大学物理课本答案

合集下载

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

r r r r r r rr、⎰ dt⎰0 dx = ⎰ v e⎰v v1122v v d tv v d tvg 2 g h d tdt [v 2 + ( g t ) 2 ] 12 (v 2 + 2 g h ) 12第一章质点运动学1、(习题 1.1):一质点在 xOy 平面内运动,运动函数为 x = 2 t, y = 4 t 2 - 8 。

(1)求质点 的轨道方程;(2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。

解:(1)由 x=2t 得,y=4t 2-8可得: r y=x 2-8r 即轨道曲线(2)质点的位置 : r = 2ti + (4t 2 - 8) jr r rr r 由 v = d r / d t 则速度: v = 2i + 8tjr r rr 由 a = d v / d t 则加速度: a = 8 jrr r r r r r r 则当 t=1s 时,有 r = 2i - 4 j , v = 2i + 8 j , a = 8 j r当 t=2s 时,有r = 4i + 8 j , v = 2i +16 j , a = 8 j 2 (习题 1.2): 质点沿 x 在轴正向运动,加速度 a = -kv , k 为常数.设从原点出发时速度为 v ,求运动方程 x = x(t ) .解:dv = -kvdt v1 v 0 vd v = ⎰ t - k dt 0v = v e - k tdx x= v e -k t0 t0 -k t d t x = v0 (1 - e -k t )k3、一质点沿 x 轴运动,其加速度为 a = 4 t (SI),已知 t = 0 时,质点位于 x 0=10 m 处,初速 度 v 0 = 0.试求其位置和时间的关系式.解:a = d v /d t = 4 td v = 4 t d tv 0d v = ⎰t 4t d t v = 2 t 2v = d x /d t = 2 t 2⎰x d x = ⎰t 2t 2 d t x = 2 t 3 /3+10 (SI)x4、一质量为 m 的小球在高度 h 处以初速度 v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; d r d v d v (3)落地前瞬时小球的 ,,.d td td t解:(1)x = v t式(1)v v v y = h - gt 2 式(2)r (t ) = v t i + (h - gt 2 ) j0 (2)联立式(1)、式(2)得y = h -vd r(3) = v i - gt j而落地所用时间t =0 gx 22v 22hgvd r所以 = v i - 2gh jvd vdv g 2t= - g j v = v 2 + v 2 = v 2 + (-gt) 2= =x y 0 0vv v d rv d v 2) v = [(2t )2+ 4] 2 = 2(t 2+ 1)2t t 2 + 1, V a = a - a = m + M m + Mvg gvv v 5、 已知质点位矢随时间变化的函数形式为 r = t 2i + 2tj ,式中 r 的单位为 m , 的单位为 s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理教材课后习题答案

