2012年中考数学专题训练十 二次函数
中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案

中考数学总复习《二次函数压轴题(面积问题)》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________1.如图,在平面直角坐标系中,抛物线2y ax x c =-+与y 轴交于点()0,4A -,与x 轴交于点()4,0B ,连接AB .(1)求抛物线的解析式.(2)P 是AB 下方抛物线上的一动点,过点P 作x 轴的平行线交AB 于点C ,过点P 作PD x ⊥轴于点D .①求PC PD +的最大值.①连接PA ,PB ,是否存在点P ,使得线段PC 把PAB 的面积分成3:5两部分?若存在,请直接写出点P 的坐标;若不存在,请说明理由.2.综合与探究如图1,抛物线212y x bx c =-++经过点(4,0)B 和(0,2)C ,与x 轴的另一个交点为A ,连接AC ,BC .(1)求该抛物线的解析式及点A 的坐标;(2)如图1,点D 是线段AC 的中点,连接BD .点E 是抛物线上一点,若ABE BCD S S =△△,设点E 的横坐标为x ,请求出x 的值;(3)试探究在抛物线上是否存在一点P ,使得45PBO OBC ∠+∠=︒?若存在,请直接写出点P 的坐标;若不存在,请说明理由.3.如图抛物线2y ax bx c =++经过点()1,0A -,点()0,3C ,且OB OC =.(1)求抛物线的解析式及其对称轴;(2)点D 、E 是直线1x =上的两个动点,且1DE =,点D 在点E 的上方,求四边形ACDE 的周长的最小值.(3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3:5两部分,求点P 的坐标.4.已知二次函数23y ax bx a =+-经过点()1,0A -和()0,3C ,与x 轴交于另一点B ,抛物线的顶点为D .(1)求此二次函数解析式;(2)连接DC 、BC 和DB ,判断BCD △的形状并说明理由;(3)在对称轴右侧抛物线上找一点P ,使得P 、D 、C 构成以PC 为底边的等腰三角形,求出点P 的坐标及此时四边形PBCD 的面积.5.如图,抛物线214y x bx c =-++与x 轴交于点,A B 两点(点A 在点B 的右侧),点()()8,02,0A B -、,与y 轴交于点C .(1)求抛物线的解析式; (2)点D 为抛物线的顶点,过点D 作DE AC ∥交抛物线于点E ,点P 为抛物线上点,D E 之间的一动点,连接,,,,AC AE AP CE CP ,线段,AP CE 交于点G ,记CPG △的面积为1,S AEG △的面积为2S ,且12S S S =-,求S 的最大值及此时点P 的坐标;(3)在(2)的条件下,将拋物线沿射线AC 方向平移5个单位长度后得到新抛物线,点Q 是新拋物线对称轴上一动点,在平面内确定一点R ,使得以点P Q B R 、、、为顶点的四边形是矩形.直接写出所有符合条件的点R 的坐标.6.如图,有一个长为30米的篱笆,一面利用墙(墙的最大可用长度18a =米)围成的中间隔有一道篱笆的长方形花圃设花圃的宽AB 为x 米,面积为y 平方米.(1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)如何设计才能使长方形花圃面积最大;并求其最大面积.7.如图,过原点的抛物线212y x bx c =-++与x 轴的另一个交点为A ,且抛物线的对称轴为直线2x =,点B 为顶点(1)求抛物线的解析式(2)如图(1),点C 为直线OB 上方抛物线上一动点,连接AB,BC 和AC ,线段AC 交直线OB 于点E ,若CBE △的面积为1S ,ABE 的面积为2S ,求12S S 的最大值 (3)如图(2),设直线()20y kx k k =-≠与抛物线交于D ,F 两点,点D 关于直线2x =的对称点为D ,直线D F '与直线2x =交于点P ,求证:BP 的长是定值.8.抛物线2y x bx c =-++经过点A ,B ,C ,已知()1,0A -和()0,3C .(1)求抛物线的解析式及顶点E 的坐标;(2)点D 在BC 上方的抛物线上.①如图1,若CAB ABD ∠=∠,求点D 的坐标;①如图2,直线BD 交y 轴于点N ,过点B 作AD 的平行线交y 轴于点M ,当点D 运动时,求CBD AMNS S △△的最大值及此时点D 的坐标. 9.在平面直角坐标系中,O 为坐标原点,抛物线244y ax ax =-+交x 轴于点A 、B (A 左B右),交y 轴于点C ,直线123y x =-+,经过B 点,交y 轴于点D .(1)如图1,求a 的值;(2)如图2,点P 在第一象限内的抛物线上,过点A 、B 作x 轴的垂线,分别交直线PD 于点E 和F ,若PF DE =,求点P 的坐标;(3)如图3,在(2)的条件下,点Q 在第一象限内的抛物线上,过点Q 作QH DP ⊥于点H ,交直线BD 于点R ,连接EQ 和ER ,当QE ER =时,求ERQ △的面积.10.已知抛物线213222y x x =-++与x 轴交于B 、C 两点(点B 在点C 的左侧),与y 轴交于点A .(1)判断ABC 的形状,并说明理由.(2)设点(,)P m n 是抛物线在第一象限部分上的点,过点P 作PH x ⊥轴于H ,交AC 于点Q ,设四边形OAPC 的面积为S ,求S 关于m 的函数关系式,并求使S 最大时点P 的坐标和QHC △的面积;(3)在(2)的条件下,点N 是坐标平面内一点,抛物线的对称轴上是否存在点M ,使得以P 、C 和M 、N 为顶点的四边形是菱形,若存在,写出点M 的坐标,并选择一个点写出过程,若不存在,请说明理由.11.已知,如图,在平面直角坐标系中,点O 为坐标原点,直线6y x =+与x 轴相交于点B ,与y 轴交于点C ,点A 是x 轴正半轴上一点,且满足2tan 3ACO ∠=.(1)若抛物线2y ax bx c =++经过A 、B 和C 三点,求抛物线的解析式;(2)若点M 是第二象限内抛物线上的一个动点,过点M 作MP y ∥轴,交BC 于点P ,连接OP ,在第一象限内找一点Q ,过点Q 作⊥OQ OP 且OQ OP =,连接PQ ,MQ ,设MPQ 的面积为S ,点P 的横坐标为t ,求S 与t 的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,设PQ 与y 轴相交于点R ,若53=PR PC 时,求点P 的坐标. 12.已知抛物线22y ax ax c =-+过点()10A -,和()03C ,,与x 轴交于另一点B .(1)求抛物线的解析式;(2)若抛物线的顶点为D ,在直线BC 上方抛物线上有一点P (与D 不重合),BCP 面积与BCD △面积相等,求点P 的坐标;(3)若点E 为抛物线对称轴上一点,在平面内是否存在点F ,使得以E 、F 和B 、C 为顶点的四边形是菱形,若存在,请直接写出F 点的坐标;若不存在,请说明理由.13.如图,抛物线过点()08D ,,与x 轴交于()20A -,,()40B ,两点.(1)求抛物线的解析式;(2)若点C 为二次函数的顶点,求BCD S △.14.如图,O 为平面直角坐标系坐标原点,抛物线22y ax ax c =-+经过点()6,0B ,点()0,6C 与x 轴交于另一点A .(1)求抛物线的解析式;(2)D 点为第一象限抛物线上一点,连接AD 和BD ,设点D 的横坐标为t ,ABD △的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,P 为第四象限抛物线上一点,连接PA 交y 轴于点E ,点F 在线段BC 上,点G 在直线AD 上,若1tan 2DAO ∠=,四边形BEFG 为菱形,求点P 的坐标. 15.已知抛物线2()20y ax x c a =++≠与x 轴交于点(1,0)A -和点B ,与直线3y x =-+交于点B 和点C ,M 为抛物线的顶点,直线ME 是抛物线的对称轴.(1)求抛物线的解析式及点M 的坐标;(2)点P 为直线BC 上方抛物线上一点,连接PB ,PC ,当PBC 的面积取最大值时,求点P 的坐标.参考答案:1.(1)2142y x x =-- (2)① PC PD +取得最大值254 ① 53,2⎛⎫- ⎪⎝⎭或 316,2⎛⎫+- ⎪⎝⎭2.(1)213222y x x =-++ (1,0)-; (2)3172+或3172-或3332+或3332- (3)存在,517(,)39--或113(,)39-3.(1)故抛物线的表达式为:223y x x =-++,函数的对称轴为:1x =;(2)10113++(3)()4,5-或()8,45-4.(1)223y x x =-++(2)BCD △为直角三角形(3)点P 的坐标为()2,3,四边形PBCD 的面积为45.(1)213442y x x =-++ (2)S 的最大值为1,()4,6P(3)()7,3或()5,3-6.(1)2330S x x =-+ 410x ≤<;(2)当宽AB 为5米,长15BC =米时,长方形花圃的最大面积为75平方米.7.(1)2122y x x =-+ (2)188.(1)()1,4(2)①()2,3D ;①CBD AMN S S △△的最大值为916,此时315,24D ⎛⎫ ⎪⎝⎭9.(1)13a =- (2)()4,4P(3)1010.(1)直角三角形(2)244S m m =-++ (2,3)P 1QHC S =(3)存在,点M 坐标为3651(,)22+或3651(,)22-或333(,)22或333(,)22-或31(,)22,理由见解析11.(1)211642=--+y x x (2)()2396042S t t t =---<< (3)()()124,2,2,4P P --12.(1)223y x x =-++(2)()23P ,(3)存在,点F 的坐标为()417,或()417-,或()2314-+,或()2314--,13.(1)228y x x =-++(2)614.(1)211642y x x =-++ (2)2553042S t t =-++ (3)()8,6P -15.(1)抛物线的解析式为223y x x =-++,点M 的坐标为(1,4)(2)315,24P ⎛⎫ ⎪⎝⎭。
中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。
