹣2+1=﹣5. 考点:1.实数的运算;2.乘方;3.立方根;4.特殊角的三角函数值.18. 如图,已知,,AB CD AE BD CF BD =⊥⊥ ,垂足分别为,,E F BF DE = .求证AB CD.【答案】证明见解析 【解析】试题分析:根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.D.考点:全等三角形的判定与性质.19. 今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝感文化,争做文明学生”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成,,,,,A B C D E F六个等级,并绘制成如下两幅不完整的统计图表.请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m=,n=;扇形统计图中,E 等级对应的圆心角α等于度;(4分=1分+1分+1分)(2)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【答案】(1)80,12,8,36;(2)抽取两人恰好是甲和乙的概率是16.【解析】试题分析:(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.试题解析:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E 等级对应扇形的圆心角α=360°×880=36°,∴抽取两人恰好是甲和乙的概率是16. 考点:1.列表法;2.树状图法;3.扇形统计图;4.频数分布表. 20. 如图,已知矩形()ABCD AB AD < .(1)请用直尺和圆规按下列步骤作图,保留作图痕迹:①以点A 为圆心,以AD 的长为半径画弧交边BC 于点E ,连接AE ; ②作DAE ∠的平分线交CD 于点F ; ③连接EF ;(2)在(1)作出的图形中,若8,10AB AD ==,则tan FEC ∠的值为 .【答案】(1)画图见解析;(2)34. 【解析】试题分析:(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF ,可证△DAF ≌△EAF 得∠D=∠AEF=90°,即可得∠FEC=∠BAE ,从而由tan ∠FEC=tan ∠BAE=BEAB可得答案. 试题解析:(1)如图所示;考点:1.作图﹣基本作图;2.全等三角形的判定与性质;3.解直角三角形. 21. 已知关于x 的一元二次方程2640x x m -++= 有两个实数根12,x x . (1)求m 的取值范围;(2)若12,x x 满足1232x x =+ ,求m 的值. 【答案】(1)m ≤5;(2)4. 【解析】试题分析:(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m ≥0,解之即可得出结论; (2)由根与系数的关系可得x 1+x 2=6①、x 1x 2=m+4②,分x 2≥0和x 2<0可找出3x 1=x 2+2③或3x 1=﹣x 2+2④,联立①③或①④求出x 1、x 2的值,进而可求出m 的值.试题解析:(1)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2, ∴△=(﹣6)2﹣4(m+4)=20﹣4m ≥0, 解得:m ≤5,∴m 的取值范围为m ≤5.(2)∵关于x 的一元二次方程x 2﹣6x+m+4=0有两个实数根x 1,x 2, ∴x 1+x 2=6①,x 1x 2=m+4②. ∵3x 1=|x 2|+2,当x 2≥0时,有3x 1=x 2+2③, 联立①③解得:x 1=2,x 2=4,∴8=m+4,m=4;当x 2<0时,有3x 1=﹣x 2+2④,联立①④解得:x 1=﹣2,x 2=8(不合题意,舍去). ∴符合条件的m 的值为4.考点:1.根与系数的关系;2.根的判别式.22. 为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有,A B 两种型号的健身器可供选择.(1)劲松公司2015年每套A 型健身器的售价为2.5万元,经过连续两年降价,2017年每套售价为1.6 万元,求每套A 型健身器年平均下降率n ;(2)2017年市政府经过招标,决定年内采购并安装劲松公司,A B 两种型号的健身器材共80套,采购专项费总计不超过112万元,采购合同规定:每套A 型健身器售价为1.6万元,每套B 型健身器售价我()1.51n - 万元.①A 型健身器最多可购买多少套?②安装完成后,若每套A 型和B 型健身器一年的养护费分别是购买价的005 和0015 .市政府计划支出10 万元进行养护.问该计划支出能否满足一年的养护需要? 【答案】(1)每套A 型健身器材年平均下降率n 为20%;(2)①A 型健身器材最多可购买40套;②该计划支出不能满足养护的需要. 【解析】0.1m+14.4.结合函数图象的性质进行解答即可. 试题解析:(1)依题意得:2.5(1﹣n )2=1.6, 则(1﹣n )2=0.64, 所以1﹣n=±0.8,所以n 1=0.2=20%,n 2=1.8(不合题意,舍去). 答:每套A 型健身器材年平均下降率n 为20%;(2)①设A 型健身器材可购买m 套,则B 型健身器材可购买(80﹣m )套, 依题意得:1.6m+1.5×(1﹣20%)×(80﹣m )≤112, 整理,得1.6m+96﹣1.2m ≤1.2,考点:1.一次函数的应用;2.一元一次不等式的应用;3.一元二次方程的应用. 23. 如图,O 的直径10,AB = 弦6,AC ACB =∠的平分线交O 于,D 过点D 作DE AB 交CA 延长线于点E ,连接,.AD BD(1)由AB ,BD ,AD 围成的曲边三角形的面积是 ; (2)求证:DE 是O 的切线;(3)求线段DE 的长. 【答案】(1)252524π+;(2)证明见解析;(3)354.【解析】∵CD 平分∠ACB ,∴∠ABD=∠ACD=12∠ACB=45°,∴∠AOD=90°, 则曲边三角形的面积是S 扇形AOD +S △BOD =2905360π +12×5×5=252524π+;(2)由(1)知∠AOD=90°,即OD ⊥AB , ∵DE ∥AB ,∴OD ⊥DE ,∴DE 是⊙O 的切线;(3)∵AB=10、AC=6,∴,过点A 作AF ⊥DE 于点F ,则四边形AODF 是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC ,∴tan ∠EAF=tan ∠CBA , ∴EF AC AF BC =,即658EF =,∴EF=154,∴DE=DF+EF=154+5=354. 考点:1.切线的判定;2.圆周角定理;3.正方形的判定与性质;4.正切函数的定义.24. 在平面直角坐标系xoy 中,规定:抛物线()2y a x h k =-+的伴随直线为()y a x h k =-+.例如:抛物线()2213y x =+-的伴随直线为()213y x =+-,即2 1.y x =-(1)在上面规定下,抛物线()214y x =+-的顶点为 .伴随直线为 ;抛物线()214y x =+-与其伴随直线的交点坐标为 和 ;(2)如图,顶点在第一象限的抛物线()214y m x m =--与其伴随直线相交于点,A B (点A 在点B 的右侧)与x 轴交于点,.C D ①若90,CAB ︒∠= 求m 的值;②如果点(),P x y 是直线BC 上方抛物线的一个动点,PBC ∆的面积记为S ,当S 取得最大值274时,求m 的值.【答案】(1)(﹣1,﹣4);y=x ﹣3;(0,﹣3);(﹣1,﹣4);(2)①m=﹣2;②m=﹣2. 【解析】由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x ﹣3,联立抛物线与伴随直线的解析式可得()2143y x y x ⎧=+-⎪⎨=-⎪⎩ ,解得03x y =⎧⎨=-⎩ 或14x y =-⎧⎨=-⎩ ,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得()2145y m x my mx m⎧=--⎪⎨=-⎪⎩,解得14xy m=⎧⎨=-⎩或23xy m=⎧⎨=-⎩,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣12)2﹣94],考点:二次函数的综合应用.。
2019-2020学年湖北省孝感市中考数学试卷(含解析及答案)

