(完整版)第一章行列式与矩阵的计算的练习(含答案)

合集下载

线性代数练习册-答案

线性代数练习册-答案

第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式 (1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b1221122112211221a a a b b a b b (4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b2.计算下列三阶行列式(1)10312126231-=--;(2)11121322233233a a a a a a a 112233112332a a a a a a 1122332332a a a a a(3)a c bba cc b a3333a b c abc3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t 112217t(3)()()()12322524212n n n n ---当n 为偶数时,2nk ,排列为143425212221223412k k k k k kk k --+++-1122(1)(1)t k k k (1)(2)21k k 22(1)1313142n kkkkk kn其中11(1)(1)k k 为1434252122k k k k --+的逆序数;k 为21k与它前面数构成的逆序数;(1)(2)21k k为23,25,,2(21)k k kk 与它们前面数构成的逆序数的和;113131k k k k 为2k ,22,24,,2k k与它们前面数构成的逆序数的和. 当n 为奇数时,21nk ,排列为142345212223225412k k k k k kk k ++++++1122t k k(1)21k k 2213323432n kkkkk kn其中1122k k 为1423452122k k k k +++的逆序数;(1)21k k 为23,25,,2(21)k kkk 与它们前面数构成的逆序数的和;3323k k k k 为2,22,,2k k与它们前面数构成的逆序数的和.4.确定,i j ,使6元排列2316i j 为奇排列. 解:4,5ij,()()23162431655t i j t ==为奇排列.5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424(2)00000000000a c db (1342)(1)abcd abcd7. 求1230312()123122x x f x x xx-=的展开式中4x 和3x 的系数.4x 的系数为6;含3x 的项只有(4231)(1)(3)3t x x x ,所以3x 的系数为(4231)(1)3(3)119t行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D(2)123123123111a a a a a a a a a +++;解:2312323231(1)1111a a D a a a a a a a 各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a 123(1)a a a(3)41232013201116011601110111031023500r r D213314116116(1)111027350818r r r 20(4)21120111011161126111211221110100c c D3141101100(1)26126116221223c c .(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ 32212D D D D D 4322342.证明:(1)011=++++=cb adb a dcd a c b d c b aD 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c Dabcd c d a b c d dabcda 1111(2)33()ax by ay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy ++++++=++++. 证明:左式12axayazbybzbxay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bz az bx ax by ay bz=+++++++=+++++++311r br xy zx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax by ay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzxy ←−→←−→==-,所以33()ax by ay bzaz bxx y z ay bzaz bx ax by a b yz x az bx ax by ay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab b b b a b bbb a bb b b a ...........................; 各行加到第一行后提取公因式有:111...1...(1).....................nba b bD an b b b a bb b b a211111 (10)0 0(1)00...0 000...n r br r br a b an b ab a b1(1)n a n b ab(2)12121212n na n a n D n a ++=+12(0)n a a a ≠.211212111212121211210012000nn nr r n r r r nr r a a nna na a a n a a aa a a a a a a -----+++++--==--1112221211n n n n i i a na ia a a a a a a a =⎛⎫⎛⎫=++++=+ ⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------=克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax abcx bx bc abc cx ax ;解:002350ba D cb abc ca,212023500ab a D bc c ba bc a22200350b ab D bc b ab c c a ,220250ba ab Dc bc abc c123,,x a x b x c(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D,(1)1且3时0D ,该齐次线性方程组只有零解。

(整理)上海版教材 矩阵与行列式习题(有答案).

(整理)上海版教材 矩阵与行列式习题(有答案).