2012年全国各地市中考数学模拟试题分类汇编18二次函数的图象和性质

二次函数的图象和性质一、选择题1、(2012年浙江金华一模)抛物线2y x =先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( )A .()213y x =++B .()213y x =+- C .()213y x =-- D .()213y x =-+答案:D2、.(2012年浙江金华四模)抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1)答案:C3、(2012年浙江金华五模)将抛物线122--=x y 向上平移若干个单位,使抛物线与坐标轴有三个交点,如果这些交点能构成直角三角形,那么平移的距离为( ▲ ) A .23个单位 B .1个单位 C .21个单位 D .2个单位 答案:A4、(2012年浙江金华五模)抛物线2(2)3y x =-+的对称轴是( ▲ )A.直线x = -2 B .直线 x =2 C .直线x = -3 D .直线x =3答案:B5、(2012江苏无锡前洲中学模拟)如图,四边形ABCD 中,∠BAD =∠ACB =90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是( )A . 2425y x =B .225y x =C .2225y x= D .245y x =答案:B(第1题) AB D6.(2012荆门东宝区模拟)在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能..是( ).(第2题)答案:D7. (2012年江苏海安县质量与反馈)将y =2x 2的函数图象向左平移2个单位长度后,得到的函数解析式是A .y =2x 2+2B .y =2x 2-2C .y =(x -2)2D .y =2(x +2)2答案:D.8. (2012年江苏沭阳银河学校质检题)下列函数中,是二次函数的是(▲) A 、xx y 12-= B 、x x y 322+= C 、22y x y +-= D 、1+=x y 答案: B.9. (2012年江苏沭阳银河学校质检题)抛物线c bx ax y ++=2上部分点的横坐标x ,纵坐标y下列说法①抛物线与x 轴的另一个交点为(3,0),②函数的最大值为6,③抛物线的对称轴是直线x=21,④在对称轴的左侧,y 随x 的增大而增大,正确的有(▲) A 、1个 B 、2个 C 、3个 D 、4个 答案:C.10.马鞍山六中2012中考一模).二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = a x与正比例函数y =(b +c )x在同一坐标系中的大致图象可能是( )A .B .C .D .答案:A11.(2012荆州中考模拟).将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )A.2)1(2+-=x y B.2)1(2++=x y C.2)1(2--=x y D.2)1(2-+=x y 答案:A12.(2012年南岗初中升学调研).抛物线y=一x2-2与y轴的交点坐标是( )。
中考数学专题专练--二次函数与一次函数的综合 (1)

中考数学专题专练--二次函数与一次函数的综合1.如图,二次函数y=- 34x2+94x+3的图象与x轴交于点A、B(B在A右侧),与y轴交于点C.(1)求点A、B、C的坐标;(2)求△ABC的面积.2.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过A (1,0),C(0,3)两点,与x轴相交于点B.(1)求抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.3.如图,抛物线y=x2 +bx+c与x轴交于A(﹣1,0),B(2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△P AB=6,并求出此时P点的坐标.4.如图,抛物线y1=a(x-1)2+4与x轴交于A(-1,0)。
(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2=x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x 轴于点B,求△ABC的面积。
5.如图,已知直线y=-3x+3与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过点A和点C,对称轴为直线I:x=-1,该抛物线与x轴的另一个交点为B。
(1)求此抛物线的解析式;(2)点P在抛物线上且位于第二象限,求△PBC的面积最大值及点P的坐标。
(3)点M在此抛物线上,点N在对称轴上,以B、C、M、N为顶点的四边形能否为平行四边形?若能,写出所有满足要求的点M 的坐标;若不能,请说明理由。
6.如图,直线y=-x+2与抛物线y=ax 2交于A ,B 两点,点A 坐标为(1,1)。
(1)水抛物线的函数表达式:(2)连结OA ,OB ,求△AOB 的面积。
7.已知抛物线y=ax 2+bx+c 的顶点P(1,-1),且过Q(5,3)。
中考数学专题训练---二次函数的综合题分类含答案

中考数学专题训练---二次函数的综合题分类含答案一、二次函数1.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D.(1)求抛物线及直线AC的函数关系式;(2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标;(3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣12时,△APC的面积取最大值,最大值为278,此时点P的坐标为(﹣12,154);(3)在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为102【解析】【分析】(1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得出AQ的值,利用三角形的面积公式可得出S△APC=﹣32x2﹣32x+3,再利用二次函数的性质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论.【详解】(1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:10423b c b c -++=⎧⎨--+=⎩,解得:23b c =-⎧⎨=⎩, ∴抛物线的函数关系式为y =﹣x 2﹣2x +3; 设直线AC 的函数关系式为y =mx +n (m ≠0), 将A (1,0),C (﹣2,3)代入y =mx +n ,得:023m n m n +=⎧⎨-+=⎩,解得:11m n =-⎧⎨=⎩, ∴直线AC 的函数关系式为y =﹣x +1.(2)过点P 作PE ∥y 轴交x 轴于点E ,交直线AC 于点F ,过点C 作CQ ∥y 轴交x 轴于点Q ,如图1所示.设点P 的坐标为(x ,﹣x 2﹣2x +3)(﹣2<x <1),则点E 的坐标为(x ,0),点F 的坐标为(x ,﹣x +1),∴PE =﹣x 2﹣2x +3,EF =﹣x +1,EF =PE ﹣EF =﹣x 2﹣2x +3﹣(﹣x +1)=﹣x 2﹣x +2. ∵点C 的坐标为(﹣2,3), ∴点Q 的坐标为(﹣2,0), ∴AQ =1﹣(﹣2)=3, ∴S △APC =12AQ •PF =﹣32x 2﹣32x +3=﹣32(x +12)2+278. ∵﹣32<0, ∴当x =﹣12时,△APC 的面积取最大值,最大值为278,此时点P 的坐标为(﹣12,154). (3)当x =0时,y =﹣x 2﹣2x +3=3, ∴点N 的坐标为(0,3). ∵y =﹣x 2﹣2x +3=﹣(x +1)2+4, ∴抛物线的对称轴为直线x =﹣1. ∵点C 的坐标为(﹣2,3), ∴点C ,N 关于抛物线的对称轴对称.令直线AC 与抛物线的对称轴的交点为点M ,如图2所示. ∵点C ,N 关于抛物线的对称轴对称, ∴MN =CM ,∴AM +MN =AM +MC =AC , ∴此时△ANM 周长取最小值. 当x =﹣1时,y =﹣x +1=2, ∴此时点M 的坐标为(﹣1,2).∵点A 的坐标为(1,0),点C 的坐标为(﹣2,3),点N 的坐标为(0,3),∴AC=,AN ,∴C△ANM=AM+MN+AN=AC+AN=32+10.∴在对称轴上存在一点M(﹣1,2),使△ANM的周长最小,△ANM周长的最小值为32+10.【点睛】本题考查待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式找出S△APC=﹣32x2﹣32x+3的最值;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.2.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q两点,且点P 在第三象限.①当线段PQ=34AB时,求tan∠CED的值;②当以点C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.【答案】(1)抛物线的函数表达式为y =x 2-2x -3.(2)直线BC 的函数表达式为y =x -3.(3)①23.①P 1(122),P 2(1-62,74). 【解析】 【分析】已知C 点的坐标,即知道OC 的长,可在直角三角形BOC 中根据∠BCO 的正切值求出OB 的长,即可得出B 点的坐标.已知了△AOC 和△BOC 的面积比,由于两三角形的高相等,因此面积比就是AO 与OB 的比.由此可求出OA 的长,也就求出了A 点的坐标,然后根据A 、B 、C 三点的坐标即可用待定系数法求出抛物线的解析式. 