2019-2020学年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1.(3.00分)(2018•孝感)﹣的倒数是()A.4 B.﹣4 C.D.162.(3.00分)(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°3.(3.00分)(2018•孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.4.(3.00分)(2018•孝感)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于()A.B.C.D.5.(3.00分)(2018•孝感)下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件6.(3.00分)(2018•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a57.(3.00分)(2018•孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.208.(3.00分)(2018•孝感)已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y ﹣)的值是()A.48 B.12C.16 D.129.(3.00分)(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B 点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.10.(3.00分)(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11.(3.00分)(2018•孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是千米.12.(3.00分)(2018•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为cm2.13.(3.00分)(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.14.(3.00分)(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.15.(3.00分)(2018•孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是.16.(3.00分)(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A 的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为.三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17.(6.00分)(2018•孝感)计算:(﹣3)2+|﹣4|+﹣4cos30°.18.(8.00分)(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.19.(9.00分)(2018•孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是度,样本中成绩的中位数落在类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率.20.(7.00分)(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.21.(9.00分)(2018•孝感)已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.22.(10.00分)(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B 型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.23.(10.00分)(2018•孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.24.(13.00分)(2018•孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.2019-2020学年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1.(3.00分)(2018•孝感)﹣的倒数是()A.4 B.﹣4 C.D.16【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣的倒数为:﹣4.故选:B.【点评】此题主要考查了倒数的定义,正确把握定义是解题关键.2.(3.00分)(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.(3.00分)(2018•孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.【分析】先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.【解答】解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选:B.【点评】本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.4.(3.00分)(2018•孝感)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于()A.B.C.D.【分析】先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.【解答】解:在Rt△ABC中,∵AB=10、AC=8,∴BC===6,∴sinA===,故选:A.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.5.(3.00分)(2018•孝感)下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件【分析】根据随机事件的概念以及概率的意义结合选项可得答案.【解答】解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.6.(3.00分)(2018•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.【解答】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.7.(3.00分)(2018•孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.20【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.【解答】解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.8.(3.00分)(2018•孝感)已知x +y=4,x ﹣y=,则式子(x ﹣y +)(x +y ﹣)的值是( )A .48B .12C .16D .12 【分析】先通分算加法,再算乘法,最后代入求出即可.【解答】解:(x ﹣y +)(x +y ﹣)=•=•=(x +y )(x ﹣y ),当x +y=4,x ﹣y=时,原式=4=12,故选:D .【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.9.(3.00分)(2018•孝感)如图,在△ABC 中,∠B=90°,AB=3cm ,BC=6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.【点评】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.10.(3.00分)(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB 即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11.