矩阵、行列式和算法(20131224)姓名 成绩一、填空题1.行列式cossin 36sincos36ππππ的值是 .2.行列式a b c d(,,,{1,1,2}a b c d ∈-)的所有可能值中,最大的是 .3.将方程组203253x y z x y =⎧⎪+=⎨⎪+=⎩写成系数矩阵形式为 .4.若由命题A :“22031xx >-”能推出命题B :“x a >”,则a 的取值范围是 .5.若方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为2,1==y x ,则方程组⎩⎨⎧=++=++03520352222111c y a x b c y a x b 的解为x = ,y = . 6.方程212410139xx ≤-的解集为 . 7.把22111133332224x y x y x y x y x y x y +-表示成一个三阶行列式为 . 8.若ABC ∆的三个顶点坐标为(1,2),(2,3),(4,5)A B C ----, 其面积为 .9.在函数()21112xf x xx x x-=--中3x 的系数是 . 10.若执行如图1所示的框图,输入12341,2,4,8,x x x x ====则输出的数等于 .图211.矩阵的一种运算,⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛⋅⎪⎪⎭⎫⎝⎛dy cx by ax y x d c b a 该运算的几何意义为平面上的点),(y x 在矩阵⎪⎪⎭⎫⎝⎛d c b a 的作用下变换成点(,)ax by cx dy ++,若曲线10x y +-=在矩阵⎪⎪⎭⎫⎝⎛11b a 的作用下变换成曲线10x y --=,则a b +的值为 .12.在集合{}1,2,3,4,5中任取一个偶数a 和奇数b 构成以原点为起点的向量(),a b α=.从所有得到的以原点为起点的向量中任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为n ,其中面积不超过...4的平行四边形的个数为m ,则mn= 二.选择题13.系数行列式0D =是三元一次方程组无解的( ) A. 充分非必要条件 B. 必要非充分条件C. 充分必要条件D. 既非充分也非必要条件 14.下列选项中错误的是( ). A.bda c db ca -= B.ab cd db c a =C.d c db c a 33++ d c b a =D.d c badb ca -----=15.若,,a b c 表示ABC ∆的三边长,且满足0222=++++++cb a ccc b a b bc b a a a , 则ABC ∆是( ).A. 等腰三角形B. 直角三角形C. 等腰直角三角形D. 等边三角形 16. 右边(图2)的程序框图输出结果S =( ) A .20 B. 35 C. 40 D .45三、解答题:17. 已知P :矩阵||51||10x x +⎛⎫⎪+ ⎝的某个列向量的模不小于2,Q : 行列式114203121mx ----中元素1-的代数余子式的值不小于2.若P 是Q 成立的充分条件....,求实数m 的取值范围.18.已知等比数列{}n a 的首项11a =,公比为q , (1)求二阶行列式4231a a a a 的值;(2)试就q 的不同取值情况,讨论二元一次方程组⎩⎨⎧-=+=+234231y a x a y a x a 何时无解,何时有无穷多解?19.已知函数1sin ()0sin sin 20xxf x xx m =的定义域为0,2π⎡⎤⎢⎥⎣⎦,最大值为4.试求函数()sin 2cos g x m x x=+(x R ∈)的最小正周期和最值.22213521212325414143456122122321n n n n n n n n n n n n n n -⎛⎫⎪+++- ⎪ ⎪+++- ⎪⎪ ⎪-+-+-⎝⎭20. 将等差数列21n a n =-*()n N ∈中2n 个项依次排列成下列n 行n 列的方阵,在方阵中任取一个元素,记为1x ,划去1x 所在的行与列,将剩下元素 按原来得位置关系组成(n-1)行(n-1)列方阵,任取其中一元素2x ,划去2x 所在的行与列,将最后剩下元素记为n x ,记12n n S x x x =++,求limn →∞322nS n n +的值。