【详解】(1)∵抛物线的对称轴为直线x=1,∴− 221bba -⨯==1 ∴b=-2∵抛物线与y 轴交于点C (0,-3), ∴c=-3,∴抛物线的函数表达式为y=x 2-2x-3; (2)∵抛物线与x 轴交于A 、B 两点, 当y=0时,x 2-2x-3=0. ∴x 1=-1,x 2=3. ∵A 点在B 点左侧, ∴A (-1,0),B (3,0)设过点B (3,0)、C (0,-3)的直线的函数表达式为y=kx+m ,则033k m m ==+⎧⎨-⎩,∴13k m ⎧⎨-⎩==∴直线BC 的函数表达式为y=x-3; (3)①∵AB=4,PQ=34AB ,∴PQ=3∵PQ⊥y轴∴PQ∥x轴,则由抛物线的对称性可得PM=32,∵对称轴是直线x=1,∴P到y轴的距离是12,∴点P的横坐标为−12,∴P(−12,−74)∴F(0,−74),∴FC=3-OF=3-74=54∵PQ垂直平分CE于点F,∴CE=2FC=5 2∵点D在直线BC上,∴当x=1时,y=-2,则D(1,-2),过点D作DG⊥CE于点G,∴DG=1,CG=1,∴GE=CE-CG=52-1=32.在Rt△EGD中,tan∠CED=23 GDEG=.②P1(2,-2),P2(1-62-52).设OE=a,则GE=2-a,当CE为斜边时,则DG2=CG•GE,即1=(OC-OG)•(2-a),∴1=1×(2-a),∴a=1,∴CE=2,∴OF=OE+EF=2∴F、P的纵坐标为-2,把y=-2,代入抛物线的函数表达式为y=x2-2x-3得:x=1+2或1-2∵点P在第三象限.∴P1(1-2,-2),当CD为斜边时,DE⊥CE,∴OE=2,CE=1,∴OF=2.5,∴P和F的纵坐标为:-52,把y=-52,代入抛物线的函数表达式为y=x2-2x-3得:x=1-6,或1+6,∵点P在第三象限.∴P2(1-6,-52).综上所述:满足条件为P1(1-2,-2),P2(1-6,-52).【点睛】本题是二次函数的综合题型,其中涉及到的知识点有抛物线的顶点公式和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.3.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【答案】(1)抛物线的解析式为y=﹣x 2﹣2x+3;(2)当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3). 【解析】 【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案. 【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3;(2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2ba=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3).∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .4.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示. (1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;(3)2213(03)2213(03)22t t t S t t t t ⎧-+⎪⎪=⎨⎪-⎪⎩<<<或>【解析】试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;(2)先解方程求出抛物线与x 轴的交点,再判断出△BOC 和△BED 都是等腰直角三角形,从而得到结论;(3)先求出QF=1,再分两种情况,当点P 在点M 上方和下方,分别计算即可. 试题解析:解(1)∵2+430x x +=,∴11x =-,23x =-,∵m ,n 是一元二次方程2+430x x +=的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线223y x x =--的图象经过点A (m ,0),B (0,n ),∴10{3b c c -+==-,∴2{3b c =-=-,∴抛物线解析式为223y x x =--;(2)令y=0,则2230x x --=,∴11x =-,23x =,∴C (3,0),∵223y x x =--=2(1)4x --,∴顶点坐标D (1,﹣4),过点D 作DE ⊥y 轴,∵OB=OC=3,∴BE=DE=1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD 是直角三角形;(3)如图,∵B (0,﹣3),C (3,0),∴直线BC 解析式为y=x ﹣3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P (t ,t ﹣3),M (t ,223t t --),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ=2,∴QF=1.①当点P 在点M 上方时,即0<t <3时,PM=t ﹣3﹣(223t t --)=23t t -+,∴S=12PM×QF=21(3)2t t -+=21322t t -+,②如图3,当点P 在点M 下方时,即t <0或t>3时,PM=223t t --﹣(t ﹣3)=23t t -,∴S=12PM×QF=12(23t t -)=21322t t -.综上所述,S=2213(03)22{13 (03)22t t t t t t t 或-+<<-.考点:二次函数综合题;分类讨论.5.如图,过()A 1,0、()B 3,0作x 轴的垂线,分别交直线y 4x =-于C 、D 两点.抛物线2y ax bx c =++经过O 、C 、D 三点.()1求抛物线的表达式;()2点M 为直线OD 上的一个动点,过M 作x 轴的垂线交抛物线于点N ,问是否存在这样的点M ,使得以A 、C 、M 、N 为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由;()3若AOC V 沿CD 方向平移(点C 在线段CD 上,且不与点D 重合),在平移的过程中AOC V 与OBD V 重叠部分的面积记为S ,试求S 的最大值.【答案】(1)2413y x x 33=-+;(2)32332+332-;(3)13. 【解析】 【分析】(1)利用待定系数法求出抛物线的解析式;(2)由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3.设点M 的横坐标为x ,则求出MN =|43x 2﹣4x |;解方程|43x 2﹣4x |=3,求出x 的值,即点M 横坐标的值;(3)设水平方向的平移距离为t (0≤t <2),利用平移性质求出S 的表达式:S 16=-(t ﹣1)213+;当t =1时,s 有最大值为13. 【详解】(1)由题意,可得C (1,3),D (3,1).∵抛物线过原点,∴设抛物线的解析式为:y =ax 2+bx ,∴3931a b a b +=⎧⎨+=⎩,解得43133a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的表达式为:y 43=-x 2133+x . (2)存在.设直线OD 解析式为y =kx ,将D (3,1)代入,求得k 13=,∴直线OD 解析式为y 13=x . 设点M 的横坐标为x ,则M (x ,13x ),N (x ,43-x 2133+x ),∴MN =|y M ﹣y N |=|13x ﹣(43-x 2133+x )|=|43x 2﹣4x |. 由题意,可知MN ∥AC ,因为以A 、C 、M 、N 为顶点的四边形为平行四边形,则有MN =AC =3,∴|43x 2﹣4x |=3.若43x 2﹣4x =3,整理得:4x 2﹣12x ﹣9=0,解得:x 32+=或x 32-= 若43x 2﹣4x =﹣3,整理得:4x 2﹣12x +9=0,解得:x 32=,∴存在满足条件的点M ,点M 的横坐标为:32或32+或32-. (3)∵C (1,3),D (3,1),∴易得直线OC 的解析式为y =3x ,直线OD 的解析式为y 13=x . 如解答图所示,设平移中的三角形为△A 'O 'C ',点C '在线段CD 上.设O 'C '与x 轴交于点E ,与直线OD 交于点P ;设A 'C '与x 轴交于点F ,与直线OD 交于点Q .设水平方向的平移距离为t (0≤t <2),则图中AF =t ,F (1+t ,0),Q (1+t ,1133+t ),C '(1+t ,3﹣t ).设直线O 'C '的解析式为y =3x +b ,将C '(1+t ,3﹣t )代入得:b =﹣4t ,∴直线O 'C '的解析式为y =3x ﹣4t ,∴E (43t ,0). 联立y =3x ﹣4t 与y 13=x ,解得:x 32=t ,∴P (32t ,12t ). 过点P 作PG ⊥x 轴于点G ,则PG 12=t ,∴S =S △OFQ ﹣S △OEP 12=OF •FQ 12-OE •PG 12=(1+t )(1133+t )12-•43t •12t 16=-(t ﹣1)213+ 当t =1时,S 有最大值为13,∴S 的最大值为13.【点睛】本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、函数图象上点的坐标特征、平行四边形、平移变换、图形面积计算等知识点,有一定的难度.第(2)问中,解题的关键是根据平行四边形定义,得到MN =AC =3,由此列出方程求解;第(3)问中,解题的关键是求出S 的表达式,注意图形面积的计算方法.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知, 方程的两根为:257m m x ()-±-= 即1216x x m =-=-+,由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .(1)求抛物线的解析式;(2)过点A 的直线交直线BC 于点M .①当AM ⊥BC 时,过抛物线上一动点P (不与点B ,C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A ,M ,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标; ②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标.【答案】(1)抛物线解析式为y=﹣x 2+6x ﹣5;(2)①P 点的横坐标为45+41或5-412;②点M 的坐标为(136,﹣176)或(236,﹣76). 