(3.00分)(2018•孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是 1.496×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:149600000=1.496×108,故答案为:1.496×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)(2018•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.(3.00分)(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是x1=﹣2,x2=1.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.所以方程ax2=bx+c的解是x1=﹣2,x2=1故答案为x1=﹣2,x2=1.【点评】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题,属于中考常考题型.14.(3.00分)(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.15.(3.00分)(2018•孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.16.(3.00分)(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A 的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为7.【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B 作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=﹣x﹣1,∴DG=BM,∴1﹣=﹣1﹣x﹣,x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S=CE•BM=××4=7;△CEB故答案为:7.【点评】本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17.(6.00分)(2018•孝感)计算:(﹣3)2+|﹣4|+﹣4cos30°.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质进而化简得出答案.【解答】解:原式=9+4+2﹣4×=13+2﹣2=13.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00分)(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.【分析】由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.【解答】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB=DE是解题的关键.19.(9.00分)(2018•孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是72度,样本中成绩的中位数落在C类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率.【分析】(1)首先用C类别的学生人数除以C类别的人数占的百分率,求出共有多少名学生;然后根据B类别百分比求得其人数,由各类别人数和等于总人数求得D的人数,最后用360°乘以样本中D类别人数所占比例可得其圆心角度数,根据中位数定义求得答案.(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名担任校园广播“孝心伴我行”节目主持人,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)∵被调查的总人数为30÷30%=100人,则B类别人数为100×40%=40人,所以D类别人数为100﹣(4+40+30+6)=20人,则D类所对应的圆心角是360°×=72°,中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,所以中位数落在C类,补全条形图如下:(2)列表为:由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率为=.【点评】此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20.(7.00分)(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是PA=PB=PC;(2)若∠ABC=70°,求∠BPC的度数.【分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.【解答】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【点评】本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.21.(9.00分)(2018•孝感)已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.【分析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6﹣p2﹣p,结合x12+x22﹣x1x2=3p2+1,即可求出p值.【解答】解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22﹣x1x2=3p2+1,求出p值.22.(10.00分)(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B 型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.【分析】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m ﹣200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量﹣a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50﹣x)≤98000,解得:x≤40.W=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵当70<a<80时,120﹣a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,∴W的最大值是(23800﹣40a)元.【点评】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.23.(10.00分)(2018•孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.【分析】(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得=,由此构建方程即可解决问题;【解答】解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴,∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴=,∴=,∴AB=10,∴AE==6,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴=,∴=,∴BG=.【点评】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24.(13.00分)(2018•孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为(﹣6,0),点E的坐标为(2,0);抛物线C1的解析式为y=﹣.抛物线C2的解析式为y=﹣;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.【分析】(1)根据旋转的性质,可得C,E,F的坐标,根据待定系数法法求解析式;(2)①根据P点直线CA或其关于x轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P、N、M纵坐标,根据平行于y轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标,可得二次函数,根据x取值范围讨论h范围.【解答】解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(﹣6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=﹣,C2解析式为:y=﹣故答案为:(﹣6,0),(2,0),y=﹣,y=﹣(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:解得或根据题意,P点坐标为(﹣);若点P在x轴下方,∠PCA=∠ABO时,则CA1关于x轴对称的直线CA2与抛物线C1的交点即为点P设直线CA2解析式为y=k2x+b2∴解得∴直线CA2的解析式为:y=﹣x﹣2联立解得或由题意,点P坐标为(﹣)∴符合条件的点P为(﹣)或(﹣)②设直线BC的解析式为:y=kx+b∴解得∴设直线BC的解析式为:y=﹣x﹣6。