大学物理教材课后习题答案

P31 第一章 习题答案3. 一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度. 解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v4.有一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2) 第2秒末的瞬时速度; (3) 第2秒内的路程.解:(1) 5.0/-==∆∆t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s(3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m5. 一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间. 解: ct b t S +==d /d v c t a t ==d /d v()R ct b a n /2+=根据题意: a t = a n 即 ()R ct b c /2+=解得 cbc R t -=6.由楼窗口以水平初速度0v ϖ射出一发子弹,取枪口为原点,沿0v ϖ方向为x 轴,竖直向下为y 轴,并取发射时刻t 为0,试求:(1) 子弹在任一时刻t 的位置坐标及轨迹方程; (2) 子弹在t 时刻的速度,切向加速度和法向加速度. 解:(1) 2021gt y t x == , v 轨迹方程是: 202/21v g x y =(2) v x = v 0,v y = g t ,速度大小为: 222022t g y x +=+=v v v v方向为:与x 轴夹角 θ = tg -1( gt /v 0)22202//d d t g t g t a t +==v v 与v ϖ同向.xyOθ 0v ϖ t a ϖn a ϖg ϖ()222002/122/t g g a g a t n +=-=v v 方向与t a ϖ垂直.7. (1)对于在xy 平面内,以原点O 为圆心作匀速圆周运动的质点,试用半径r 、角速度ω和单位矢量i ϖ、j ϖ表示其t 时刻的位置矢量.已知在t = 0时,y = 0, x = r , 角速度ω如图所示;(2) 由(1)导出速度 v ϖ与加速度 a ϖ的矢量表示式;(3)试证加速度指向圆心.解:(1) j t r i t r j y i x r ϖϖϖϖϖsin cos ωω+=+=(2) j t r i t r trϖϖϖϖ cos sin d d ωωωω+-==vj t r i t r ta ϖϖϖϖ sin cos d d 22ωωωω--==v(3) ()r j t r i t r a ϖϖϖϖ sin cos 22ωωωω-=+-= 这说明 a ϖ与 r ϖ方向相反,即a ϖ指向圆心8. 一男孩乘坐一铁路平板车,在平直铁路上匀加速行驶,其加速度为a ,他向车前进的斜上方抛出一球,设抛球过程对车的加速度a 的影响可忽略,如果他不必移动在车中的位置就能接住球,则抛出的方向与竖直方向的夹角θ 应为多大?解:设抛出时刻车的速度为0v ϖ,球的相对于车的速度为/0v ϖ,与竖直方向成θ角.抛射过程中,在地面参照系中,车的位移20121at t x +=∆v ① 球的位移 ()t x θsin /002v v +=∆ ② ()2/0221cos gt t y -=∆θv ③小孩接住球的条件 0221=∆∆=∆y x x ,即 ()t at /θsin 2102v = , ()t gt θcos 21/02v =两式相比得 tg /θ=g a ,∴ ()g a /tg 1-=θ9.一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问:(1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 抛出后上升高度9.4522='=gh v m/s离地面高度 H = (45.9+10) m =55.9 m (2) 球回到电梯上时电梯上升高度=球上升高度 2021)(gt t t -+=v v v xyO ωr(x ,y )j ϖ iϖθa v 0/0v ρ08.420==gt v s 10.一球从高h 处落向水平面,经碰撞后又上升到h 1处,如果每次碰撞后与碰撞前速度之比为常数,问球在n 次碰撞后还能升多高? 解: g h /212v = ;;/21;/21222211ΛΛ v v g h g h ==g h n n /212v =由题意,各次碰撞后、与碰撞前速度之比均为k ,有v v v v v v 2122212222212/;;/;/-===n n k k k ΛΛ将这些方程连乘得出:nn n n n hkh h h k 2222//=== , v v又v v h h k //12212== 故()111//-==n n nn h h h h h h11.一物体悬挂在弹簧上作竖直振动,其加速度为-=a ky ,式中k 为常量,y 是以平衡位置为原点所测得的坐标. 假定振动的物体在坐标y 0处的速度为v 0,试求速度v 与坐标y 的函数关系式.解: yt y y t a d d d d d d d d v v v v ===又 -=a ky ∴ -k =y v d v / d y⎰⎰+=-=-C ky y ky 222121 , d d v v v已知 =y y 0 ,=v v 0 则 20202121ky C --=v)(220202y y k -+=v v12 有一宽为l 的大江,江水由北向南流去.设江中心流速为u 0,靠两岸的流速为零.江中任一点的流速与江中心流速之差是和江心至该点距离的平方成正比.今有相对于水的速度为0v ϖ的汽船由西岸出发,向东偏北45°方向航行,试求其航线的轨迹方程以及到达东岸的地点.解:以出发点为坐标原点,向东取为x 轴,向北取为y 轴,因流速为-y 方向,由题意可得 u x = 0u y = a (x -l /2)2+b 令 x = 0, x = l 处 u y = 0, x = l /2处 u y =-u 0, 代入上式定出a 、b,而得 ()x x l lu u y --=204 船相对于岸的速度v ϖ(v x ,v y )明显可知是 2/0v v =x y y u +=)2/(0v v , 将上二式的第一式进行积分,有 t x 20v =还有,y45 °v 0 u 0xlx y t x x y t y y d d 2d d d d d d 0v v ====()x x l lu --20042v 即 ()x x l l u x y--=020241d d v因此,积分之后可求得如下的轨迹(航线)方程:'32020032422x l u x l u x y v v +-= 到达东岸的地点(x ',y ' )为 ⎪⎪⎭⎫⎝⎛-=='='=003231v , u l y y l x lx13.当一列火车以36 km/h 的速率水平向东行驶时,相对于地面匀速竖直下落的雨滴,在列车的窗子上形成的雨迹与竖直方向成30°角.(1) 雨滴相对于地面的水平分速有多大?相对于列车的水平分速有多大? (2) 雨滴相对于地面的速率如何?相对于列车的速率如何? 解:(1) 题给雨滴相对于地面竖直下落,故相对于地面的水平分速为零.雨滴相对于列车的水平分速与列车速度等值反向为10 m/s ,正西方向.(2) 设下标W 指雨滴,t 指列车,E 指地面,则有WE v ϖ = t W v ϖ+ v ϖtE , v tE =10 m/s v WE 竖直向下,v W t 偏离竖直方向30°,由图求得雨滴相对于地面的速率为 v WE = v tE ctg30o =17.3 m/s雨滴相对于列车的速率 2030sin ==οtEt W v v m/s14.一人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m .求在这50 s 内,(1) 平均速度的大小和方向; (2) 平均速率的大小.解:(1) ++=)45sin )45cos (18)10(30j i j i ϖϖϖϖ︒+︒-+-+= j i ϖϖ73.227.17+=,方向φ =8.98°(东偏北)=∆=∆∆=t t r //ϖ0.35 m/s方向东偏北8.98°(2) (路程)()181030++=∆S m=58m,16.1/=∆∆=t S v m/s15 河水自西向东流动,速度为10 km/h .一轮船在水中航行,船相对于河水的航向为北偏西30°,相对于河水的航速为20 km/h. 此时风向为正西,风速为10 km/h .试求在船上观察到的烟囱冒出的烟缕的飘向.(设烟离开烟囱后很快就获得与风相同的速度)Wt v ϖWEv ϖtEvϖ30°OCAB东y 北φπ/4 西 南x解:记水、风、船和地球分别为w , f ,s 和e ,则水-地、风-船、风-地和船-地间的相对速度分别为we V ϖ、fs V ϖ、fe V ϖ和se V ϖ.由已知条件we V =10 km/h ,正东方向. fe V =10 km/h ,正西方向. sw V =20 km/h ,北偏西030方向.根据速度合成法则: se V ϖ=sw V ϖ+weV ϖ由图可得: se V =310 km/h ,方向正北.同理 fs V ϖ=fe V ϖ-se V ϖ, 由于fe V ϖ=-we V ϖ∴ fs V =sw V , fs V ϖ的方向为南偏西30°在船上观察烟缕的飘向即fs V ϖ的方向,它为南偏西30°.30ofs V ϖsw V ϖfe ϖweϖ北 东30o se V ϖ。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学物理课后习题答案(高教版共三册)