【解析】分析:(1)利用一次函数解析式确定C (0,-5),B (5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程-x 2+6x-5=0得A (1,0),再判断△OCB 为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB 为等腰直角三角形,所以,接着根据平行四边形的性质得到,PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,利用∠PDQ=45°得到PQ=4,设P (m ,-m 2+6m-5),则D (m ,m-5),讨论:当P 点在直线BC 上方时,PD=-m 2+6m-5-(m-5)=4;当P 点在直线BC 下方时,PD=m-5-(-m 2+6m-5),然后分别解方程即可得到P 点的横坐标;②作AN ⊥BC 于N ,NH ⊥x 轴于H ,作AC 的垂直平分线交BC 于M 1,交AC 于E ,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM 1B=2∠ACB ,再确定N (3,-2), AC 的解析式为y=5x-5,E 点坐标为(12,-52),利用两直线垂直的问题可设直线EM 1的解析式为y=-15x+b ,把E (12,-52)代入求出b 得到直线EM 1的解析式为y=-15x-125,则解方程组511255y x y x -⎧⎪⎨--⎪⎩==得M 1点的坐标;作直线BC 上作点M 1关于N 点的对称点M 2,如图2,利用对称性得到∠AM 2C=∠AM 1B=2∠ACB ,设M 2(x ,x-5),根据中点坐标公式得到3=13+62x ,然后求出x 即可得到M 2的坐标,从而得到满足条件的点M 的坐标.详解:(1)当x=0时,y=x ﹣5=﹣5,则C (0,﹣5),当y=0时,x ﹣5=0,解得x=5,则B (5,0),把B (5,0),C (0,﹣5)代入y=ax 2+6x+c 得253005a c c ++=⎧⎨=-⎩,解得15a b =-⎧⎨=-⎩, ∴抛物线解析式为y=﹣x 2+6x ﹣5;(2)①解方程﹣x 2+6x ﹣5=0得x 1=1,x 2=5,则A (1,0),∵B (5,0),C (0,﹣5),∴△OCB 为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM ⊥BC ,∴△AMB 为等腰直角三角形,∴AM=2AB=2, ∵以点A ,M ,P ,Q 为顶点的四边形是平行四边形,AM ∥PQ ,∴PQ ⊥BC ,作PD ⊥x 轴交直线BC 于D ,如图1,则∠PDQ=45°,∴PD=2PQ=2×22=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=5+412,m2=5-412,综上所述,P点的横坐标为4或5+41或5-41;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(12,﹣52,设直线EM1的解析式为y=﹣15x+b,把E(12,﹣52)代入得﹣110+b=﹣52,解得b=﹣125,∴直线EM1的解析式为y=﹣15x﹣125解方程组511255y xy x=-⎧⎪⎨=--⎪⎩得136176xy⎧=⎪⎪⎨⎪=-⎪⎩,则M1(136,﹣176);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=13+ 62x∴x=236,∴M2(236,﹣76).综上所述,点M的坐标为(136,﹣176)或(236,﹣76).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.8.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.【答案】(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6).【解析】 【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得; (3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6),∴PN=PM﹣MN=﹣12t2+2t+6﹣(﹣t+6)=﹣12t2+2t+6+t﹣6=﹣12t2+3t,∴S△PAB=S△PAN+S△PBN=12PN•AG+12PN•BM=12PN•(AG+BM)=12 PN•OB=12×(﹣12t2+3t)×6=﹣32t2+9t=﹣32(t﹣3)2+272,∴当t=3时,△PAB的面积有最大值;(3)如图2,∵PH⊥OB于H,∴∠DHB=∠AOB=90°,∴DH∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45°,∵PE∥x轴、PD⊥x轴,∴∠DPE=90°,若△PDE为等腰直角三角形,则∠EDP=45°,∴∠EDP与∠BDH互为对顶角,即点E与点A重合,则当y=6时,﹣12x2+2x+6=6,解得:x=0(舍)或x=4,即点P(4,6).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.9.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0).(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点.①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【答案】(1)点B 的坐标为(1,0).(2)①点P 的坐标为(4,21)或(-4,5).②线段QD 长度的最大值为94. 【解析】【分析】(1)由抛物线的对称性直接得点B 的坐标.(2)①用待定系数法求出抛物线的解析式,从而可得点C 的坐标,得到BOC S ∆,设出点P 的坐标,根据POC BOC S 4S ∆∆=列式求解即可求得点P 的坐标.②用待定系数法求出直线AC 的解析式,由点Q 在线段AC 上,可设点Q 的坐标为(q,-q-3),从而由QD ⊥x 轴交抛物线于点D ,得点D 的坐标为(q,q 2+2q-3),从而线段QD 等于两点纵坐标之差,列出函数关系式应用二次函数最值原理求解.【详解】解:(1)∵A 、B 两点关于对称轴x 1=-对称 ,且A 点的坐标为(-3,0), ∴点B 的坐标为(1,0).(2)①∵抛物线a 1=,对称轴为x 1=-,经过点A (-3,0), ∴2a 1b 12a 9a 3b c 0=⎧⎪⎪-=-⎨⎪-+=⎪⎩,解得a 1b 2c 3=⎧⎪=⎨⎪=-⎩.∴抛物线的解析式为2y x 2x 3=+-.∴B 点的坐标为(0,-3).∴OB=1,OC=3.∴BOC 13S 1322∆=⨯⨯=. 设点P 的坐标为(p,p 2+2p-3),则POC 13S 3p p 22∆=⨯⨯=. ∵POC BOC S 4S ∆∆=,∴3p 62=,解得p 4=±. 当p 4=时2p 2p 321+-=;当p 4=-时,2p 2p 35+-=,∴点P 的坐标为(4,21)或(-4,5).②设直线AC 的解析式为y kx b =+,将点A ,C 的坐标代入,得:3k b 0b 3-+=⎧⎨=-⎩,解得:k 1b 3=-⎧⎨=-⎩. ∴直线AC 的解析式为y x 3=--.∵点Q 在线段AC 上,∴设点Q 的坐标为(q,-q-3).又∵QD ⊥x 轴交抛物线于点D ,∴点D 的坐标为(q,q 2+2q-3).∴()22239QD q 3q 2q 3q 3q q 24⎛⎫=---+-=--=-++ ⎪⎝⎭. ∵a 10<=-,-3302<<-∴线段QD 长度的最大值为94.10.如图,在平面直角坐标系中,抛物线y=ax 2+2ax ﹣3a (a <0)与x 轴相交于A ,B 两点,与y 轴相交于点C ,顶点为D ,直线DC 与x 轴相交于点E .(1)当a=﹣1时,求抛物线顶点D 的坐标,OE 等于多少;(2)OE 的长是否与a 值有关,说明你的理由;(3)设∠DEO=β,45°≤β≤60°,求a 的取值范围;(4)以DE 为斜边,在直线DE 的左下方作等腰直角三角形PDE .设P (m ,n ),直接写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(﹣1,4),3;(2)结论:OE 的长与a 值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).【解析】【分析】(1)求出直线CD的解析式即可解决问题;(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;(3)求出落在特殊情形下的a的值即可判断;(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.【详解】解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,∴顶点D(﹣1,4),C(0,3),∴直线CD的解析式为y=﹣x+3,∴E(3,0),∴OE=3,(2)结论:OE的长与a值无关.理由:∵y=ax2+2ax﹣3a,∴C(0,﹣3a),D(﹣1,﹣4a),∴直线CD的解析式为y=ax﹣3a,当y=0时,x=3,∴E(3,0),∴OE=3,∴OE的长与a值无关.(3)当β=45°时,OC=OE=3,∴﹣3a=3,∴a=﹣1,当β=60°时,在Rt△OCE中,∴﹣∴a=,∴45°≤β≤60°,a≤a≤﹣1.(4)如图,作PM⊥对称轴于M,PN⊥AB于N.∵PD=PE ,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,∴∠DPM=∠EPN ,∴△DPM ≌△EPN ,∴PM=PN ,PM=EN ,∵D(﹣1,﹣4a),E(3,0),∴EN=4+n=3﹣m ,∴n=﹣m ﹣1,当顶点D 在x 轴上时,P(1,﹣2),此时m 的值1,∵抛物线的顶点在第二象限,∴m <1.∴n=﹣m ﹣1(m <1).故答案为:(1)(﹣1,4),3;(2)OE 的长与a 值无关;(3)3﹣1;(4)n=﹣m ﹣1(m <1).【点睛】本题是二次函数综合题,考查了二次函数的图象与性质。
中考数学真题二次函数专项练习(带答案)