2019年湖北省孝感市中考数学试卷(解析版)

2019年湖北省孝感市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算﹣19+20等于()A.﹣39 B.﹣1 C.1 D.392.如图,直线l1∥l2,直线l3与l1,l2分别交于点A,C,BC⊥l3交l1于点B,若∠1=70°,则∠2的度数为()A.10°B.20°C.30°D.40°3.下列立体图形中,左视图是圆的是()A.B.C.D.4.下列说法错误的是()A.在一定条件下,可能发生也可能不发生的事件称为随机事件B.一组数据中出现次数最多的数据称为这组数据的众数C.方差可以刻画数据的波动程度,方差越大,波动越小;方差越小,波动越大D.全面调查和抽样调查是收集数据的两种方式5.下列计算正确的是()A.x7÷x5=x2B.(xy2)2=xy4C.x2•x5=x10D.(+)(﹣)=b﹣a6.公元前3世纪,古希腊科学家阿基米德发现了杠杆平衡,后来人们把它归纳为“杠杆原理”,即:阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,则动力F(单位:N)关于动力臂l(单位:m)的函数解析式正确的是()A.F=B.F=C.F=D.F=7.已知二元一次方程组,则的值是()A.﹣5 B.5 C.﹣6 D.68.如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时针旋转90°得到点P',则P'的坐标为()A.(3,2)B.(3,﹣1)C.(2,﹣3)D.(3,﹣2)9.一个装有进水管和出水管的空容器,从某时刻开始4min内只进水不出水,容器内存水8L;在随后的8min内既进水又出水,容器内存水12L;接着关闭进水管直到容器内的水放完.若每分钟进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的函数关系的图象大致的是()A.B.C.D.10.如图,正方形ABCD中,点E、F分别在边CD,AD上,BE与CF交于点G.若BC=4,DE=AF=1,则GF的长为()A.B.C.D.二、填空题(共6小题)11.中国“神威•太湖之光”计算机最高运行速度为1250 000 000亿次/秒,将数1250 000 000用科学记数法可表示为.12.方程=的解为.13.如图,在P处利用测角仪测得某建筑物AB的顶端B点的仰角为60°,点C的仰角为45°,点P到建筑物的距离为PD=20米,则BC=﹣米.14.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B 部分所对应的圆心角的度数是.15.刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积.如图,若用圆的内接正十二边形的面积S1来近似估计⊙O的面积S,设⊙O的半径为1,则S﹣S1=﹣.16.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.三、解答题(共8小题)17.计算:|﹣1|﹣2sin60°+()﹣1+.18.如图,已知∠C=∠D=90°,BC与AD交于点E,AC=BD,求证:AE=BE.19.一个不透明的袋子中装有四个小球,上面分别标有数字﹣2,﹣1,0,1,它们除了数字不同外,其它完全相同.(1)随机从袋子中摸出一个小球,摸出的球上面标的数字为正数的概率是.(2)小聪先从袋子中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标;然后放回搅匀,接着小明从袋子中随机摸出一个小球,记下数字作为点M的纵坐标.如图,已知四边形ABCD的四个顶点的坐标分别为A(﹣2,0),B(0,﹣2),C(1,0),D(0,1),请用画树状图或列表法,求点M落在四边形ABCD所围成的部分内(含边界)的概率.20.如图,Rt△ABC中,∠ACB=90°,一同学利用直尺和圆规完成如下操作:①以点C为圆心,以CB为半径画弧,交AB于点G;分别以点G、B为圆心,以大于GB的长为半径画弧,两弧交点K,作射线CK;②以点B为圆心,以适当的长为半径画弧,交BC于点M,交AB的延长线于点N;分别以点M、N为圆心,以大于MN的长为半径画弧,两弧交于点P,作直线BP交AC的延长线于点D,交射线CK于点E.请你观察图形,根据操作结果解答下列问题;(1)线段CD与CE的大小关系是;(2)过点D作DF⊥AB交AB的延长线于点F,若AC=12,BC=5,求tan∠DBF的值.21.已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.(1)若a为正整数,求a的值;(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.22.为加快“智慧校园”建设,某市准备为试点学校采购一批A、B两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?23.如图,点I是△ABC的内心,BI的延长线与△ABC的外接圆⊙O交于点D,与AC交于点E,延长CD、BA相交于点F,∠ADF的平分线交AF于点G.(1)求证:DG∥CA;(2)求证:AD=ID;(3)若DE=4,BE=5,求BI的长.24.如图1,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax﹣8a与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C(0,﹣4).(1)点A的坐标为﹣,点B的坐标为,线段AC的长为,抛物线的解析式为﹣﹣.(2)点P是线段BC下方抛物线上的一个动点.①如果在x轴上存在点Q,使得以点B、C、P、Q为顶点的四边形是平行四边形.求点Q的坐标.②如图2,过点P作PE∥CA交线段BC于点E,过点P作直线x=t交BC于点F,交x轴于点G,记PE=f,求f关于t的函数解析式;当t取m和4﹣m(0<m<2)时,试比较f的对应函数值f1和f2的大小.2019年湖北省孝感市中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:﹣19+20=1.故选:C.【知识点】有理数的加法2.【分析】根据平行线的性质和垂直的定义解答即可.【解答】解:∵l1∥l2,∴∠1=∠CAB=70°,∵BC⊥l3交l1于点B,∴∠ACB=90°,∴∠2=180°﹣90°﹣70°=20°,故选:B.【知识点】垂线、平行线的性质3.【分析】左视图是从物体左面看,所得到的图形.【解答】解:A、圆锥的左视图是等腰三角形,故此选项不合题意;B、圆柱的左视图是矩形,故此选项不合题意;C、三棱柱的左视图是矩形,故此选项不合题意;D、球的左视图是圆形,故此选项符合题意;故选:D.【知识点】简单几何体的三视图4.【分析】分别根据随机事件的定义、众数的定义、方差的意义以及调查方式判断即可.【解答】解:A.在一定条件下,可能发生也可能不发生的事件称为随机事件,正确,故选项A不合题意;B.一组数据中出现次数最多的数据称为这组数据的众数,正确,故选项B不合题意;C.方差可以刻画数据的波动程度,方差越大,波动越大;方差越小,波动越小.故选项C符合题意;D.全面调查和抽样调查是收集数据的两种方式,正确,故选项D不合题意.故选:C.【知识点】方差、众数、随机事件、全面调查与抽样调查、命题与定理5.【分析】根据同底数幂的除法法则判断A;根据积的乘方法则判断B;根据同底数幂的乘法法则判断C;根据平方差公式以及二次根式的性质判断D.【解答】解:A、x7÷x5=x2,故本选项正确;B、(xy2)2=x2y4,故本选项错误;C、x2•x5=x7,故本选项错误;D、(+)(﹣)=a﹣b,故本选项错误;故选:A.