大学物理课后习题答案(高教版共三册)

⼤学物理课后习题答案(⾼教版共三册)第⼆章动量及其守恒定律1、⼀质点的运动轨迹如图所⽰,已知质点的质量为20g ,在A 、B ⼆位置处的速率都为20m/s ,A v与 x 轴成045⾓,B v垂直于 y 轴,求质点由A 点到B 点这段时间内,作⽤在质点上外⼒的总冲量?解:由动量定理知质点所受外⼒的总冲量I =12v v v m m m )(由A →B A B Ax Bx x m m m m I v v v v cos45°=-0.683 kg·m·s 1 1分I y =0m v Ay = m v A sin45°= 0.283 kg·m·s 1I =s N 739.022y x I I 3分⽅向: 11/tg x y I I 202.5° ( 1为与x 轴正向夹⾓) 1分2、质量为m 的物体,以初速0v 从地⾯抛出,抛射⾓030 ,如忽略空⽓阻⼒,则从抛出到刚要接触地⾯的过程中,物体动量增量的⼤⼩为多少?物体动量增量的⽅向如何?解:由斜⾯运动可知,落地速度⼤⼩与抛出速度⼤⼩相等,⽅向斜向下,与X 轴正向夹⾓为300,所以,动量增量⼤⼩:0030sin 2mv mv mv动量增量的⽅向竖直向下3、设作⽤在质量为1kg 的物体上的⼒F =6t +3(SI ).如果物体在这⼀⼒的作⽤下,由静⽌开始沿直线运动,在0到2.0 s 的时间间隔内,这个⼒作⽤在物体上的冲量⼤⼩为多少? 解:I=Fdt =.20)36(dt t =(3t 2+3t)0.20=3 2.02+3 2.0=18(S N )A vxyOBA4、⼀个质量为m 的质点,沿x 轴作直线运动,受到的作⽤⼒为i F Ft cos 0 (SI),0t 时刻,质点的位置坐标为0x ,初速度00 v,求质点的位置坐标和时间的关系式?解:由⽜顿第⼆定律tm F dt dx v tdtm F dv dtdv mt F dt v d m a m F t vsin cos cos 00000 ⼜有故tdt m F dx txx sin 000则: t m Fx xcos 1005、电动列车⾏驶时每千克质量所受的阻⼒N v F 2210)5.05.2( ,式中,v 为列车速度,以s m /计。