线性代数第一章习题参考答案

线性代数第一章习题参考答案

解:4234231142342311)1342(4432231144322311)1324()1()1(a a a a a a a a a a a a a a a a =--=-ττ4.计算abcdef abcdef abcdef abcdef efcf bfde cd bdae ac ab r r r r c c c r f r d r a c ec c c b 420020111111111111111111111)1(12133213213211,1,11,1,1-=--=--=---=-----++5.求解下列方程10132301311113230121111112121)1(12322+-++-++=+-++-+=+-+-+++x x x x x x x x x x x x c c r r 1132104201)3(113210111)3(21+-+--++=+-+-++=-x x x x x x x x x r r 3,3,30)3)(3(11421)3(3212-==-==-+=+---++=x x x x x x x x x 得二列展开cx b x a x b c a c a b x c x b x a c b a x c b a x c b a x ====------=32133332222,,0))()()()()((1111)2(得四阶范得蒙行列式6.证明322)(11122)1(b a b b a a b ab a -=+右左证明三行展开先后=-=-=-----=----=+=+--323322222)(11)()()()1(100211122)1(:2132b a b a b a ba ba b a b b a a b b a b a b b ab ab a b b a ab ab ac c c c1432222222222222222222222222(1)(2)(3)(1)2369(1)(2)(3)(1)2369(3))(1)(2)(3)(1)2369(1)(2)(3)(1)2369c c c ca a a a a a a ab b b b b b b b cc c c cc c cd d d d d d d d --++++++++++++==++++++++++++二三列成比例))()()()()()((1111)4(44442222d c b a d c d b c b d a c a b a d c b a dcbad c b a D +++------==44444333332222211111)(x d c b a xdcbax d c b a x d c b a x f 五阶范得蒙行列式解考虑函数=(5)))()()()()()(())()()()()()(()()())()()()()()()()()((454545453453d c d b c b d a c a b a d c b a A M D d c d b c b d a c a b a d c b a A ,A x x f ,Mx x f D a b b c a b c d b d a d d x c x b x a x ------+++-==------+++-=----------=于是的系数是中而对应的余子式中是(5)n n a a a a a xx x x 12101000000000100001----解:nn n n n n n n n n nn x a x a a x a x a a a a a a a xx x x D +++=-++--+--=---=+++-++++-10)1()1(1211110121)1()1()1()1()1(1000000000100001按最后一行展开7、设n 阶行列式)det(ij a D =把D 的上下翻转、或逆时针旋转090、或依副对角线翻转、依次得111131111211111,,a a a a D a a a a D a a a a D n n nn n nn n nnnn=== 证明D D D D D n n =-==-32)1(21,)1(证明:将D 上下翻转,相当于将对D 的行进行)1(21-n n 相邻对换得1D ,故D D n nn 2)1(1)1(--=将D 逆时针旋转090相当于将T D 上下翻转,故D n n D n n D T 2)1(2)1(2-=-=D 依副对角线翻转相当于将D 逆时针旋转090变为2D , 然后再2D 左右翻转变为3D ,故D D D D n n n n n n =--=-=---2)1(2)1(22)1(3)1()1()1(8、计算下列行列式(k D 为k 阶行列式)(1)aa D n 11=,其中对角线上元素都是a ,未写出的元素都是0;解:)1()1(0100)1(1122211111-=-+=-+==--++-+a a a a a aa a a D n n n n n n n n n n 列展开按行展开按(2)x a a a x a a a x D n=解:xaa x a a a n x x a aa x a a a x D nc c c n111])1([21-+==+++12)]()1([0001])1([1--≥--+=---+=n r r k a x a n x ax a x a a a n x k(3)111111)()1()1()()1()1(11111n a n a a a n a n a a a n a n a a a D n n n n n nnm n -+---+---+--=----+解:11111(1)(1)22111111(1)(1)()(1)(1)()111111111111()()()((1)(1)()(1)(1)()n nnn n n n n n n n n n n j i n n n n mnnna a a n a n a a a n a n D a a a n a n a a a n a n j i a a a n a n a a a n a n ----++++≥>≥------+---+-=--+---+-=-=--=--+---+-∏上下翻11)n j i i j +≥>≥-∏(4)n n nnn d c d c b a b a D11112=(未写出的均为0)解:)1(2)1(211112)(02232--↔↔-===n n n n n n n nnn r r c c nnnnn D c b d a D d c b a d c d c b a b a D mn得递推公式)1(22)(--=n n n n n n D c b d a D ,而11112c b d a D -=递归得∏=-=ni i i i i n c b d a D 12)((5)det(),||n ij ij D a a i j ==-解111,2,,1120121111110121111210311111230123010001200(1)(1)211201231i i j r r n i n c c n n n n D n n n n n n n n n n n n +-=-+-------==-------------==---------解:11211*222,3,,1111111(6)1111111111101111000111100:01111i n nr r n i n nna a D a a a a a D D a a -=+++=++-+-===+-解111211121,2,,12111(1)1110001(1)0000i inc c na n i ni ina a a a a a a a a a ++==++++==+∑9.设3351110232152113-----=D ,D 的),(j i 元的代数余子式为ij A ,求44333231223A A A A +-+解:24335122313215211322344333231=-----=+-+A A A A。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

(C)0, 2
(D)0,1
解 按 三 阶 行 列 式 的 对 角 线 法 则 得 D1 = (λ + 1)(λ − 1)2 , D2 = 0 . 若 D1 = D2 , 则
(λ + 1)(λ −1)2 = 0 ,于是 λ = 1,−1,故正确答案为(B).
例 1.5
方程组 ⎪⎨⎧λx1x1++λxx22
故逆序数为 1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B).
例 1.2 下列排列中( )是偶排列.
(A)54312 (B)51432
(C) 45312
(D) 654321
解 按照例 1 的方法计算知:排列 54312 的逆序数为 9;排列 51432 的逆序数为 7;排列
例17分析如果行列式的各行列数的和相同时一般首先采用的是将各列行加到第一列行提取第一列行的公因子简称列行加法这个行列式的特点是各列4个数的和为10于是各行加到第一行得10101010分析此类确定系数的题目首先是利用行列式的定义进行计算
第一章 行列式
1.1 目的要求
1.会求 n 元排列的逆序数; 2.会用对角线法则计算 2 阶和 3 阶行列式; 3.深入领会行列式的定义; 4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质; 7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.
(2) A34 + A35 = ( ), (3) A51 + A52 + A53 + A54 + A55 = ( ).
分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,

线性代数第五版答案(完整版)

线性代数第五版答案(完整版)

第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 7110025102021421410014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b adf ---=abcdef adfbce 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式): (1)aa D n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)n nnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. )~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ;解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫⎝⎛--412315210 100010001 ~r ,所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫⎝⎛------023*********63071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