【知识点】同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方、二次根式的混合运算6.【分析】直接利用阻力×阻力臂=动力×动力臂,进而将已知量据代入得出函数关系式.【解答】解:∵阻力×阻力臂=动力×动力臂.小伟欲用撬棍撬动一块石头,已知阻力和阻力臂分别是1200N和0.5m,∴动力F(单位:N)关于动力臂l(单位:m)的函数解析式为:1200×0.5=Fl,则F=.故选:B.【知识点】反比例函数的应用7.【分析】解方程组求出x、y的值,再把所求式子化简后代入即可.【解答】解:,②﹣①×2得,2y=7,解得,把代入①得,+y=1,解得,∴=.故选:C.【知识点】解二元一次方程组8.【分析】作PQ⊥y轴于Q,如图,把点P(2,3)绕原点O顺时针旋转90°得到点P'看作把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,利用旋转的性质得到∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,从而可确定P′点的坐标.【解答】解:作PQ⊥y轴于Q,如图,∵P(2,3),∴PQ=2,OQ=3,∵点P(2,3)绕原点O顺时针旋转90°得到点P'相当于把△OPQ绕原点O顺时针旋转90°得到△OP'Q′,∴∠P′Q′O=90°,∠QOQ′=90°,P′Q′=PQ=2,OQ′=OQ=3,∴点P′的坐标为(3,﹣2).故选:D.【知识点】坐标与图形变化-旋转9.【分析】根据实际问题结合四个选项确定正确的答案即可.【解答】解:∵从某时刻开始4min内只进水不出水,容器内存水8L;∴此时容器内的水量随时间的增加而增加,∵随后的8min内既进水又出水,容器内存水12L,∴此时水量继续增加,只是增速放缓,∵接着关闭进水管直到容器内的水放完,∴水量逐渐减少为0,综上,A选项符合,故选:A.【知识点】函数的图象10.【分析】证明△BCE≌△CDF(SAS),得∠CBE=∠DCF,所以∠CGE=90°,根据等角的余弦可得CG的长,可得结论.【解答】解:正方形ABCD中,∵BC=4,∴BC=CD=AD=4,∠BCE=∠CDF=90°,∵AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG=,∴,CG=,∴GF=CF﹣CG=5﹣=,故选:A.【知识点】全等三角形的判定与性质、正方形的性质二、填空题(共6小题)11.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:将数1250 000 000用科学记数法可表示为1.25×109.故答案为:1.25×109.【知识点】科学记数法—表示较大的数12.【分析】观察可得方程最简公分母为2x(x+3).去分母,转化为整式方程求解.结果要检验.【解答】解:两边同时乘2x(x+3),得x+3=4x,解得x=1.经检验x=1是原分式方程的根.【知识点】解分式方程13.【分析】根据正切的定义求出BD,根据等腰直角三角形的性质求出CD,结合图形计算,得到答案.【解答】解:在Rt△PBD中,tan∠BPD=,则BD=PD•tan∠BPD=20,在Rt△PBD中,∠CPD=45°,∴CD=PD=20,∴BC=BD﹣CD=20﹣20,故答案为:(20﹣20).【知识点】解直角三角形的应用-仰角俯角问题14.【分析】先由A类别人数及其所占百分比求得总人数,再由各类别人数之和等于总人数求出B类别人数,继而用360°乘以B类别人数占总人数的比例即可得.【解答】解:∵被调查的总人数为9÷15%=60(人),∴B类别人数为60﹣(9+21+12)=18(人),则扇形统计图B部分所对应的圆心角的度数是360°×=108°,故答案为:108°.【知识点】扇形统计图、条形统计图15.【分析】根据圆的面积公式得到⊙O的面积S=3.14,求得圆的内接正十二边形的面积S1=12××1×1×sin30°=3,即可得到结论.【解答】解:∵⊙O的半径为1,∴⊙O的面积S=π,∴圆的内接正十二边形的中心角为=30°,∴过A作AC⊥OB,∴AC=OA=,∴圆的内接正十二边形的面积S1=12××1×=3,∴则S﹣S1=π﹣3,故答案为:π﹣3.【知识点】正多边形和圆、数学常识16.【分析】设D(2m,2n),根据题意A(3m,0),C(0,3n),B(3m,3n),即可得出9=3m•3n,k=2m•2n=4mn,解得mn=1,由E(3m,n),F(m,3n),求得BE、BF,然后根据三角形面积公式得到S△BEF=BE•BF=mn=.【解答】解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m,n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,∴S△BEF=BE•BF=mn=故答案为.【知识点】反比例函数系数k的几何意义、反比例函数的性质、反比例函数图象上点的坐标特征三、解答题(共8小题)17.【分析】原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂法则,以及立方根定义计算即可求出值.【解答】解:原式=﹣1﹣2×+6﹣3=2.【知识点】特殊角的三角函数值、实数的运算、负整数指数幂18.【分析】由HL证明Rt△ACB≌Rt△BDA得出∠ABC=∠BAD,由等腰三角形的判定定理即可得出结论.【解答】证明:∵∠C=∠D=90°,∴△ACB和△BDA是直角三角形,在Rt△ACB和Rt△BDA中,,∴∠ABC=∠BAD,∴AE=BE.【知识点】全等三角形的判定与性质19.【分析】(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:(1)在﹣2,﹣1,0,1中正数有1个,∴摸出的球上面标的数字为正数的概率是,故答案为:.(2)列表如下:﹣2﹣101﹣2(﹣2,﹣2)(﹣1,﹣2)(0,﹣2)(1,﹣2)﹣1(﹣2,﹣1)(﹣1,﹣1)(0,﹣1)(1,﹣1)0(﹣2,0)(﹣1,0)(0,0)(1,0)1(﹣2,1)(﹣1,1)(0,1)(1,1)由表知,共有16种等可能结果,其中点M落在四边形ABCD所围成的部分内(含边界)的有:(﹣2,0)、(﹣1,﹣1)、(﹣1,0)、(0,﹣2)、(0,﹣1)、(0,0)、(0,1)、(1,0)这8个,所以点M落在四边形ABCD所围成的部分内(含边界)的概率为.【知识点】概率公式、列表法与树状图法20.【分析】(1)由作图知CE⊥AB,BD平分∠CBF,据此得∠1=∠2=∠3,结合∠CEB+∠3=∠2+∠CDE=90°知∠CEB=∠CDE,从而得出答案;(2)证△BCD≌△BFD得CD=DF,从而设CD=DF=x,求出AB==13,知sin∠DAF==,即=,解之求得x=,结合BC=BF=5可得答案.【解答】解:(1)CD=CE,由作图知CE⊥AB,BD平分∠CBF,∴∠1=∠2=∠3,∵∠CEB+∠3=∠2+∠CDE=90°,∴∠CEB=∠CDE,∴CD=CE,故答案为:CD=CE;(2)∵BD平分∠CBF,BC⊥CD,BF⊥DF,∴BC=BF,∠CBD=∠FBD,在△BCD和△BFD中,∵,∴△BCD≌△BFD(AAS),∴CD=DF,设CD=DF=x,在Rt△ACB中,AB==13,∴sin∠DAF==,即=,解得x=,∵BC=BF=5,∴tan∠DBF==×=.【知识点】角平分线的性质、作图—复杂作图、全等三角形的判定与性质、解直角三角形21.【分析】(1)根据关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,得到△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,于是得到结论;(2)根据x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,代入x12+x22﹣x1x2=16,解方程即可得到结论.【解答】解:(1)∵关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根,∴△=[﹣2(a﹣1)]2﹣4(a2﹣a﹣2)>0,解得:a<3,∵a为正整数,(2)∵x1+x2=2(a﹣1),x1x2=a2﹣a﹣2,∵x12+x22﹣x1x2=16,∴(x1+x2)2﹣x1x2=16,∴[﹣2(a﹣1)]2﹣3(a2﹣a﹣2)=16,解得:a1=﹣1,a2=6,∵a<3,∴a=﹣1.【知识点】根与系数的关系、根的判别式22.