大学物理上册-课后习题答案全解

大学物理上册-课后习题答案全解

第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13= 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23= 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:=Δx /Δt = 4(m·s -1).(2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:= [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为,并由上述资料求出量值.[证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2+ 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:.计算得加速度为:= (m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = (m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = (s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02= 2a s ,可得上升的最大高度为:h 1 = v y 02/2g = (m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = (m).根据自由落体运动公式s = gt 2/2,得下落的时间为:= (s). 因此人飞越的时间为:t = t 1 + t 2 = (s).人飞越的水平速度为;v x 0 = v 0cos θ = (m·s -1), 所以矿坑的宽度为:x = v x 0t = (m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = (m·s -1),落地速度为:v = (v x 2 + v y 2)1/2 = (m·s -1),与水平方向的夹角为:φ = arctan(v y /v x ) = º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程图,解得:.这里y = -70m,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t= (s).由此可以求解其它问题.1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v/d t = -kv2,k为常数.(1)试证在关闭发动机后,船在t时刻的速度大小为;(2)试证在时间t内,船行驶的距离为.[证明](1)分离变数得,故,可得:.(2)公式可化为,由于v = d x/d t,所以:积分.因此.证毕.[讨论]当力是速度的函数时,即f = f(v),根据牛顿第二定律得f = ma.由于a = d2x/d t2,而 d x/d t = v,a = d v/d t,分离变数得方程:,解方程即可求解.在本题中,k已经包括了质点的质量.如果阻力与速度反向、大小与船速的n次方成正比,则d v/d t = -kv n.(1)如果n = 1,则得,积分得ln v = -kt + C.当t = 0时,v = v0,所以C = ln v0,因此ln v/v0 = -kt,得速度为:v = v0e-kt.而d v = v0e-kt d t,积分得:.当t = 0时,x = 0,所以C` = v0/k,因此.(2)如果n≠1,则得,积分得.当t = 0时,v = v0,所以,因此.如果n = 2,就是本题的结果.如果n≠2,可得,读者不妨自证.1.5 一质点沿半径为的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t3.求:(1)t = 2s时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值?(3)在哪一时刻,切向加速度和法向加速度恰有相等的值?[解答](1)角速度为ω = dθ/d t = 12t2= 48(rad·s-1),法向加速度为a n= rω2= (m·s-2);角加速度为β = dω/d t = 24t= 48(rad·s-2),切向加速度为a t= rβ = (m·s-2).(2)总加速度为a = (a t2 + a n2)1/2,当a t = a/2时,有4a t2 = a t2 + a n2,即.由此得,即,解得.所以 =(rad).(3)当a t = a n时,可得rβ= rω2,即: 24t = (12t2)2,解得:t = (1/6)1/3 = (s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = 20m·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ.加速度的大小为a x = a cos α, a y = a sin α.运动方程为, . 即 ,.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);(s). 将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 内下降的距离h = .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于,所以a t = 2h /Δt 2 = (m·s -2).物体下降3s 末的速度为v = a t t = (m·s -1),这也是边缘的线速度,因此法向加速度为= (m·s -2).1.8 一升降机以加速度·s -2上升,当上升速度为·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距.计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为;螺帽做竖直上抛运动,位移为. 由题意得h = h 1 - h 2,所以, 解得时间为= (s).算得h 2 = ,即螺帽相对于升降机外固定柱子的下降距离为.[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为; (2)如果气流的速度向东,证明来回飞行的总时间为; (3)如果气流的速度向北,证明来回飞行的总时间为. [证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v .(2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u ,所以飞行时间为 .(3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作向量三角形,其中沿AB 方向的速度大小为,所以飞行时间为. 证毕.图A B AB v v + uv - u A Bv u u vv1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?[解答]雨对地的速度等于雨对车的速度加车对地的速度,由此可作向量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 . 证毕.方法二:利用正弦定理.根据正弦定理可得,所以:,即 . 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度运动,的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为x = v 0t ,.将t = x/v 0,代入后一方程得质点的轨道方程为,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一品质m = 2kg的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = ,静摩擦因素为μs = .求:(1)今以水平力拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = (N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = (N), 这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = (N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为图1h lα图 mf =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = (N).因此要将板从物体下面抽出,至少需要的力.2.3 如图所示:已知F = 4N ,m 1 = ,m 2 = ,两物体与水平面的的摩擦因素匀为.