第一章 行列式1.1 目的要求1.会求n 元排列的逆序数;2.会用对角线法则计算2阶和3阶行列式; 3.深入领会行列式的定义;4.掌握行列式的性质,并且会正确使用行列式的有关性质化简、计算行列式; 5.灵活掌握行列式按(列)展开; 6.理解代数余字式的定义及性质;7.会用克拉默法则判定线性方程组解的存在性、唯一性及求出方程组的解.1.2 重要公式和结论1.2.1 n 阶行列式的定义n 阶行列式 nnn n n n a a a a a a a a a D (2122221)11211=n n np p p tp p p a a a ...)1(212121)...(∑−=.其中是n 个数12…n 的一个排列,t 是此排列的逆序数,∑表示对所有n 元排列求和,故共有n !项. n p p p ...211.2.2 行列式的性质1.行列式和它的转置行列式相等;2.行列式的两行(列)互换,行列式改变符号;3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于用该数乘此行列式的任意一行(列);4.行列式中若有两行(列)成比例,则该行列式为零;5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和,即nn n n in i i nnn n n in in i i i i n a a a a a a a a a a a a b a b a b a a a a L MMM L M M M L LMM M L MM M L21211121121221111211=++++nnn n ini i na a ab b b a a a L MMM L M M M L 2121112116. 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变. 1.2.3 行列式按行(列)展开设D 为n 阶行列式,则有=∑=nK jkika A 1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0...2211=∑=nK jkika A1⎩⎨⎧≠==+++j i ji D A a A a A a jn in j i j i 0 (2211)其中是的代数余子式. st A st a 1.2.4 克拉默法则1.如果线性非齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L M M M M M L L 22112222212111212111的系数行列式,则方程组有唯一解0≠D DD x 11=( i=1,2,…,n ),其中是D 中第i 列元素(即的系数)换成方程中右端常数项所构成的行列式.i D i x 2.如果线性齐次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n n n n n x a x a x a x a x a x a x a x a x a L M M M M M L L的系数行列式,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行列式.0≠D 0=D 1.2.5 一些常用的行列式1.上、下三角形行列式等于主对角线上的元素的积.2.设 kk k k a a a a D L M M ML 11111=,nnn nb b b b D L M M M L 11112=,则 211111*********D D b bc c b b c c a a a a nn n nkn n k kkk k =L L M M M MM ML L L MMM L .3.范德蒙行列式)(..................1 (11)11121121i j nj i n nn n n a a aaaa a a −=∏≤<≤−−−.1.2.6 计算行列式的常用方法1.利用对角线法则计算行列式,它只适用于2、3阶行列式; 2.利用n 阶行列式定义计算行列式; 3.利用行列式的性质化三角形法计算行列式; 4.利用行列式按某一行(列)展开定理计算行列式; 5.利用数学归纳法计算行列式; 6.利用递推公式计算行列式;7.利用范德蒙行列式的结论计算特殊的行列式; 8.利用加边法计算行列式; 9.综合运用上述方法计算行列式.1.3 例题分析例1.1 排列14536287的逆序数为 ( )(A) 8 (B) 7 (C) 10 (D) 9解 在排列14536287中,1排在首位,逆序数为0;4、5、6、8各数的前面没有比它们自身大的数,故这四个数的逆序数为0;3的前面比它大的数有2个(4、5),故逆序数为2; 2的前面比它大的数有4个(4、5、3、6),故逆序数为4;7的前面比它大的数有1个(8),故逆序数为1;于是这个排列的逆序数为 t=0+0+2+4+1=7,故正确答案为(B ).例1.2 下列排列中( )是偶排列.(A)54312 (B)51432 (C) 45312 (D) 654321解 按照例1的方法计算知:排列54312的逆序数为9;排列51432的逆序数为7;排列45312的逆序数为8;排列654321的逆序数为15;故正确答案为(C ).例1.3 下列各项中,为某五阶行列式中带正号的项是( ). (A) (B) (C)(D) 5541324413a a a a a 5415413221a a a a a 5214432531a a a a a 5344223115a a a a a 解 由行列式的定义知,每一项应取自不同行不同列的五个元素之积,因此(A)、(B)不是五阶行列式的项,但(C)应取负号,故正确答案为(D ).例1.4 行列式351232113,010101021=−=D D λλλ, 若21D D =,则λ的取值为( ) (A) 2, —1 (B) 1, —1 (C)0, 2 (D)0,1解 按三阶行列式的对角线法则得.若,则,于是0,)1)(1(221=−+=D D λλ21D D =0)1)(1(2=−+λλ1,1−=λ,故正确答案为(B ).例1.5 方程组有唯一解,则( ).⎪⎩⎪⎨⎧=++=++=++111321321321x x x x x x x x x λλλ(A)1−≠λ且2−≠λ (B) 1≠λ且2−≠λ (C) 1≠λ且2≠λ (D) 1−≠λ且2≠λ解 由克拉默法则知,当所给非齐次线性方程组的系数行列式不等于0时,该方程组有唯一解,于是令行列式0)1)(2(1111112≠−+=λλλλλ 即1≠λ且2−≠λ,故正确答案为(B ).例1.6 ==2006200420082006D ( ).分析 对于2、3阶行列式的计算,元素的数值较小时,可以直接采用对角线法则进行计算;但元素的数值较大时,一般不宜直接采用对角线法则进行计算,而是用行列式的性质进行计算.