中考数学真题二次函数一、选择题1.已知点M(−4,a−2) N(−2,a) P(2,a)在同一个函数图象上.则这个函数图象可能是()A.B.C.D.2.抛物线y=ax2−a(a≠0)与直线y=kx交于A(x1,y1).B(x2,y2)两点.若x1+x2<0.则直线y= ax+k一定经过().A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限3.设二次函数y=a(x−m)(x−m−k)(a>0,m,k是实数).则()A.当k=2时.函数y的最小值为−a B.当k=2时.函数y的最小值为−2aC.当k=4时.函数y的最小值为−a D.当k=4时.函数y的最小值为−2a4.已知二次函数y=ax2−(3a+1)x+3(a≠0).下列说法正确的是()A.点(1,2)在该函数的图象上B.当a=1且−1≤x≤3时.0≤y≤8C.该函数的图象与x轴一定有交点D.当a>0时.该函数图象的对称轴一定在直线x=32的左侧5.一个球从地面竖直向上弹起时的速度为10米/秒.经过t(秒)时球距离地面的高度h(米)适用公式h=10t-5t2.那么球弹起后又回到地面所花的时间t(秒)是()A.5B.10C.1D.2二、填空题6.在平面直角坐标系xOy中.一个图形上的点都在一边平行于x轴的矩形内部(包括边界).这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图.函数y=(x−2)2(0⩽x⩽3)的图象(抛物线中的实线部分).它的关联矩形为矩形OABC.若二次函数y=14x2+bx+c(0⩽x⩽3)图象的关联矩形恰好也是矩形OABC.则b=.三、解答题7.设二次函数y=ax2+bx+1.(a≠0.b是实数).已知函数值y和自变量x的部分对应取值如下表所示:(1)若m=4.求二次函数的表达式;(2)写出一个符合条件的x的取值范围.使得y随x的增大而减小.(3)若在m、n、p这三个实数中.只有一个是正数.求a的取值范围.8.如图.已知二次函数y=x2+bx+c图象经过点A(1,−2)和B(0,−5).(1)求该二次函数的表达式及图象的顶点坐标.(2)当y≤−2时.请根据图象直接写出x的取值范围.9.已知二次函数y=−x2+bx+c.(1)当b=4,c=3时.①求该函数图象的顶点坐标.②当−1⩽x⩽3时.求y的取值范围.(2)当x⩽0时.y的最大值为2;当x>0时.y的最大值为3.求二次函数的表达式.10.在二次函数y=x2−2tx+3(t>0)中.(1)若它的图象过点(2,1).则t的值为多少?(2)当0≤x≤3时.y的最小值为−2.求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上.且a<b<3.求m的取值范围。
2012年中考数学一轮复习精品讲义 二次函数
第二十六章 二次函数本章小结小结1 本章概述本章从实际问题的情境入手引出基本概念,引导学生自主探索变量之间的关系及其规律,认识二次函数及其图象的一些基本性质,学习怎样寻找所给问题中隐含的数量关系,掌握其基本的解决方法.本章的主要内容有两大部分:一部分是二次函数及其图象的基本性质,另一部分是二次函数模型.通过分析实例,尝试着解决实际问题,逐步提高分析问题、解决问题的能力.二次函数综合了初中所学的函数知识,它把一元二次方程、三角形等知识综合起来,是初中各种知识的总结.二次函数作为一类重要的数学模型,将在解决有关实际问题的过程中发挥重要的作用. 小结2 本章学习重难点【本章重点】 通过对实际问题情境的分析,确定二次函数的表达式,体会二次函数的意义;会用描点法画二次函数的图象,能从图象中认识二次函数的性质;会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题;会利用二次函数的图象求一元二次方程的近似解.【本章难点】 会根据公式确定二次函数图象的顶点、开口方向和对称轴,并能解决简单的实际问题. 【学习本章应注意的问题】1.在学习本章的过程中,不要死记硬背,要运用观察、比较的方法及数形结合思想熟练地画出抛物线的草图,然后结合图象来研究二次函数的性质及不同图象之间的相互关系,由简单的二次函数y =ax 2(a ≠0)开始,总结、归纳其性质,然后逐步扩展,从y =ax 2+k ,y =a (x -h )2一直到y =ax 2+bx +c ,最后总结出一般规律,符合从特殊到一般、从易到难的认识规律,降低了学习难度.2.在研究抛物线的画法时,要特别注意抛物线的轴对称性,列表时,自变量x 的选取应以对称轴为界进行对称选取,要结合图象理解并掌握二次函数的主要特征.3.有关一元二次方程与一次函数的知识是学习二次函数内容的基础,通过观察、操作、思考、交流、探索,加深对教材的理解,在学习数学的过程中学会与他人交流,同时,在学习本章时,要深刻理解两种思想和两种方法,两种思想指的是函数思想和数形结合思想,两种方法指的是待定系数法和配方法,在学习过程中,对数学思想和方法要认真总结并积累经验小结3 中考透视近几年来,各地的中考试卷中还出现了设计新颖、贴近生活、反映时代特点的阅读理解题、开放性探索题和函数的应用题,尤其是全国各地中考试题中的压轴题,有三分之一以上是这一类题,试题考查的范围既有函数的基础知识、基本技能以及基本的数学方法,还越来越重视对学生灵活运用知识能力、探索能力和动手操作能力的考查,特别是二次函数与一元二次方程、三角形的面积、三角形边角关系、圆的切线以及圆的有关线段组成的综合题,主要考查综合运用数学思想和方法分析问题并解决问题的能力,同时也考查计算能力、逻辑推理能力、空间想象能力和创造能力.知识网络结构图二次函数的概念二次函数的图象开口方向对称轴顶点坐标增减性专题总结及应用二次函数 二次函数的性质 二次函数的应用 一元二次方程的近似解 一元二次不等式的解集 二次函数的最大(小)值 在实际问题中的应用一、知识性专题专题1 二次函数y =ax 2+bx +c 的图象和性质【专题解读】 对二次函数y =ax 2+bx +c 的图象与性质的考查一直是各地中考必考的重要知识点之一,一般以填空题、选择题为主,同时也是综合性解答题的基础,需牢固掌握.例1 二次函数y =ax 2+bx +c (a ≠0)的图象如图26-84所示,则下列结论:①a >0;②c >0;③b 2-4ac >0.其中正确的个数是 ( )A .0个B .1个C .2个D .3个分析 ∵抛物线的开口向下,∴a <0;∵抛物线与y 轴交于正半铀,∴c >0;∵抛物线与x 轴有两个交点,∴b 2-4ac >0.故②③正确.故选C .【解题策略】 解此类题时,要注意观察图象的开口方向、与y 轴交点的位置以及与x 轴交点的个数.例2 若y =ax 2+bx +c ,则由表格中的信息可知y 与x 之间的函数关系式是 ( )x -1 0 1 ax 2 1 ax 2+bx +c83A .y =x 2-4x +3B .y =x 2-3x +4C .y =x 2-3x +3D .y =x 2-4x +8分析 由表格中的信息可知,当x =1时,ax 2=1,所以a =1.当x =-1时,ax 2+bx +c =8,当x =0时,ax 2+bx +c =3,所以c =3,所以1³(-1)2+b ³(-1)+3=8,所以b =-4.故选A .【解题策略】 本题考查用待定系数法求二次函数的解析式,解决此题的突破口是x =1时,ax 2=1,x =0时,ax 2+bx +c =3和x =-1时,ax 2+bx +c =8.例3 已知二次函数y =ax 2+bx +1的大致图象如图26-85所示,则函数y =ax +b 的图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限 分析 由图象可知a <0,2ba-<0,则b <0,所以y =ax +b 的图象不经过第一象限.故选A .【解题策略】 抛物线的开口方向决定了a 的符号,b 的符号由抛物线的开口方向和对称轴共同决定.例4 已知二次函数y =ax 2+bx +c (其中a >0,b >0,c <0),关于这个二次函数的图象有如下说法:①图象的开口一定向上;②图象的顶点一定在第四象限;③图象与x 轴的交点至少有一个在y 轴的右侧.其中正确的个数为 ( )A .0个B .1个C .2个D .3个 分析 由a >0,得抛物线开口向上,由2ba-<0,得对称轴在y 轴左侧,由c <0可知抛物线与y 轴交于负半轴上,可得其大致图象如图26—86所示,因此顶点在第三象限,故①③正确.故选C.【解题策略】 此题考查了二次函数的开口方向、对称轴、顶点等性质,解题时运用了数形结合思想.例5 若A 113,4y ⎛⎫- ⎪⎝⎭,B 25,4y ⎛⎫- ⎪⎝⎭,C 31,4y ⎛⎫ ⎪⎝⎭为二次函数y =x 2+4x +5的图象上的三点,则y 1,y 2,y 3的大小关系是 ( )A.y1<y2<y3 B.y2<y1<y3 C.y3<y1<y2 D.y1<y3<y2分析因为y=x2+4x+5的图象的对称轴为直线x=-2,所以x=134-与x=-34的函数值相同,因为抛物线开口向上,所以当54-<34-<14时,y2<y1<y3.故选B.【解题策略】此题考查了抛物线的增减性和对称轴,讨论抛物线的增减性需在对称轴的同侧考虑,因此将x=134-的函数值转化为x=-34的函数值.例6 在平面直角坐标系中,函数y=-x+1与y=-32(x-1)2的图象大致是(如图26—87所示) ( )分析直线y=-x+1与y轴交于正半轴,抛物线y=-32(x-1)2的顶点为(1,0),且开口向下.故选D.专题2 抛物线的平移规律【专题解读】当二次函数的二次项系数a相同时,图象的形状相同,即开口方向、大小相同,只是位置不同,所以它们之间可以进行平行移动,移动时,其一,把解析式y=ax2+bx+c化成y=a(x-h)2+k的形式;其二,对称轴左、右变化,即沿x轴左、右平移,此时与k的值无关;顶点上、下变化,即沿y轴上、下平移,此时与h的值无关.其口诀是“左加右减,上加下减”.例7 把抛物线y=-2x2向上平移1个单位,得到的抛物线是 ( )A.y=-2(x+1)2 B.y=-2(x-1)2C.y=-2x2+1 D.y=-2x2-1分析原抛物线的顶点为(0,0),向上平移一个单位后,顶点为(0,1).故选C.【解题策略】解决此题时,可以用“左加右减,上加下减”的口诀来求解,也可以根据顶点坐标的变化来求解.例8 把抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,所得抛物线的解析式为y=x2-3x +5,则 ( )A.b=3,c=7 B.b=6,c=3C.b=-9,c=-5 D.b=-9,c=21分析y=x2-3x+5变形为y=232x⎛⎫-⎪⎝⎭+5-94,即y=232x⎛⎫-⎪⎝⎭+114,将其向左平移3个单位,再向上平移2个单位,可得抛物线y=2332x⎛⎫-+⎪⎝⎭+114+2,即y=x2+3x+7,所以b=3,c=7.