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮品质均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 = (m·s -2),绳对它的拉力为= (N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 ,即:. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2, 因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动; (2)小车以加速度沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度(b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g ); 绳子张力等于摆所受的拉力 :.(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力,合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的向量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ是mb cos φ,邻边是mg + mb sin φ,由此可得: , 12图 2 图 (2)因此角度为; 而张力为 .(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =的小球,拴在长度l =的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大? (3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向. 小球的运动方程为,其中s 表示弧长.由于s = Rθ = lθ,所以速度为 , 因此 , 即 v d v = -gl sin θd θ, (1) 取积分 , 得 ,解得:= (m·s -1). 由于:, 所以T B = 2mg = (N). (2)由(1)式积分得 ,当 θ = 60º时,v C = 0,所以C = -lg /2, 因此速度为.切向加速度为a t = g sin θ;法向加速度为 .由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为= (m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = (N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为,s 表示弧长.由于,所以,图图因此v d v = g cosθd s= g d h,h表示石下落的高度.积分得,当h = 0时,v = 0,所以C = 0,因此速率为.2.8质量为m的物体,最初静止于x0,在力(k为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k(1/x– 1/x0)/m]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程利用v = d x/d t,可得,因此方程变为,积分得.利用初始条件,当x = x0时,v = 0,所以C = -k/x0,因此,即.证毕.[讨论]此题中,力是位置的函数:f = f(x),利用变换可得方程:mv d v = f(x)d x,积分即可求解.如果f(x) = -k/x n,则得.(1)当n = 1时,可得利用初始条件x = x0时,v = 0,所以C = ln x0,因此,即.(2)如果n≠1,可得.利用初始条件x = x0时,v = 0,所以,因此,即.当n = 2时,即证明了本题的结果.2.9一质量为m的小球以速率v0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k.求:(1)小球速率随时间的变化关系v(t);(2)小球上升到最大高度所花的时间T.[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程,分离变数得,积分得.当t = 0时,v = v0,所以,因此,小球速率随时间的变化关系为.(2)当小球运动到最高点时v = 0,所需要的时间为.[讨论](1)如果还要求位置与时间的关系,可用如下步骤:由于v = d x/d t,所以,即,积分得,当t = 0时,x = 0,所以,因此 .(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为 ,用同样的步骤可以解得小球速率随时间的变化关系为.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m = mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因子为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得, 即 : .积分得:.当t = 0时,v = v 0,所以, 因此 .解得 .由于 , 积分得,当t = 0时,x = x 0,所以C = 0,因此.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ.根据向心力公式得F = mg tg θ = mω2R sin θ,可得,解得 .(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t ,积分得冲量为 , 方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt , 设小球的品质为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,图小球获得的冲量为I = p 2 – p 1 = -mωA ,可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义得:, 由此可作向量三角形,可得:.因此向心力给予小球的的冲量大小为= (N·s). [注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力 F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得,,合冲量为,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为,求球受到的平均冲力?[解答]球上升初速度为= 14(m·s -1),其速度的增量为= (m·s -1).棒给球冲量为I = m Δv = (N·s),对球的作用力为(不计重力):F = I/t = (N). 2.15 如图所示,三个物体A 、B 、C ,每个品质都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2). 根据运动学公式:s = v 0t + at 2/2, 可得B 拉C 之前的运动时间;= (s).此时B 的速度大小为:v = at = 2(m·s -1).v x Δv v y物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`,因此C 开始运动的速度为:v` = 2v /3 = (m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作向量三角形,列方程得, 所以 v` = v /cos45° = .2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的品质为m ,它与路面的滑动摩擦因子为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移的大小为d s = R d θ.重力的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为,积分得重力所做的功为. 摩擦力的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为,积分得摩擦力所做的功为.要使雪橇缓慢地匀速移动,雪橇受的重力、摩擦力和马的拉力就是平衡力,即 , 或者 . 拉力的功元为:, 拉力所做的功为.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一品质为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因子;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2,末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得: .图由于W = ΔE ,可得滑动摩擦因子为.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g ,根据公式v t 2 – v o 2= 2a t s ,可得质点运动的弧长为,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。

