《集合的基本运算》集合与常用逻辑用语(第2课时全集、补集及综合应用)课件ppt
合集下载
集合的基本运算精品PPT课件

我们所经历的工作、圈子的人际交往或多或少会带给人一些疑问。
我的意见和想法是否能被ta接受? ta对于我的idea又是一种怎样的想法? 如果彼此都不满意,我们求同存异这样真的会好吗?
这种存在差异性的想法,换个角度稍加思索一番,就可以发现: 其实,人与人之间的沟通和理解几乎是不可能的。
任何尝试都可能是徒劳的,甚至很有可能因为说的太多,考虑的太过于全面而伤害到对方。 所以,最明智的做法就是与同事/合作伙伴保持距离,即使我们是主动领导者,也不要靠的太近,更不要动辄强加于人自己的观念。
请问,你怎么选择?真实情况是,好多人嘴上会说选A,但最终大都会选B。因为人们都认为自己是聪明人,当然选B,只有傻子才会选A。
谁愿意等那么长的时间?世界变化如此之快,到头来不知道会变成什么样子,这是大多数人内心的真实想法。似乎快速获取、及时行乐是人们的天性,人们的很多心理状态是由几万年基因的进化决定的。
但还有一种本领与及时获取正好相反,它们会随着时间沉淀,时间的迭代,时间的积累,最终迸发出巨大的力量。可这种能力,因为时间太短,并没有写入人们的记忆。以至于有时,人们颠三倒四,用错了地方。
比如财富积累和及时获取比起来,人类对财富,对资本,对积累,实在是见的不多,用的不多,思考的也不多。和及时获取比起来,实在太短,太少,就像一个蹒跚学步的孩子,一路跌跌撞撞,不知道什么叫害怕,什么叫危险。
迪士尼乐园,与我们成年人而言,它是一个守护了我们童年的港湾。 在这里的所有伙伴,不论男女老少,都能卸下自己的伪装和枷锁,尽情的享受一个美好的虚幻童话世界。
在这里,不会有人催你长大。 这里有关于梦想幻想的一切,你忘记烦恼,只为把快乐投入其中。
这是一个能让你变回孩子的地方,可以没有顾虑做回真实的自己。 这里虽然可爱却并不幼稚,你会惊叹于华特迪士尼的设计和想象力。 这里充满着无数的童年的回忆,有很多张笑脸,有很多意想不到的创意。 在这里我们得到的幸福不是痛苦或者失去头脑后的自我陶醉,而是我们人格完整的最好证明。
我的意见和想法是否能被ta接受? ta对于我的idea又是一种怎样的想法? 如果彼此都不满意,我们求同存异这样真的会好吗?
这种存在差异性的想法,换个角度稍加思索一番,就可以发现: 其实,人与人之间的沟通和理解几乎是不可能的。
任何尝试都可能是徒劳的,甚至很有可能因为说的太多,考虑的太过于全面而伤害到对方。 所以,最明智的做法就是与同事/合作伙伴保持距离,即使我们是主动领导者,也不要靠的太近,更不要动辄强加于人自己的观念。
请问,你怎么选择?真实情况是,好多人嘴上会说选A,但最终大都会选B。因为人们都认为自己是聪明人,当然选B,只有傻子才会选A。
谁愿意等那么长的时间?世界变化如此之快,到头来不知道会变成什么样子,这是大多数人内心的真实想法。似乎快速获取、及时行乐是人们的天性,人们的很多心理状态是由几万年基因的进化决定的。
但还有一种本领与及时获取正好相反,它们会随着时间沉淀,时间的迭代,时间的积累,最终迸发出巨大的力量。可这种能力,因为时间太短,并没有写入人们的记忆。以至于有时,人们颠三倒四,用错了地方。
比如财富积累和及时获取比起来,人类对财富,对资本,对积累,实在是见的不多,用的不多,思考的也不多。和及时获取比起来,实在太短,太少,就像一个蹒跚学步的孩子,一路跌跌撞撞,不知道什么叫害怕,什么叫危险。
迪士尼乐园,与我们成年人而言,它是一个守护了我们童年的港湾。 在这里的所有伙伴,不论男女老少,都能卸下自己的伪装和枷锁,尽情的享受一个美好的虚幻童话世界。
在这里,不会有人催你长大。 这里有关于梦想幻想的一切,你忘记烦恼,只为把快乐投入其中。
这是一个能让你变回孩子的地方,可以没有顾虑做回真实的自己。 这里虽然可爱却并不幼稚,你会惊叹于华特迪士尼的设计和想象力。 这里充满着无数的童年的回忆,有很多张笑脸,有很多意想不到的创意。 在这里我们得到的幸福不是痛苦或者失去头脑后的自我陶醉,而是我们人格完整的最好证明。
高中数学(新人教A版)必修第一册:集合的基本运算【精品课件】