解 此题是一个2阶行列式,虽然可以直接用对角线法则计算,但因数值较大,计算较繁,因此要仔细观察分析,用行列式的性质求解.402221003200622008220062004200820061221=−−+−−−=c c c c D ,故答案为4.例1.7 ==3214214314324321D ( ). 分析 如果行列式的各行(列)数的和相同时,一般首先采用的是将各列(行)加到第一列(行),提取第一列(行)的公因子(简称列(行)加法) .解 这个行列式的特点是各列4个数的和为10 ,于是,各行加到第一行,得===321421431432101010103214214314324321D 101230121012101111103214214314321111−−−−−−= 160400004001210111110=−−−=.例1.8设xx x x x x f 111123111212)(−=,则的系数为( ),的系数为( ). 4x 3x 分析 此类确定系数的题目,首先是利用行列式的定义进行计算.如果用定义比较麻烦时,再考虑用行列式的计算方法进行计算.解 从的表达式和行列式的定义可知,当且仅当的主对角线的4个元素的)(x f )(x f积才能得出,其系数显然是2. 当第一行取4x )1(13=a 或)2(14=a ,则含或的行列式的项中是不出现,含的行列式的项中是不出现,于是含的项只能是含,,,的积,故的系数为13a 14a 3x )2(11x a =3x 3x 12a 21a 33a 44a 3x 1−.故答案为2 ,1−.例1.9 设0123411222641232211154321=D ,则(1)=++333231A A A ( ), (2)=+3534A A ( ), (3)=++++5554535251A A A A A ( ). 分析 此类题目一般不宜算出表达式里每一项的值,而是注意观察要求的表达式的结构,充分利用按行(列)展开的计算方法来进行技巧计算.解 00123411222221112211154321)(23534333231==++++A A A A A (第2,3行相同) 即 =0. 同理 )(2)(3534333231A A A A A ++++)()(23534333231A A A A A ++++=0 于是 0, =++333231A A A =+3534A A 0.011111333336412322111543211111111222641232211154321245554535251=+=++++r r A A A A A 故答案为0,0,0.例1.10 2007000000002006000200500020001000L L L MM MM M M L =D .分析 当行列式中有较多零元素时,一般可以采用行列式的定义或按行(列)展开来计算.解 此行列式刚好只有n 个非零元素,故非零项只有一项:nn n n n a a a a ,,,,112211−−−L nn n n n t a a a a 112211)1(−−−−L ,其中 2)2)(1(−−=n n t ,因此 !2007!2007)1(2)22007)(12007(−=−=−−D .此题也可以按行(列)展开来计算. 例1.11 计算n 阶行列式2111121111211112L M M M M L L L =n D解法1 (行(列)加法)因为这个行列式的每一行的n 个元素的和都为n+1, 所以将第2,3,…,n 列都加到第一列上,得),3,2(,2111121111211111)1(21111211112111111n i r r n n n n n D i n L L M M M ML L L L M M M M L L L =−+=++++=1101000101111)1(+=+n n L M M M M L L L解法2 (加边法))1,,3,2(211111211111211111210000111+=−==+n i c c D D i n n L L M M M M M LL L L11000101001010100011000011000101001001010001111111121+=++++−−−−+n n r r r n L M M M M M LL L L L L M M M M M L L L L . 解法3 (利用行列式的性质)101010100111112),,3,2(21111211112111121L M M M M L L L L L M M M M L L L −−−=−=n i r r D i n11000100010111121+=++++n n c c c n L M M M M L L L L .例 1.12 计算nn n n nn n y x y x y x y x y x y x y x y x y x D +++++++++=111111111212221212111L MM M L L . 解 当n=2时,))((11111212221221112y y x x y x y x y x y x D −−=++++=当n≥3时,111212112122111121111()()()0()()()n nn n n n x y x y x y x x y x x y x x y D x x y x x y x x y +++−−−==−−−L L M M M L n.例1.13 计算nn n n nn n n x x x x x x a a a a a x a D 1122112321100000000000−−−−−−−−+=L L M M M M M M LL其中.),,2,1(0n i x i L ≠≠解 因 )1(11111111x a x x a x a D +=+=+=, 1(221121212112x ax a x x x x a x a D ++=−+=, 归纳推得 )1(1121nn n n x a x a x x x D +++=L L . 用数学归纳法证明上式, 假设当k=n-1时结论成立,即)1(11111211−−−−+++=n n n n x a x a x x x D L L . 则当k=n 时,将按第n 列展开,得n D ))(())(()1(122111−−+−−−−−−+=n n n n n n n x x x x a D x D L 1221111)1()1(−−−+−−−+=n n n n n n n x x x x a D x Ln n nn n n n x a x x x x x D x 12211−−−+=L 1(1121nn n x a x ax x x +++=L L 即当k=n 时结论也成立,故对一切自然数结论都成立.