故选A.【解题策略】此题运用逆向思维解决了平移问题,即抛物线y=x2+bx+c向右平移3个单位,再向下平移2个单位,得到y=x2-3x+5,那么抛物线y=x2-3x+5则向左平移3个单位,再向上平移2个单位,可得到抛物线y =x 2+bx +c .专题3 抛物线的特殊位置与函数关系的应用【专题解读】若抛物线经过原点,则c =0,若抛物线的顶点坐标已知,则2ba -和244acb a-的值也被确定等等,这些都体现了由抛物线的特殊位置可以确定系数a ,b ,c 以及与之有关的代数式的值.例9 如图26-88所示的抛物线是二次函数y =ax 2+3ax +a 2-1的图象,则a 的值是 .分析 因为图象经过原点,所以当x =0时,y =0,所以a 2-1=0,a =±1,因为抛物线开口向下,所以a =-1.故填-1:专题4 求二次函数的最值【专题解读】 在自变量x 的取值范围内,函数y =ax 2+bx +c 在顶点24,24b ac b a a ⎛⎫-- ⎪⎝⎭处取得最值.当a >0时,抛物线y =ax 2+bx +c 开口向上,顶点最低,当x =2ba -时,y 有最小值为244acb a-;当a <0时,抛物线y =ax 2+bx +c 开口向下,顶点最高,当x =2ba -时,y 有最大值为244acb a-.例10 已知实数x ,y 满足x 2+2x +4y =5,则x +2y 的最大值为 .分析 x 2+2x +4y =5,4y =5-x 2-2x ,2y =12(5-x 2-2x ),x +2y =12(5-x 2-2x )+x ,整理得x +2y =-12x 2+52.当x =0时,x +2y 取得最大值,为52.故填52. 专题 5 二次函数与一元二次方程、一元二次不等式的关系【专题解读】 二次函数与一元二次方程、一元二次不等式之间有着密切的联系,可以用函数的观点来理解方程的解和不等式的解集.已知函数值,求自变量的对应值,就是解方程,已知函数值的范围,求对应的自变量的取值范围,就是解不等式.例11 已知二次函数y =ax 2+bx 的图象经过点(2,0),(-1,6). (1)求二次函数的解析式;(2)不用列表,画出函数的图象,观察图象,写出当y >0时x 的取值范围.分析 (1)列出关于a ,b 的方程组,求a ,b 的值即可.(2)观察图象求出y >0的解集.解:(1)由题意可知,当x =2时,y =0,当x =-1时,y =6,则420,6,a b a b +=⎧⎨-=⎩解得2,4.a b =⎧⎨=-⎩ ∴二次函数的解析式为y =2x 2-4x .(2)图象如图26—89所示,由图象可知,当y >0时,x <0或x >2.【解题策略】 求二次函数的解析式,其实质就是先根据题意寻求方程组,并解方程组,从而使问题得到解决.二、规律方法专题专题6 二次函数解析式的求法【专题解读】 用待定系数法可求出二次函数的解析式,确定二次函数的解析式一般需要三个独立的条件,根据不同的条件,选择不同的设法.(1)设一般式:y =ax 2+bx +c (a ≠0).若已知条件是图象经过三个点,则可设所求的二次函数解析式为y=ax2+bx+c,将已知条件代入,即可求出a,b,c的值.(2)设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数的图象与x轴的两个交点的坐标分别为(x1,0),(x2,0),则可设所求的二次函数解析式为y=a(x-x1)(x-x2),将第三点(m,n)的坐标(其中m,n为已知数)代入,求出待定系数a,最后将解析式化为一般式.(3)设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数图象的顶点坐标或对称轴方程与最大值(或最小值),则可设所求的二次函数解析式为y=a(x-h)2+k,将已知条件代入,求出待定系数a,最后将解析式化为一般式.(4)设对称点式:y=a(x-x1)(x-x2)+m(a≠0).若已知二次函数图象上的对称点(x1,m),(x2,m),则可设所求的二次函数解析式为y=a(x-x1)(x-x2)+m(a≠0),将已知条件代入,求得待定系数a,m,最后将解析式化为一般式.例12 根据下列条件求函数解析式.(1)已知二次函数的图象经过点(-1,-6),(1,-2)和(2,3),求这个二次函数的解析式;(2)已知抛物线的顶点为(-1,-3),与y轴的交点为(0,-5),求此抛物线的解析式;(3)已知抛物线与x轴交于A(-1,0),B(1,0)两点,且经过点M(0,1),求此抛物线的解析式;(4)已知抛物线经过(-3,4),(1,4)和(0,7)三点,求此抛物线的解析式.分析 (1)已知图象上任意三点的坐标,可选用一般式,从而得到关于a,b,c的方程组,求出a,b,c的值,即可得到二次函数的解析式.(2)已知抛物线的顶点坐标,应选用顶点式.(3)由于A(-l,0),B(1,0)是抛物线与x轴的两个交点,因此应选用交点式.(4)显然已知条件是抛物线经过三点,故可用一般式,但由于(-3,4),(1,4)是抛物线上两个对称点,因此选用对称点式更简便.解:(1)设二次函数的解析式为y=ax2+bx+c将(-1,-6),(1,-2)和(2,3)分别代入,得6,2,423,a b ca b ca b c-+=-⎧⎪++=-⎨⎪++=⎩解得1,2,5.abc=⎧⎪=⎨⎪=-⎩∴所求的二次函数的解析式为y=x2+2x-5.(2)∵抛物线的顶点为(-1,-3),∴设其解析式为y=a(x+1)2-3,将点(0,-5)代入,得-5=a-3,∴a=-2,∴所求抛物线的解析式为y=-2(x+1)2-3.即y=-2x2-4x-5.(3)∵点A(-1,0),B(1,0)是抛物线与x轴的两个交点,∴设抛物线的解析式为y=a(x+1)(x-1),将点M(0,1)代入,得1=-a,∴a=-1,∴所求抛物线的解析式为y=-(x+1)(x-1),即y=-x2+1(4)∵抛物线经过(-3,4),(1,4)两点,∴设抛物线的解析式为y=a(x+3)(x-1)+4,将点(0,7)代入,得7=a²3²(-1)+4,∴a=-1,∴所求抛物线的解析式为y=-(x+3)(x-1)+4,即y=-x2-2x+7.【解题策略】 (1)求二次函数解析式的4种不同的设法是指根据不同的已知条件寻求最简的求解方法,它们之间是相互联系的,不是孤立的.(2)在选用不同的设法时,应具体问题具体分析,特别是当已知条件不是上述所列举的4种情形时,应灵活地运用不同的方法来求解,以达到事半功倍的效果.(3)求,函数解析式的问题,如果采用交点式、顶点式或对称点式,最后要将解析式化为一般形式.三、思想方法专题 专题7 数形结合思想【专题解读】 把问题的数量关系和空间形式结合起来考查,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题来讨论,也可以把图形的性质问题转化为数量关系的问题来研究.例13 二次函数y =ax 2+bx +c 的图象如图26-90所示,则点A (a ,b )在 ( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 分析 由图象开口方向向下可知a <0,由对称轴的位置可知x =2ba->0,所以b >0,故点A 在第二象限.故选B .【解题策略】 解决此题的关键是观察图象的开口方向以及对称轴的位置. 专题8 分类讨论思想【专题解读】 分类讨论是对问题的条件逐一进行讨论,从而求得满足题意的结果.例14 已知抛物线y =ax 2+bx +c 与y 轴交于点A (0,3),与x 轴交于B (1,0),C (5,0)两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,F 的坐标,并求出这个最短总路径的长.分析 (1)用待定系数法求a ,b ,c 的值.(2)用分类讨论法求直线CD 的解析式.(3)根据轴对称解决最短路径问题.解:(1)根据题意,得c =3,所以30,25530,a b a b ++=⎧⎨++=⎩解得3,518.5a b ⎧=⎪⎪⎨⎪=-⎪⎩所以抛物线的解析式为y =35x 2-185x +3.(2)依题意可知,OA 的三等分点分别为(0,1),(0,2), 设直线CD 的解析式为y =k x +b ,当点D 的坐标为(0,1)时,直线CD 的解析式为y =-15x +1,当点D 的坐标为(0,2)时,直线CD 的解析式为y =-25x +2. (3)由题意可知M 30,2⎛⎫⎪⎝⎭,如甲26-91所示,点M 关于x 轴的对称点为M ′30,2⎛⎫- ⎪⎝⎭,点A 关于抛物线对称轴x =3的对称点为A ′(6,3),连接A ′M ′,根据轴对称性及两点间线段最短可知,A ′M ′的长就是点P 运动的最短总路径的长.所以A ′M ′与x 轴的交点为所求的E 点,与直线x =3的交点为所求的F 点. 可求得直线A ′M ,的解析式为y =34x -32. 所以E 点坐标为(2,0),F 点坐标为33,4⎛⎫⎪⎝⎭,由勾股定理可求出A ′M ′=152. 所以点P 运动的最短总路径(ME +EF +FA )的长为152. 【解题策略】 (2)中点D 的位置不确定,需要分类讨论,体现了分类讨论的数学思想.(3)中的关键是利用轴对称性找到E ,F 两点的位置,从而求出其坐标,进而解决问题.专题9 方程思想【专题解读】 求抛物线与坐标轴的交点坐标时,可转化为二次函数y =0或x =0,通过解方程解决交点的坐标问题.求抛物线与x 轴的交点个数问题也可以转化为求一元二次方程根的情况.例15 抛物线y =x 2-2x +1与x 轴交点的个数是 ( ) A .0个 B .1个 C .2个 D .3个分析 可设x 2-2x +1=0,Δ=(-2)2-4³1³1=0,可得抛物线y =x 2-2x +1与x 轴只有一个交点.故选B .【解题策略】 抛物线y =ax 2+bx +c (a ≠0)与x 轴交点的个数可由一元二次方程ax 2+bx +c =o(a ≠0)的根的个数来确定.专题10 建模思想【专题解读】 根据实际问题中的数量关系建立二次函数关系式,再用二次函教的性质来解决实际问题. 