大学物理课本课后习题答案

大学物理课本课后习题答案

大学物理课本课后习题答案大学物理课本课后习题答案作为大学物理课程的一部分,课后习题是学生巩固所学知识、培养解决问题能力的重要环节。

然而,很多学生在自学过程中会遇到一些难题,特别是对于一些较为复杂的习题,往往很难找到正确的答案。

为了帮助学生更好地理解和掌握物理知识,本文将提供一些大学物理课本课后习题的答案,供学生参考和学习。

第一章:运动的描述1. 一个物体在2秒内沿直线运动,初速度为2m/s,加速度为3m/s²。

求物体在2秒内的位移。

答案:利用公式s = ut + 0.5at²,代入已知数据得到s = 2 × 2 + 0.5 × 3 × 2² = 10m。

2. 一个物体从静止开始做匀加速直线运动,加速度为2m/s²,经过5秒后速度为10m/s。

求物体在这段时间内的位移。

答案:利用公式v = u + at,代入已知数据得到10 = 0 + 2 × 5,解得加速度为2m/s²。

再利用公式s = ut + 0.5at²,代入已知数据得到s = 0 × 5 + 0.5 × 2 × 5² = 25m。

第二章:力和运动1. 一个质量为2kg的物体受到一个10N的力,求物体的加速度。

答案:根据牛顿第二定律F = ma,代入已知数据得到10 = 2a,解得加速度为5m/s²。

2. 一个质量为3kg的物体受到一个5N的力,求物体的加速度。

答案:根据牛顿第二定律F = ma,代入已知数据得到5 = 3a,解得加速度为5/3m/s²。

第三章:牛顿定律和万有引力1. 一个质量为5kg的物体在水平面上受到一个10N的水平力和一个5N的竖直向下的重力,求物体的加速度。

答案:根据牛顿第二定律F = ma,水平方向上的合力为10N,竖直方向上的合力为5N,代入已知数据得到10 = 5a,解得加速度为2m/s²。

大学物理教材课后习题参考答案

大学物理教材课后习题参考答案

大学物理教材课后习题参考答案1.7 一质点的运动学方程为x t2,y (t 1)2,x 和y均以为m单位,t以s为单位,试求:(1)质点的轨迹方程;(2)在t=2s 时,质点的速度v和加速度a。

解:(1)由运动学方程消去时间t可得质点的轨迹方程,将ty 1)2 或1(2)对运动学方程微分求速度及加速度,即vx dxdy 2t vy 2(t 1) v 2ti 2(t 1)j dtdtay dvydtdv ax x 2dt 2 a 2i 2j当t=2s时,速度和加速度分别是2 v 4i 2j m/s a 2i 2j m/s21.8 已知一质点的运动学方程为r 2ti (2 t)j,其中, r,t分别以m和s为单位,试求:(1)从t=1s到t=2s质点的位移;(2) t=2s时质点的速度和加速度;(3) 质点的轨迹方程;(4)在Oxy平面x = 2t (1)y = 2 t(2) 2(1) 将t=1s,t=2s代入,有r(1)= 2i j,r(2) 4i 2j故质点的位移为 r r(2) r(1) 2i 3j(2) 通过对运动学方程求导可得dx dy d2x d2y i j 2i 2tj a 2i 2j 2j v dtdtdtdt2 当t=2s时,速度,加速度为v 2i 4j m/s a 2jm/s(3) 由(1)(2)两式消去时间t可得质点的轨迹方程y 2x2/4(4)图略。

1.11 一质点沿半径R=1m的圆周运动。

t=0时,质点位于A点,如图。

然后沿顺时针方向运动,运动学方程s t t,其中s的单位为m,t的单位为s,试求:(1)质点绕行一周所经历的路程,位移,平均速度和平均速率;(2)质点在第1秒末的速度和加速度的大小。

解:(1) 质点绕行一周所经历的路程为圆周周的周长,即 s 2 R 6.28m,由位移和平均速度的定义,可知此时的位移为零,平均速度也为零,即 2,v 0 tr r 0。

可得质点绕行一周所需时间 t 1s 平均速率为令 s s(t) s(0) t2 t 2 Rv s2 R 6.28m/s t t由以上结果可以看出路程和位移,速度和速率是不相同的。

大学物理(上册)课后习题及答案

大学物理(上册)课后习题及答案

作用在质点上的力的力矩为: M 0 r f ( x1i y1 j ) ( f i ) y1 fk
3.8 哈雷彗星绕太阳运动的轨道是一个椭圆。它离太阳最近距离为
8.75 ×1010m 时的速率是 v 1 = 5.46 ×104m/s,它离太阳最远时的速率是
r1 = v 2=
9.08 ×102m/s,这时它离太阳的距离 r2 是多少 ?(太阳位于椭圆的一个焦点。 )
解:
d 9t 2 ,
dt
∴ t 2 s 时, a R
d 18t dt 1 18 2
36 m s 2
an R 2 1 (9 2 2 ) 2 1296 m s 2
∴ 当加速度方向与半径成 45 ο角时,有: tan 45 a an 1
即: R 2 R ,亦即 (9t 2 ) 2 18t ,解得: t 3 2 9
3.10图。试问这时小球作匀速圆周运动的角速度
和半径 r 为多少 ?
解:只挂重物 M 1 时, 小球作圆周运动, 向心力为
M 1 g ,即: M 1g
mr0
2 0