例1.14 计算222111222333n nn nD n n n =L L L M M M L 解 (利用范德蒙行列式计算)1113213211111!−−−==n n n Tnn n n n D D L MMM M LL )]1([)2()24)(23)(1()13)(12(!−−−−−−−−=n n n n n L L L !2)!2()!1(!L −−=n n n .例 1.15 计算 βαβαβαβαβαβαβαβα+++++=L L MM M M ML LL 000000000000n D .解 按第一列把D n 分成两个行列式的和+++++=βαβαβαβαβαβαααL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαβ++++L L MM MM M LL L0000000000000n n n D D βαβαββαβαβα+=+=−−110000000000000000L L MM M M M L L L (1) +++++=βαβαβαβαβαβααβL L M M M M M L L L000000000000000n D βαβαβαβαβαβαβαα++++L L MM MM M LL L 00000000000000n n n D D αβαβααβαβαβ+=+=−−1100000000000000L L M MM M M L L L (2) (a) 当βα≠时 ,由(1)(2)得 =, 则n n D βα+−1nn D αβ+−1βαβα−−=−nn n D 1.于是 βαβα−−=++11n n n D .(b) 当βα=时,由(1)得 .n n n n n D D ααα)1(1+==+=−L例1.16 设, 证明:0>>>c b a 01222<++abca bc c b a cb a cabc ab . 证明 将行列式的第1行)(c b a ++×,第2行)1(−×,然后加到第3行,得ca bc ab ca bc ab ca bc ab c b a c b a ab ca bc c b a c b a ++++++=222222 222222111)(111)(c b a c b a ca bc ab c b a c b aca bc ab ++=++= ))()()((a b b c a c ca bc ab −−−++=于是,不等式的左边=))()((a b b c a c −−−.由于,从而,0>>>c b a 0)(<−a c 0)(,0)(<−<−a b b c ,因此,当时,0>>>c b a 01222<++abca bc c b a cb a cabc ab .例 1.17 设在上连续,在内可导,试证:至少存在一个)(),(),(x h x g x f ],[b a ),(b a ),(b a ∈ξ,使得0)(=′ξH .其中 )()()()()()()()()()(x h x g x f b h b g b f a h a g a f x H =.证明 由题设知在上连续,在内可导,又由行列式的性质可知,于是由洛尔中值定理可知,至少存在一个)(x H ],[b a ),(b a 0)()(==b H a H ),(b a ∈ξ,使得0)(=′ξH .1.4 独立作业1.4.1 基础训练1.设ij a D =为阶行列式,则在行列式中的符号为( ) . n 11342312n n n a a a a a −L (A) 正 (B) 负 (C) (D) 1)1(−−n 2)1()1(−−n n2.行列式为0的充分条件是( ).n D(A) 零元素的个数大于n; (B) 中各行元素的和为零; n D (C) 次对角线上元素全为零; (D) 主对角线上元素全为零. 3.行列式不为零,利用行列式的性质对进行变换后,行列式的值( ). n D n D (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D)保持相同的正负号.4.方程0881441221111132=−−x x x的根为 ( ).(A) 1,2,2− (B)1,2,3 (C)1,1−,2 (D)0,1,25.如果4333231232221131211==a a a a a a a a a D ,则=−−−−−−=33323331232223211312131********a a a a a a a a a a a a D ( ). (A)-12 (B)12 (C)48 (D)-486.行列式=9092709262514251( ).7.ab b a log 11log = ( ).8.行列式c b d c a b cb a , 则=++312111A A A ( ).9.函数x x x x x f 121312)(−=中,的系数为( ).3x 10.4444333322225432154321543215432111111= ( ).11.49362516362516925169416941, 12.00000000x y y x y x x y D = 13.20000120000001301200101−−=D , 14.xyz zx yyz x 111 15.520003520003520035200035, 16.44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++17.nn n n a a a a a a b b b b b 13221132100000000−−−−−L M M M M M LL L ,(其中),,2,1(,0n i a i L =≠) 18.n x x x D L M M M M LL L 01001001111021= (),,2,1,0n i x i L =≠ 19.43211111111111111111x x x x ++++, 20.nL M M M ML L L 22223222222222121.211121112L L L L L L =n D .22.当μ取何值时,齐次线性方程组有非零解?⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明αααααααsin )1sin(cos 210001cos 200000cos 210001cos 210001cos 2+=n L L M MM M M LL L (其中0sin ≠α).1.4.2 提高练习1.设A 为n 阶方阵,为*A A 的伴随矩阵,则*A A 为( ) (A) 2A (B) 12−n A(C) nA2 (D) nA2.设A 为n 阶方阵,B 为m 阶方阵,=00A B( ). (A)B A − (B) B A (C) B A mn )1(− (D) B A n m +−)1(3.