例16 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若以每箱50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天的销售量y (箱)与销售价x (元/箱)之间的函数关系式;(2)求该批发商平均每天的销售利润W (元)与销售价x (元/箱)之间的函数关系式; (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?分析 (1)原来每箱售价50元,价格每提高1元,平均每天少销售3箱,若提高(x -50)元,则平均每天少销售3(x -50)箱,所以提价后每天销售[90-3(x -50)]箱,即y =90-3(x -50).(2)每天的销售利润可用(x -40)[90-3(x -50)]来表示.(3)建立W 和x 之间的二次函数关系式,利用二次函数的最值求利润的最值. 解:(1)y =90-3(x -50),即y =-3x +240.(2)W =(x -40)(-3x +240)=-3x 2+360x -9600,(3)∵a =-3<0,∴当x =2ba-=60时,W 有最大值, 又∵当x <60时,y 随x 的增大而增大, ∴当x =55时,W 取得最大值为1125元,即每箱苹果的销售价为55元时,可获得1125元的最大利润.【解题策略】 求实际问题的最值时,可通过建立二次函数关系式,根据二次函数的最值来求解. 例17 某公司经销某品牌运动鞋,年销售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a 元. (1)试求a 的值;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元),则产品的年销售量将是原销售量的y倍,且y与x之间的关系如图26—92所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并计算广告费x(万元)在什么范围内时,公司获得的年利润S(万元)随广告费的增多而增多.(注:年利润S=年销售总额-成本费-广告费) 解:(1)由题意得a(1+25%)=250,解得a=200(元).(2)①依题意可设y与x之间的函数关系式为y=ax2+bx+1,则421 1.36,1641 1.64,a ba b++=⎧⎨++=⎩,解得0.01,0.2,ab=-⎧⎨=⎩∴y=-0.01x2+0.2x+1.②S=(-0.01x2+0.2x+1)³10³250-10³200-x,即S=-25x2+499x+500,整理得S=-25(x-9.98)2+2990.01.∴当0≤x≤9.98时,公司获得的年利润随广告费的增多而增多.例18 某宾馆有客房100间供游客居住,当每间客房的定价为每天180元时,客房会全部住满.当每间客房每天的定价每增加10元时,就会有5间客房空闲.(注:宾馆客房是以整间出租的)(1)若某天每间客房的定价增加了20元,则这天宾馆客房收入是元;(2)设某天每间客房的定价增加了x元,这天宾馆客房收入y元,则y与x的函数关系式是;(3)在(2)中,如果某天宾馆客房收入y=17600元,试求这天每间客房的价格是多少元.分析本题是用二次函数解决有关利润最大的问题,由浅入深地设置了三个问题.解:(1)18000(2)y=12-x2+10x+18000(3)当y=17600时,-12x2+10x+400=0,即x2-20x-800=0.解得x=-20(舍去)或x=40.180+40=220,所以这天每间客房的价格是220元.例19 (09²泰安)如图26-93(1)所示,△OAB是边长为2的等边三角形,过点A的直线y=+m与x轴交于点E.(1)求点E的坐标;(2)求过A,O,E三点的抛物线的解析式.解:(1)如图26-93(2)所示,过A作AF⊥x轴于F,则OF =OA cos 60°=1,AF =OF tan 60°∴点A (1.代入直线解析式,得1+mm, ∴y=x. 当y =0时,=0, 解得x =4,∴点E (4,0).(2)设过A ,O ,E 三点的抛物线的解析式为y =ax 2+bx +c , ∵抛物线过原点,∴c =0,∴1640,a b a b ⎧+=⎪⎨+=⎪⎩解得a b ⎧=⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=x 2x . 例20 如图26-94所示,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).(1)求点B 的坐标;(2)求过点A ,O ,B 的抛物线的表达式.解:(1)如图26-95所示,过点A 作AF ⊥x 轴,垂足为点F ,过点B 作BE ⊥x 轴,垂足为点E ,则AF =2,OF =1. ∵OA ⊥OB ,∴∠AOF +∠BOE =90°. 又∵∠BOE +∠OBE =90°, ∴∠AOF =∠OBE . ∴Rt △AFO ∽Rt △OEB . ∴BE OE OBOF AF OA===2 ∴BE =2,OE =4. ∴B (4,2).(2)设过点A (-1,2),B (4,2),O (0,0)的抛物线的表达式为y =ax 2+bx +c .则2,1642,0.a b c a b c c -+=⎧⎪++=⎨⎪=⎩解得1,23,20.a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴所求抛物线的表达式为y =12x 2-32x . 例21如图26-96所示,已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点,顶点为D .(1)求抛物线的解析式;(2)将△OAB 绕点A 顺时针旋转90°后,点B 落到点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式.解:(1)已知抛物线y =x 2+bx +c 经过A (1,0),B (0,2)两点, ∴01,200,b c c =++⎧⎨=++⎩解得3,2,b c =-⎧⎨=⎩∴所求抛物线的解析式为y =x 2-3x +2.(2)∵A (1,0),B (0,2),∴OA =1,OB =2, 可得旋转后C 点的坐标为(3,1).当x =3时,由y =x 2-3x +2得y =2,可知抛物线y =x 2-3x +2过点(3,2).∴将原抛物线沿y 轴向下平移1个单位后过点C∴平移后的抛物线的解析式为y =x 2-3x +1.例22 如图26-97所示,抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,与x 轴交于另一点B .(1)求抛物线的解析式;(2)已知点D (m ,m +1)在第一象限的抛物线上,求点D 关于直线BC 对称的点的坐标.解:(1)∵抛物线y =ax 2+bx -4a 经过A (-1,0),C (0,4)两点,∴40,4 4.a b a a --=⎧⎨-=⎩解得1,3.a b =-⎧⎨=⎩∴抛物线的解析式为y =-x 2+3x +4.(2)如图26-98所示,点D (m ,m +1)在抛物线上,∴m +1=-m 2+3m +4,即m 2-2m -3=0,∴m =-1或m =3.∵点D 在第一象限,∴点D 的坐标为(3,4). 由(1)得B 点的坐标为(4,0), ∴OC =OB ,∴∠CBA =45°.设点D 关于直线BC 的对称点为点E .∵C(0,4),∴CD∥AB,且CD=3,∴∠ECB=∠DCB=45°,∴E点在y轴上,且CE=CD=3.∴OE=1,∴E(0,1).即点D关于直线BC对称的点的坐标为(0,1).2011中考真题精选点评:本题考查了二次函数图象上点的坐标特点,一元二次方程解的意义.关键是求二次函数解析式,根据二次函数的对称轴,开口方向判断函数值的大小.2.(2011黑龙江牡丹江,18,3分)抛物线y=ax2+bx﹣3过点(2,4),则代数式8a+4b+1的值为()A、﹣2B、2C、15D、﹣15考点:二次函数图象上点的坐标特征;代数式求值。
2012年全国各地中考数学考点分类解析汇编(22)二次函数
2012年全国各地中考数学考点分类解析汇编(22)二 次 函 数一、选择题1.(2012菏泽)已知二次函数2y ax bx c =++的图像如图所示,那么一次函数y bx c =+和反比例函数a y x=在同一平面直角坐标系中的图像大致是( )A .B .C .D .考点:二次函数的图象;一次函数的图象;反比例函数的图象。
解答:解:∵二次函数图象开口向下,∴a <0,∵对称轴x=﹣<0, ∴b <0,∵二次函数图象经过坐标原点,∴c=0,∴一次函数y=bx+c 过第二四象限且经过原点,反比例函数a y x=位于第二四象限, 纵观各选项,只有C 选项符合.2.(2012•烟台)已知二次函数y=2(x ﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x <3时,y 随x 的增大而减小.则其中说法正确的有( )A .1个B .2个C .3个D .4个考点: 二次函数的性质。
专题: 常规题型。
分析: 结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.解答: 解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x <3时,y 随x 的增大而减小,正确;综上所述,说法正确的有④共1个.故选A .点评: 本题考查了二次函数的性质,主要考查了函数图象的开口方向,对称轴解析式,顶点坐标,以及函数的增减性,都是基本性质,熟练掌握性质是解题的关键.3.(2012•广州)将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为( )A .y=x 2﹣1B .y=x 2+1C .y=(x ﹣1)2D .y=(x+1)2考点: 二次函数图象与几何变换。
专题: 探究型。
分析: 直接根据上加下减的原则进行解答即可.解答: 解:由“上加下减”的原则可知,将二次函数y=x 2的图象向下平移一个单位,则平移以后的二次函数的解析式为:y=x 2﹣1.故选A .点评: 本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4.(2012泰安)将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--考点:二次函数图象与几何变换。
中考数学复习专题十一 二次函数与几何图形综合题
【点评】 本题主要考查的是二次函数的综合应用,求得 P1C 和 P2A 的解析式是解答问题(2) 的关键,求得点 P 的纵坐标是解答问题(3)的关键.