挂上 M 2 后,则有: (M 1 M 2 ) g mr 2

重力对圆心的力矩为零,故小球对圆心的角动量守恒。
即: r0mv 0 r mv
4 3 7m
y v 0yt 1 at 2 6t 5 t 2
63
1 5 32
v 25.5 j
2
6 t3
23
即有: r1 4i , r2 7i 25.5 j
v x v 0x 1 ; v y v 0y at 6 5 3 3 11
uuv v v uuv v v
即有: v 2
v ∴ L1
rv1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 质点运动学一. 选择题:1.(D) 2.(D) 3.(C) 4.(B) 5.(B) 6.(D) 7.(B) 8.(C) 9.(B) 10.(B) 11.(D) 12.(C) 13.(B) 14.(C) 二. 填空题:1.)/](5cos 5sin [50s m j t i t+-; 0; 圆.2.)/](sin 2cos )[(222s m t t Aetωβωωωββ+--;)()12(21s n πω+.3.tS∆; t v ∆-02 . 4.bt v +0;2402/)(R bt v b ++.5.)/(1622s m Rt ; )/(42s r a d .6.(1)、(3)、(4)是不可能的.7.322S S +. 8.2/4s m j i +-. 9.s m /20.10.2/1.0s m .11.)/(2s m c -, )/(/)(22s m R ct b -;)(//s c R c b ±.12.变速率曲线运动; 变速率直线运动.13.)/(2/2s m g -, g v g v 3/3230cos /202=.14.s m /3.17, s m /20. 15.g v /cos 220θ.三. 计算题:1. 解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=. 2. 解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvt d t dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 1022)(103/23SI t x +=.3. 解:首先求出s t 2=时质点在轨迹上的位置.s t 2=,)(80m S =(在大圆上). 各瞬时质点的速率:)/(1030/s m t dt dS v +==;s t 2=, s m v /50=各瞬时质点的切向加速度和法向加速度:222/10s m dtS d dt dv a t ===; ρρ22)/(v dt dS a n == s t 2=时,2/10s m a t =, 2/3.83s m a n =.4. 解:(1)t v x 0=, 221gt y =轨迹方程是:222/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.5.解:dydv v dt dy dy dv dt dv a =⋅==, 又ky a -= dy vdv ky /=-∴ ⎰⎰=-v d v k y d y C v ky +=-222121 已知0y y =,0v v = 则:20202121ky v C --= )(220202y y k v v -+=.6. 解:选地面为静止参考系S ,风为运动参考系S ',飞机为运动质点P .已知:相对速度:h km v s p /180=',方向未知; 牵连速度:h km v s s /60=',方向正西; 绝对速度:ps v 大小未知,方向正北. 由速度合成定理有:s s s p ps v v v ''+=,ps v ,s p v ' ,s s v '构成直角三角形,可得:h km v v v s s s p ps /170)()(||22=-='',014.19)/(=='-ps s s v v tg θ.(飞机应取北偏东04.19的航向). 7. 解:由t kv dt dv 2/-=k t d t v dv -=2积分:⎰⎰-=tdt k v dv2C kt v +-=-2211 当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 8. 解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x vdx x vdv 020)62(s m x x v /)(22/13+='9. 解:设质点的加速度为:t a a t α+=,τ=t 时,a a t 2= τα/a =∴即 τ/at a a t +=由 dt dv a /=,得 adt dv =⎰⎰+=nvdt at a dv 0)/(τττa n n v )2(21+=∴ 由 dt ds v /=, vdt ds =⎰⎰=sn v d t ds 0τ,又 ⎰+==τ2/2at at dt a v t∴ 质点走过的距离6/)3(22τa n n s +=.10. 解:ct b dt dS v +==/ c dt dv a t ==/R ct b a n /)(2+=根据题意: n t a a = 即 R ct b c /)(2+= 解得: cb c R t -=11. 解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030;牵连速度:s m v s s /35=',方向水平;相对速度:s p v ' 大小未知,方向偏向车后045.