当A与B无公共元素时,A与B
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
的交集仍存在,此时A∩B=∅.
(三)交集
【做一做】
【探究2】
已知集合A={0,2},B={-2,-1,0,1,2},
则A∩B=(
)
A.{0,2}
C.{0}
B.{1,2}
D.{-2,-1,0,1,2}
交集的性质:
[答案]
A
①A∩B=B∩A;②A∩A=A;
③A∩∅=∅; ④若A⊆B,则A∩B=A;
(四)集合的交并运算
【巩固练习1】
(1) 已知集合A={x|(x-1)(x+2)=0},B={x|(x+2)(x-3)=0},则集合A∪B是(
A.{-1,2,3}
B.{-1,-2,3}
C.{1,-2,3}
D.{1,-2,-3}
(2) 若集合A={x|-2≤x<3},B={x|0≤x<4},则A∪B=________.
⑤(A∩B)⊆A;(A∩B)⊆B.
(四)集合的交并运算
1.集合的并集运算
例1.
(1)设集合M={x| 2 +2x=0,x∈R},N={x| 2 -2x=0,x∈R},则M∪N=(
A.{0}
B.{0,2} C.{-2,0} D.{-2,0,2}
(2)已知A={x|x≤-2,或x>5},B={x|1<x≤7},求A∪B。
(2)在解决问题时,用到了哪些数学思想?
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)
教材分析
本小节内容选自:
《普通高中数学必修第一册》
人教A版(2019)
第一课时
课时内容
集合的并集、交集运算
集合的补集、综合运算
所在位置
教材第10页
集合的基本运算课件ppt.ppt

解:(1)在有理数范围内只有一个解2,即:
x Q x 2x2 3 0 2
(2)在实数范围内有三个解2,3, ,3 即:
x R x x2 3 0 2, 3, 3
补集例题
例.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知:
7.你会求解下列问题吗? 集合A={x|-2≤x<1}. (1)若B={x|x>m},A⊆B,则m的取值范围 是 m<-. 2 (2)若B={x|x<m},A⊆B,则m的取值范围 是 m≥1 . (3)若B={x|x<m-5或x≥2m-1},A∩B= ∅,则m的取值范围是 1≤m≤3 .
[例3] 已知A={(x,y)|4x+y=6},B={(x, y)|3x+2y=7},则A∩B=________.
说明:两个集合求交集,结果还是一个集合,是由集合A与 B 的公共元素组成的集合.
Venn图表示:
AB
A∩B
B
A∩B
A
B
A∩B=
交集性质
①AA= ;
②A=
;
③AB=A A____B
(1) 设 A = {1 , 2} , B = {2 , 3 , 4} , 则 A∩B = {2}.
(2)设A={x|x<1},B={x|x>2},则A∩B= ∅.
2: A A A
3: A
4: AB A B A
5:B A AB A
6 : A A B, B A B
7 : (A B) C A (B C)
1: A B B A
2: A A A
3: A A
4: AB A B A
5:B A AB A
x Q x 2x2 3 0 2
(2)在实数范围内有三个解2,3, ,3 即:
x R x x2 3 0 2, 3, 3
补集例题
例.设U={x|x是小于9的正整数},A={1,2,3}, B={3,4,5,6},求 A, B.
解:根据题意可知:
7.你会求解下列问题吗? 集合A={x|-2≤x<1}. (1)若B={x|x>m},A⊆B,则m的取值范围 是 m<-. 2 (2)若B={x|x<m},A⊆B,则m的取值范围 是 m≥1 . (3)若B={x|x<m-5或x≥2m-1},A∩B= ∅,则m的取值范围是 1≤m≤3 .
[例3] 已知A={(x,y)|4x+y=6},B={(x, y)|3x+2y=7},则A∩B=________.
说明:两个集合求交集,结果还是一个集合,是由集合A与 B 的公共元素组成的集合.
Venn图表示:
AB
A∩B
B
A∩B
A
B
A∩B=
交集性质
①AA= ;
②A=
;
③AB=A A____B
(1) 设 A = {1 , 2} , B = {2 , 3 , 4} , 则 A∩B = {2}.
(2)设A={x|x<1},B={x|x>2},则A∩B= ∅.
2: A A A
3: A
4: AB A B A
5:B A AB A
6 : A A B, B A B
7 : (A B) C A (B C)
1: A B B A
2: A A A
3: A A
4: AB A B A
5:B A AB A
《集合的基本运算》集合与常用逻辑用语(第2课时全集、补集及综合应用)课件PPT文档