【分析】(1)直接利用今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【解答】解:(1)设今年每套A型一体机的价格为x万元,每套B型一体机的价格为y万元,由题意可得:,解得:,答:今年每套A型的价格各是1.2万元、B型一体机的价格是1.8万元;(2)设该市明年购买A型一体机m套,则购买B型一体机(1100﹣m)套,由题意可得:1.8(1100﹣m)≥1.2(1+25%)m,解得:m≤600,设明年需投入W万元,W=1.2×(1+25%)m+1.8(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小,∵m≤600,∴当m=600时,W有最小值﹣0.3×600+1980=1800,故该市明年至少需投入1800万元才能完成采购计划.【知识点】一元一次不等式的应用、二元一次方程组的应用23.【分析】(1)根据三角形内心的性质得∠2=∠7,再利用圆内接四边形的性质得∠ADF=∠ABC,则∠1=∠2,从而得到∠1=∠3,则可判断DG∥AC;(2)根据三角形内心的性质得∠5=∠6,然后证明∠4=∠DAI得到DA=DI;(3)证明△DAE∽△DBA,利用相似比得到AD=6,则DI=6,然后计算BD﹣DI即可.【解答】(1)证明:∵点I是△ABC的内心,∴∠2=∠7,∵DG平分∠ADF,∴∠1=∠ADF,∵∠ADF=∠ABC,∴∠1=∠2,∵∠3=∠2,∴DG∥AC;(2)证明:∵点I是△ABC的内心,∴∠5=∠6,∵∠4=∠7+∠5=∠3+∠6,即∠4=∠DAI,∴DA=DI;(3)解:∵∠3=∠7,∠ADE=∠BAD,∴△DAE∽△DBA,∴AD:DB=DE:DA,即AD:9=4:AD,∴AD=6,∴DI=6,∴BI=BD﹣DI=9﹣6=3.【知识点】三角形的内切圆与内心、圆周角定理、三角形的外接圆与外心24.【分析】(1)由题意得:﹣8a=﹣4,故a=,即可求解;(2)分BC是平行四边形的一条边时、BC是平行四边形的对角线时,两种情况分别求解即可.(3)证明△EPH∽△CAO,∴,即:,则EP=PH,即可求解.【解答】解:(1)由题意得:﹣8a=﹣4,故a=,故抛物线的表达式为:y=x2﹣x﹣4,令y=0,则x=4或﹣2,即点A、B的坐标分别为(﹣2,0)、(4,0),则AC=2,故答案为:(﹣2,0)、(4,0)、2、y=x2﹣x﹣4;(2)①当BC是平行四边形的一条边时,如图所示,点C向右平移4个单位、向上平移4个单位得到点B,设:点P(n,n2﹣n﹣4),点Q(m,0),则点P向右平移4个单位、向上平移4个单位得到点Q,即:n+4=m,n2﹣n﹣4+4=0,解得:m=4或6(舍去4),即点Q(6,0);②当BC是平行四边形的对角线时,设点P(m,n)、点Q(s,0),其中n=m2﹣m﹣4,由中心公式可得:m+s=﹣2,n+0=4,解得:s=2或4(舍去4),故点Q(2,0);故点Q的坐标为(2,0)或(6,0);(3)如图2,过点P作PH∥x轴交BC于点H,∵GP∥y轴,∴∠HEP=∠ACB,∵PH∥x轴,∴∠PHO=∠AOC,∴△EPH∽△CAO,∴,即:,则EP=PH,设点P(t,y P),点H(x H,y P),则t2﹣t﹣4=x H﹣4,则x H=t2﹣t,f=PH=[t﹣(t2﹣t)]=﹣(t2﹣4t),当t=m时,f1=(m2﹣4m),当t=4﹣m时,f2=﹣(m2﹣2m),则f1﹣f2=﹣m(m﹣),则0<m<2,∴f1﹣f2>0,f1>f2.【知识点】二次函数综合题。
2020年湖北省孝感市中考数学试卷-解析版

2020年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A. −2℃B. +2℃C. +3℃D. −3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A. 40°B. 50°C. 60°D. 140°3.下列计算正确的是()A. 2a+3b=5abB. (3ab)2=9ab2C. 2a⋅3b=6abD. 2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为A. 4,6B. 6,6C. 4,5D. 6,56.已知x=√5−1,y=√5+1,那么代数式x 3−xy2x(x−y)的值是()A. 2B. √5C. 4D. 2√57.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A. I=24RB. I=36RC. I=48RD. I=64R8.将抛物线C1:y=x2−2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A. y=−x2−2B. y=−x2+2C. y=x2−2D. y=x2+29.如图,在四边形ABCD中,AD//BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A. B.C. D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A. 54B. 154C. 4D. 92二、填空题(本大题共5小题,共15.0分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.有一列数,按一定的规律排列成13,−1,3,−9,27,−81,….若其中某三个相邻数的和是−567,则这三个数中第一个数是______.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为______.15.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx (k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、解答题(本大题共9小题,共75.0分)16.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.17. 计算:√−83+|√3−1|−2sin60°+(14)0.18. 如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF.连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .19. 有4张看上去无差别的卡片,上面分别写有数−1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20. 如图,在平面直角坐标系中,已知点A(−1,5),B(−3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为______;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos∠BCE 的值为______;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为______.21.已知关于x的一元二次方程x2−(2k+1)x+12k2−2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1−x2=3,求k的值.22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出DFDC的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若α<60°,且DFDC =23,DE=4,求BE的长.24.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a−6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED=4,求a的值和CE的长;3(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设−5<t≤m(m<0),求f的最大值.答案和解析1.【答案】A【解析】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作−2℃.故选:A.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】B【解析】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°−40°=50°,∴∠AOC=∠BOD=50°.故选:B.直接利用垂直的定义结合对顶角的性质得出答案.此题主要考查了垂线以及对顶角,正确得出∠BOD的度数是解题关键.3.【答案】C【解析】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a⋅3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.