由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:ss '3530sin 30cos 00=+ps ps v vs m v ps /6.25=.第二章 牛顿运动定律一. 选择题:1.(B) 2.(B) 3.(D) 4.(E) 5.(C) 6.(D) 7.(A) 8.(C) 9.(B) 10.(C) 11.(D) 二. 填空题:1.j t i t r2323+=. 2.2%. 3.θcos /mg , θθc o s s i n gl . 4.θ2cos /1. 5.0f . 6.cm 24. 7.212m m g m F +-,)(1212g m F m m m ++. 8.s g μ/. 三. 计算题:1.解:(1)0=a mg T =;(2)ma T =αsin , mg T =αcos g a tg /=α 22g a m T +=2.解:(1)以A、B、绳为研究对象a m m m g m g m mg F B A B A )(++=---g m m m Fm m m g m m m F a BA B A B A -++=++++-=∴)(.(2)以绳的下段长和物体A为研究对象 a L mx m g L mx m x T B A )/()/()(+=+- ))(/()(a g L mx m x T A ++=∴)(2496)/(N x m m m L mx m F BA A +=+++=.3.解:设绳子与水平方向的夹角为θ,则l h /si n =θ. 木箱受力如图所示,当匀速前进时Nf Mg N F F μθθ==-+=0sin 0cosθμθμs i nc o s +=∴MgF (受力图和由牛顿方程解出F )0)s i n (c o s )c o s s i n (2=++--=θμθθμθμθMgd dF 6.0==∴μθtg , 6375300'''=θ且022>θd Fd , m h l 92.2sin /==∴θ时,最省力.(求极值得结果) 5. 解:受力图如图所示:以A为研究对象:X方向:0cos si n 12='-'+-θθf N f B(1) Y方向:0cos si n 1='-'--θθBA N f Mg N (2) 同时,θμcos 11mg f f ='= (3)θcos mg N N BB ='= (4) (1)、(2)、(3)、(4)联立求解:OXY1B'AN '2'BA地θθμθθθsin cos cos sin cos 21mg mg Mg f N Mg N BA ++='+'+= θμθθθθ212cos sin cos cos sin mg mg f N f B-='-'= 斜面对地面的压力:θθμθsin cos cos 2mg mg Mg N A ++=' 斜面对地面的摩擦力:θμθθ22cos sin cos mg mg f -='.5.解:对A:09.36cos 10=--T f F (1) 09.36sin 011=--F g m N (2) 11N f μ= (3)对B:02=-f T (4) 022=-g m N (5) 22N f μ= (6) 由(4)、(5)、(6)式得:)(8.92N g m T ==μ 再由(1)、(2)、(3)式得:)(4.299.36sin 9.36cos )(0021N m m F =-+=μμ. 第三章 功与能一、选择题:1、(A ),2、(B ),3、(D ),4、(C ),5、(C )6、(B ),7、(C ),8、(D ),9、(C ),10、(B )二、填空题1、R GMm R R GMm 32)131(--或 2、 )11(21ba m Gm -- 3、 12800J 4、动量、动能、功、势能 5、100m/s 6、5.23×105W 7、αsin 2o mgx 2 8、-F 0R 9、零,正,负 10、18J ,6m/ 11、4000J 12、)/(mr k ,)2/(r k - 13、 GMm/(6R),-GMm/(3R) 14、-0.207三、计算题1、0416解:由x=ct 3可求物体的速度:23ct dtdx==υ 物体受到的阻力为:3/43/242299x kc t kc kv f ===阻力对物体所作的功为:⎰⎰⋅==x d f dw W⎰-=dx x kc l 3/43/2907/273/73/2lkc -=2、0103解:根据功能原理,木块在水平面上运动时,摩擦力所作的功等于系统(木块和弹簧)机械能的增量。

由题意有,212122υm kx x f r -=- 而mg f k r μ=由此得木块开始碰撞弹簧时的速率为s m mkx gx k /83.522=+=μυ另解:根据动能定理,摩擦力和弹性力对木块所作的功,等于木块动能的增量,应有⎰-=--x o k m kxdx mgx 2210υμ其中⎰=xokx kxdx 221 3、5264解:(1)根据功能原理,有mgh m fs -=2021υααμαμsin cos sin mghNh fs ==αμm g h c t g = mgh m -=2021υ )(25.4)1(220m ctg g h =+=αμυ(2)根据功能原理有fs m mgh =-221υ αμυmghctg mgh m -=221s m ctg gh /16.8)]1(2[2/1=-=αμυ4、0753解:两个粒子的相互作用力3/r k f = 已知∞==r f 即0处为势能零点,⎰⎰∞=⋅∞==∞dr rk r r d f r Wp Ep 3 5、0439解:把卸料车视为质点。

相关文档
最新文档