若xxx x x x g 171341073221)(−−−−=,则的系数为( ). 2x (A) 29 (B) 38 (C) —22 (D) 344.347534453542333322212223212−−−−−−−−−−−−−−−=x x x x x x x x x x x x x x x x g(x),则方程=)(x g 0的根的个数为( ). (A)1 (B)2 (C)3 (D)45.当( )时,方程组只有零解.≠a ⎪⎩⎪⎨⎧=+−=++=+02020z y ax z ax x z ax (A)-1 (B) 0 (C) -2 (D) 26.排列可经过( )次对换后变为排列. n r r r r L 321121r r r r n n n L −−7.四阶行列式中带负号且含有因子和的项为( ).12a 21a 8.设y x ,为实数,则当=x ( ),=y ( )时,010100=−−−x yy x . 9.设A 为4阶方阵,B 为5阶方阵,且,2,2−==B A 则 =−A B ( ),=−B A ( ).10.设A ,B 为n 阶方阵,且,2,3−==B A 则 =−1*3B A ( ). 11.设A 为3阶正交矩阵,0>A ,若73=+B A ,则=+T AB E 21( ). 12.设,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=653042001A =+−12A E ( ).13.解方程组011112222212112=nnnnnnn b b b b b b b b b x x x L M M M M L L L ,其中为各不相同的常数. n b b b b ,,,,321L 14.证明:)()()()()()()()()(212222111211x a x a x a x a x a x a x a x a x a dx d nn n n n n L M M M L L =∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LM M M L M M M L 15.设xx x x x x x g 620321)(332=,求)(x g ′.16.设17131231533111)(85222−−−−−−=x x x x x x x g ,试证:存在)1,0(∈ξ,使得0)(=′ξg .17.证明:奇数阶反对称矩阵的行列式为零. 18.设z y x ,,是互异的实数,证明:0111333=z y x z y x 的充要条件是0=++z y x . 19.设4322321143113151−=A ,计算44434241A A A A +++的值,其中是)4,3,2,1(4=i A i A 的代数余子式.20.利用克莱默法则求解方程组.⎪⎩⎪⎨⎧=+−=+−=−+3232222321321321x x x x x x x x x 21.求极限111cos sin 3212sin 1231lim23x x x x x x x →.第一章 参考答案1.4 独立作业 1.4.1 基础训练1. (C) 2. (B) 3. (C) 4.(A) 5. (B)6.解=×==17092142512000200070922000425190927092625142515682000.7.0 , 8. 解 0111312111==++cb c a cb A A A ,故答案为09.解 因为在此行列式的展开式中,含有的只有主对角线上的元素的积,故答案为 10.解 由范德蒙行列式得行列式的值为2883x 2−11.解0222222229753169411311971197597531694149362516362516925169416941===.12.解 x y x y x x xyy yxy xyyx y xxy D 0000000000000000−−==22222)(y x xyyx x x yy x y −−=−= 13.解 0131201014200013120101220000120000001301200101−×−=−×−=−−=D 20311243131200014=−−×−=−−×−=14.解 yzx z x y x z y x z x y z x y yzx xy zzx yyz x−−−−=−−−−−−=11))(()(0)(01111=))()((x z z y y x −−−15.解 520003520003520003500003352000352000352000352000325200035200035200035200035+= =5203520035200353252000352000352000350000332000320000320000320000325+=+==L 665 16.解1413121414131213141312121413121144342414433323134232221241312111y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x −−−+−−−+−−−+−−−+=++++++++++++++++=017.解132111322113210000000)1(00000000−+−−−−−−×−=−−−=n n n n n n n n a a a a b a a a a a a b b b b b D L MMM M MLL L L M M M M M M L L L=−−×+−−−−12221122100n n n n n a a a a a b b b b a L MMM M M LL L ==+−L L 121n n n n nD a a b a a a )(121∑=ni ii n a b a a a L18.解 由第()列的i n i ,,2,1L =ix 1−倍加到第一列上去. nni inx x x x x x x D L MM M ML L LL MM M M LL L 0000000011111001001111021121∑=−===)1(121∑=−n i i n x x x x L19.解43211114321100100111111111111111111x x x x x x x x x x x −−−+=++++432111413121100000001x x x x x x x x x x x x x −−−++++==3214214314324321x x x x x x x x x x x x x x x x ++++20.解 2020012000200021222232222222221−−=n nL MM M M LL L L M M M M L L L 20212002−−=n L M M M ML L =)!2(2−−n 21.