根据单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则进行计算即可.本题考查单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则,掌握计算法则是正确计算的前提.4.【答案】C【解析】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.从左侧看几何体所得到的图形就是该几何体的左视图,从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C符合题意.本题考查简单几何体的三视图,明确三种视图的形状和大小是正确判断的前提.5.【答案】B【解析】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.根据中位数、众数的计算方法,分别求出结果即可.本题考查中位数、众数的计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.【答案】D【解析】解:原式=x(x+y)(x−y)x(x−y)=x+y当x=√5−1,y=√5+1,原式=√5−1+√5+1=2√5.故选:D.先将分式化简,再代入值求解即可.本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.7.【答案】C【解析】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48R.故选:C.直接利用待定系数法求出反比例函数解析式即可.此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.8.【答案】A【解析】解:∵抛物线C1:y=x2−2x+3=(x−1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,−2),∴抛物线C3的解析式为y=−x2−2,故选:A.根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的得到坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.本题主要考查了二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.9.【答案】D【解析】解:①当点P在AB上运动时,y=12AH×PH=12×APsinA×APcosA=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x−4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2−x)=(3+√3)(12−x),为一次函数;故选:D.分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.10.【答案】B【解析】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5−x=BF,FG=8−x,∴EG=8−x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8−x)2,解得x=154,∴CE的长为154,故选:B.连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5−x=BF,FG=EG=8−x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.【答案】1×106【解析】解:100万=1000000=1×106,故答案:1×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.12.【答案】−81【解析】解:设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,依题意,得:x−3x+9x=−567,解得:x=−81.故答案为:−81.设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,根据三个数之和为−567,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用以及数字的变化规律,找准等量关系,正确列出一元一次方程是解题的关键.13.【答案】(53√3−1.6)【解析】解:如图,在Rt△DEA中,∵cos∠EDA=DEDA,∴DA=5cos45∘=5√2(m);在Rt△BCF中,∵cos∠BCF=CFCB,∴CB=5cos30∘=10√33(m),∴BF=12BC=5√33(m),∵AB+AE=EF+BF,∴AB=3.4+5√33−5=5√33−1.6(m).答:AB的长为(53√3−1.6)m.故答案为:(53√3−1.6),如图,在Rt△DEA中,利用45°的余弦可计算出DA=5√2m;在Rt△BCF中利用30度的余弦可计算出CB10√33m,则BF=12BC=5√33m,然后利用AB+AE=EF+BF计算AB的长.本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).14.【答案】√3−12【解析】解:设直角三角形另一条直角边为x,依题意有2x2=12m2,解得x=12m,由勾股定理得(12m)2+(n+12m)2=m2,m2−2mn−2n2=0,解得m1=(−1−√3)n(舍去),m2=(−1+√3)n,则nm 的值为√3−12.故答案为:√3−12.可设直角三角形另一条直角边为x,根据S1=S2,可得2x2=12m2,则x=√22m,再根据勾股定理得到关于m,n的方程,可求nm的值.本题考查了勾股定理的证明,根据正方形的面积公式和三角形形的面积公式得出它们之间的关系是解题的关键.15.【答案】132【解析】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴S△AOMS△ODN =(OAOD)2,∵A点在双曲线y=4x ,ACBD=23,∴S△AOM=12×4=2,OAOD=23,∴2S△ODN =(23)2,∴S△ODN=92,∵D点在双曲线y=kx(k<0)上,∴12|k|=92,∴k=−9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=12×4+12×9=132,故答案为132.作AM⊥x轴于M,DN⊥x轴于N,易证得△AOM∽△ODN,根据系数三角形的性质即可求得k的值,然后根据反比例函数系数k的几何意义即可求得△OEF的面积.本题考查了反比例函数系数k的几何意义,菱形的性质,作出辅助线构建相似三角形是解题的关键.16.【答案】336【解析】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100−10−41−100×21%=28(人),1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.根据A类学生的人数和所占的百分比,可以求得本次抽取的学生,然后即可计算出B类学生,从而可以计算出该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=−2+√3−1−√3+1=−2.【解析】分别根据立方根的定义,绝对值的定义,特殊角的三角函数值以及任何非零数的零次幂定义1计算即可.本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AB//CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,{∠E=∠FBE=DF∠EBG=∠FDH,∴△BEG≌△DFH(ASA),∴EG=FH.【解析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.19.【答案】12【解析】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)=616=38.用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.20.【答案】(2,−4)√55(0,4)【解析】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,−4);(2)如图所示,线段AE即为所求,cos∠BCE=CEBC =√10√50=√55;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,−4);√55;(0,4).