单击此处编辑母版标题样式
[对应训练] 1.(2016·遵义)如图,在平面直角坐标系中,Rt△ABC 的三个顶点分别是 A(-8,3),B(-
4,• 0单),•击C第(此-二4处级,3编),辑∠A母BC版=文α°本.抛样物式线 y=12x2+bx+c 经过点 C,且对称轴为 x=-45,并与
证:PH=GH.
单击此处编辑母版标题样式
•
单击此处编辑母版文本样式
• 第二级
12×(-4)2-4b+c=3,
解:(1)根• 第据•三题第级意四• 得级第:五级-2×b 12=-45,
解得
b=45, c=-95,∴抛物线的解析式为:y
Hale Waihona Puke =12x2+45x-95,点 G(0,-95)
单击此处编辑母版标题样式
标为(-2,5).综• 第上五所级述,P 的坐标是(1,-4)或(-2,5)
单击此处编辑母版标题样式 (3)如图 2 所示:连接 OD.由题意可知,四边形 OFDE 是矩形,则 OD=EF.根据垂线
段最短,可得当 OD⊥AC 时,OD 最短,即 EF 最短.由(1)可知,在 Rt△AOC 中,∵OC
单击此处编辑母版标题样式
• 单三击个此步处骤 编辑母版文本样式
•解第二二次级函数与几何图形综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻
译并转化• 为第显三性级条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于 联想和转化,• 将第四以级上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的
2012年中考数学复习专题——二次函数知识点归纳
中考复习专题——二次函数知识点归纳二次函数知识点总结:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:oo结论:a 的绝对值越大,抛物线的开口越小。
总结:2. 2y ax c =+的性质:结论:上加下减。
a 的符号开口方向 顶点坐标 对称轴 性质a >向上()00, y轴x >时,y 随x 的增大而增大;0x <时,y 随x的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.总结:3. ()2y a x h =-的性质:结论:左加右减。
总结:4. ()2y a x h k =-+的性质:总结:a 的符号开口方向 顶点坐标 对称轴 性质a > 向上()0c , y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质a >向上()0h , X=hx h>时,y 随x 的增大而增大;x h <时,y 随x的增大而减小;x h =时,y 有最小值0. 0a < 向下 ()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x的增大而增大;x h =时,y 有最大值0.二次函数图象的平移1. 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.三、二次函数()2y a x h k=-+与2y ax bx c =++的比较请将2245y x x =++利用配方的形式配成顶点式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年数学中考专项训练十二次函数
(时间:90分钟满分:100分)
一、选择题(每小题3分,共24分)
1.(2011年北京)抛物线y=x2-6x+5的顶点坐标为( )
A.(3,-4) B.(3,4) C.(-3,-4) D.(-3,4)
2.(2011年株洲)某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
A.4米B.3米C.2米D.1米
3.(2011年呼和浩特)已知一元二次方程x2+bx-3=0的一根为-3,在二次函数y=x2+bx-3的图象
上有三点(-4
5
,y1)、(-
5
4
,y2)、(-
1
6
,y3),y1、y2、y3的大小关系是( )
A.y1<y2<y3 B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2
4.(2011年重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是( )
A.a>0 B.b<0 C.c<0 D.a+b+c>0
5.(2011年宿迁)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是( ) A.a>0 B.当x>1时,y随x的增大而增大
C.c<0 D.3是方程ax2+bx+c=0的一个根
6.(2011年威海)二次函数y=x2-2x-3的图象如图所示,当y<0时,自变量x的取值范围是( ) A.-1<x<3 B.x<-1
C.x>3 D.x<-3或x>3
7.(2011年铜仁)已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是( ) A.k<4 B.k≤4 C.k<4且k≠3 D.k≤4且k≠3
8.(2011年桂林)在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是( )
A.y=-(x+1)2+2 B.y=-(x-1)2+4
C.y=-(x-1)2+2 D.y=-(x+1)2+4
二、填空题(每小题3分,共18分)
9.(2011年德州)将抛物线y=x2的图象向上平移1个单位,则平移后的抛物线的解析式为______.10.(2011年河南)点A(2,y1)、B(3,y2)是二次函数y=x2-2x+1的图象上两点,则y1与y2的大小关系为y1_______y2(填“>”“<”或“=”).
11.(2011年枣庄)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
从上表可知,下列说法中正确的是______ .(填写序号)
①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;
③抛物线的对称轴是x =
12
;④在对称轴左侧,y 随x 的增大而增大.
12. (2011年湖州)如图,已知抛物线y =x 2
+bx +c 经过点(0,-3),请你确定一个b 的值,使该抛物线与
x 轴的一个交点在(1,0)和(3,0)之间,你所确定的b 的值是______. 13.(2011年宜宾)如图,边长为2的正方形ABCD 的中心在直角坐标系的原点O ,AD ∥x 轴,以O 为
顶点且过A 、D 两点的抛物线与以O 为顶点且过B 、C 两点的抛物线将正方形分割成几部分,则图中阴影部分的面积是_______.
14.(2011年日照)如图是二次函数y =ax 2+bx +c(a ≠0)的图象的一部分,给出下列命题: ①a +b +c
=0;②b >2a ;③ax 2+bx +c =0的两根分别为-3和1;④a -2b +c>0.其中正确的命题是______.(只要求填写正确命题的序号)
三、解答题(共58分)
15.(10分)(2011年哈尔滨)手工课时,小明准备做一个形状是菱形的风筝,这个菱形的两条对角线
长度之和恰好为60 cm ,菱形的面积S(单位:cm 2)随其中一条对角线的长x (单位:cm)的变化而变化. (1)请直接写出S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 是多少时,菱形风筝面积S 最大?最大面积是多少?______.
(参考公式:当x =-2b a
时,二次函数y =ax 2
+bx +c (a ≠0)有最小(大)值
2
44ac b a
)
16.(12分)(2011年陕西)二次函数y =
23
x 2
-1
3
x 的图象经过△AOB 的三个顶点,其中A (-1,m ),
B(n ,n).
(1)求点A 、B 的坐标;
(2)在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形. ①这样的点C 有几个? ②能否将抛物线y =
23
x 2-
13
x 平移后经过A 、C 两点?若能,求出平移后经过A 、C 两点的一条抛物
线的解析式;若不能,说明理由.
17.(12分)(2011年北京市)在平面直角坐标系x O y 中,二次函数y =m x 2+(m -3)x -3(m>0)的图象与
x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求点A的坐标;
(2)当∠ABC=45°时,求m的值;
(3)已知一次函数y=k x+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P垂直于x轴的直
线交这个一次函数的图象于点M,交二次函数y=m x2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.
18.(12分)(2011年宜宾)已知抛物线的顶点是C(0,a)(a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点.
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线上任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点.若DA=2D B,且S△ABD=42,求
a的值.
19.(12分)(2011年杭州)设函数y=k x2+(2k+1)x+1(k为实数).
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中用描点法画出这两
个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值.
参考答案
1.A
2.A
3.A
4.D
5.D
6.A
7.B
8.B
9.y =x 2+1 10.< 11.①③④ 12.如-12
13.2 14.①③
15.(1)S =-12
x 2+30x (2) 当x 为30 cm 时,菱形风筝面积最大,最大面积是
450 cm 2.
16.(1)A(-1,1),B(2,2) (2)①3个 ②能 2
2413
3
y x x =-
-
17.(1)(-1,0) (2)m =1 (3)y =-2x +1 18.(1)2
14y x a a
=
+ (2)略 (3)a =2
19.(1)如两个函数为y =x +1,y =x 2
+3x +1,图象略 (2)略 (3)m ≤-1。