解 211121111)1(211121111211121112L LL L L L L L L L L L L L L L L L +=+++==n n n n D n 1101011001)1(+=+=n n L L L L L L22.解 由齐次线性方程组有非零解的条件可知0111213142=−−−−−−μμμ 解之得μ=0,2,3. 于是当μ=0,2,3时,齐次方程组有非零解.⎪⎩⎪⎨⎧=−−+−=−+−=−++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ23.证明 (1)当时,结论显然成立, (2)假设当1=n k n ≤时,结论成立, (3)当时1+=k n11cos 2101cos 200000cos 210001cos 210001cos 2++=k k D αααααL L M M M M ML L Lkk D ααααcos 21010000cos 210001cos 2100001)1(cos 23L M M M M M LL L L −+=ααααααααααsin )2sin(sin sin sin sin cos 2sin )1sin(cos 21+=−=−+=−k k k D k k ααsin ]1)1sin[(++=k 故结论成立. 1.4.2 提高练习1.B , 2.C , 3.D , 4.B , 5.D, 6.2)1(−n n , 7. 44332112a a a a 8.0, 0, 9.32, 64 , 10.2312−−n , 11.277, 12.6 13.提示:用范德蒙行列式将行列式展开求解,答案为i b x =,(n i ,,2,1L =), 14.(用行列式的定义和导数的运算法则)证明))()()()1(()()()()()()()()()(11)(12122221112112211x a x a x a dx dx a x a x a x a x a x a x a x a x a dx d n n p p p p p p t nn n n n n L L M M ML L L ∑−== ))())(()()()1((111)(12211x a x a dx d x a x a n i n p p p p p p p tL L L ∑−=∑=ni nn n n in i i n x a x a x a x a dx d x a dx d x a dx d x a x a x a 1212111211)()()()()()()()()(LMM M L M M M L15.利用(14)的结论进行计算便可得结果,答案为6.2x 16.(用罗尔中值定理证)证明 (1)显然是多项式,故在上连续,在()(x g )(x g ]1,0[)1,0内可导,且 ,从而由罗尔中值定理知,存在0)1()0(==g g )1,0(∈ξ,使得0)(=′ξg . 17.用行列式的性质3的推论(同济四版)18.证明 33333333333301111x z xy xz xy x z x y x x z x y x z y x z y x−−−−=−−−−=0))()()((11))((2222=++−−−=++++−−=z y x y z x z x y xxz z x xy y x z x y 由于z y x ,,是互异的实数,故要使上式成立,当且仅当0=++z y x .19.解 6111132114311315144434241=−=+++A A A A , 20. 11=x ,, 22=x 33=x 21.解 (用罗必塔法则求解)11100013212001230000111231001100sin cos 3212sin 123230cos 11231lim1101cos sin 3212sin 1231lim223230=+=−+=→→x x x x x x x x x x x x x x x x x。

线性代数习题册(答案)

线性代数习题册(答案)

线性代数习题册答案第一章 行列式练习 一班级 学号 姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .3.在四阶行列式中,项12233441a a a a 的符号为 负 .4.00342215= -24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式: (1)111ab c a b c abc +++= 13233110110011,0110111111r r r r c c a b c bcabcabc-----+-==++++++(2) xy x y y x y x x yxy+++(3)130602121476----(4)1214012110130131-5.计算下列n 阶行列式:(1)n xa a a x a D aax=(每行都加到第一行,并提公因式。

)(2)131111n +(3) 123123123n n n a ba a a a ab a a a a a a b+++练习 三班级 学号 姓名 1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。

线性代数习题册(答案)

线性代数习题册(答案)

线性代数习题册答案第一章行列式练习一班级学号1.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)τ(3421)= 5 ;(2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n(n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i=8 、j= 3 .3.在四阶行列式中,项12233441a a a a的符号为负.4.003042215=-24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ)= -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3) 1306 0212 1476----(4) 1214 0121 1013 0131-5.计算下列n阶行列式:(1)n x a a a x aDa a x=(每行都加到第一行,并提公因式。

)(2)131111n +(3)123123123nn n a b a a a a a b a a a a a a b+++练习 三班级 学号1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档