(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A′,连接A′B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A′B的解析式,令x=0,进而得到点F的坐标.本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵△=[−(2k+1)]2−4×1×(12k2−2)=4k2+4k+1−2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,∵x1−x2=3,∴(x1−x2)2=9,∴(x1+x2)2−4x1x2=9,∴(2k+1)2−4×(12k2−2)=9,化简得k2+2k=0,解得k=0或k=−2.【解析】(1)根据根的判别式得出△=[−(2k+1)]2−4×1×(12k2−2)=2(k+1)2+ 7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,由x1−x2=3知(x1−x2)2=9,即(x1+x2)2−4x1x2=9,从而列出关于k的方程,解之可得答案.本题主要考查根与系数的关系、根的判别式,解题的关键是掌握x1,x2是方程x2+px+ q=0的两根时,x1+x2=−p,x1x2=q.22.【答案】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:270 3x =60x+5×3,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,∴40−3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40−3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.【解析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg 农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.本题考查了一次函数的应用、分式方程的应用、一元一次不等式的应用.本题属于中档题,难度不大,解决该体系题目时,找准数量关系是解题的突破点.23.【答案】3√323π【解析】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°−60°−60°=60°=∠OAD,∴OA//DF,∴∠F=180°−∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴AD⏜=CD⏜,∴AD=CD,∴CD=2DF,∴DFDC =12,故答案为:12;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF −S扇形OAD=12⋅AF⋅(DF+OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD⏜=CD⏜,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵{∠DAF=∠DAE AD=AD∠ADF=∠ADE,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵DFDC =23,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴CDDB =DECD,即6BD=46,∴BD=9,∴BE=DB−DE=9−5=5.(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD 是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF−S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.24.【答案】(−3,0) (−1,0) (0,18) (−2,−6)【解析】解:(1)当a =6时,抛物线的表达式为:y =6x 2+24x +18, 令y =0,则x =−1或−3;当x =0时,y =18,函数的对称轴为x =−2, 故点A 、B 、C 、D 的坐标分别为(−3,0)、(−1,0)、(0,18)、(−2,−6); 故答案为:(−3,0)、(−1,0)、(0,18)、(−2,−6);(2)y =ax 2+4ax +4a −6,令x =0,则y =4a −6,则点C(0,4a −6), 函数的对称轴为x =−2,故点D 的坐标为(−2,−6),由点C 、D 的坐标得,直线CD 的表达式为:y =2ax +4a −6, 令y =0,则x =3a −2,故点E(3a −2,0),则OE =3a −2, tan∠AED =OCOE =4a−63a−2=43,解得:a =23,故点C 、E 的坐标分别为(0,−103)、(52,0), 则CE =√(103)2+(52)2=256;(3)①如图,作PF 与ED 的延长线交于点J ,由(2)知,抛物线的表达式为:y =23x 2+83x −103,故点A 、C 的坐标分别为(−5,0)、(0,−103),则点N(0,−53), 由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P(t,23t 2+83t −103),则点F(t,−13t −53); 则PF =−23t 2−3t +53,由点E(52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103,则点J(t,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF//y 轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,f=PF+FH=−23t2−3t+53+(−t+1)=−23t2−4t+83;②f=−23t2−4t+83=−23(t+3)2+263(−5<t≤m且m<0);∴当−5<m<−3时,f max=−23m2−4m+83;当−3≤m<0时,f max=263.(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a−6,进而求出点E(3a−2,0),利用tan∠AED=OCOE=4a−63a−2=43,即可求解;(3)①证明△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,即可求解;②f=−23(t+3)2+263(−5<t≤m且m<0),即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似等,综合性较强,难度较大.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选(C)【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.下列计算正确的是()A.b3b3=2b3B.=a2﹣4C.﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC 分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.计算:﹣22++cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.01×40+14.4=10.4(万元).∵m=40时,y最小值=﹣又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线; (3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S 扇形AOD+S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证; (3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10, ∴∠ACB=90°,AO=BO=DO=5, ∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a (x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。