范文下载:/fanwen/
试卷下载:/shiti/
教案下载:/jiaoan/
PPT论坛:
PPT课件:/kejian/
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
化学课件:/kejian/huaxue/ 生物课件:/kejian/she ngwu/
地理课件:/kejian/dili/
历史课件:/kejian/lish i/
中不属于集合
A
的
__所__有__元__素____组成的集合称为集合 A 相对于全
集 U 的补集,简称为___集__合__A_的__补__集____,记作 __∁_U_A____
∁UA=___{_x_|x_∈__U__,__且__x_∉_A_}_______
语文课件:/kejian/yuw en/ 数学课件:/kejian/shuxue/
英语课件:/kejian/ying yu/ 美术课件:/kejian/me ishu/
科学课件:/kejian/kexue/ 物理课件:/kejian/wul i/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
范文下载:/fanwen/
试卷下载:/shiti/
PPT素材:/sucai/
PPT背景:/beijing/
PPT图表:/tubiao/
PPT下载:/xiazai/
PPT教程: /powerpoint/
资料下载:/ziliao/
地理课件:/kejian/dili/
历史课件:/kejian/lish i/
栏目 导引Leabharlann 第一章 集合与常用逻辑用语
集合与常用逻辑用语PPT优秀课件

1
1
∵q≠1,∴q=-2 .综上所述,q=-2 .
2.(1)若集合P={x|x2+x-6=0},S={x|ax+1=0},且SP ,
求a
(2)若集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},
且B
A,求由m的可取值组成的集合.
解 (1)P={-3,2}.当a=0时,S= ,满足S P
的集合,而后根据已知条件求参数.
解 由x2-3x+2=0得x=1或x=2,故集合A={1,2}.
(1)∵A∩B={2},∴2∈B,代入B中的方程,
得a2+4a+3=0,∴a=-1或a=-3.
1分
当a=-1时,B={x|x2-4=0}={-2,2},满足条件;
当a=-3时,B={x|x2-4x+4=0}={2},满足条件;
失误与防范 1.解答集合题目,认清集合元素的属性(是点集、数集或其他
情形)和化简集合是正确求解的两个先决条件. 2.韦恩图示法和数轴图示法是进行集合交、并、补运算的常
用方法,其中运用数轴图示法要特别注意端点是实心还是 空心.
3.要注意A B、A∩B=A、A∪B=B、UAUB、A∩( UB) =
1
当a≠0时,方程ax+1=0的解为x=-a
1
1
为满足S P,可使- a =-3或- a =2
1
1
即a=
3
2
或a=-
.
1
1
故所求集合为{0,3 ,- 2 }.
(2)当m+1>2m-1,即m<2时,B = ,满足 B A
若B≠ ,且满足B A,如图所示,
m+1≤2m-1
补集及综合应用优秀教学课件

(2)∵A∪(∁UA)=U,且 A∩(∁UA)=∅, ∴A={x|1≤x<2},∴a=2.
题型二 交集、并集、补集的综合运算
例2 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|- 3≤x≤2},求A∩B,(∁UA)∪B,A∩(∁UB). [分析] 对于无限集,可以利用数轴,分别表示出全集U及集合A、 B,先求出∁UA及∁UB,再求解.
由aa≤2+21,≥4, 得aa≤≥2,3或a≤- 3, 故 a≤- 3或 3≤a≤2. 即 A∩B=∅时,a 的取值范围为 a≤- 3或 3≤a≤2, 故 A∩B≠∅时,a 的取值范围为 a>2 或- 3<a< 3.
[归纳提升] 当从正面考虑情况较多,问题较复杂 的时候,往往考虑运用补集思想.其解题步骤为: (1)否定已知条件,考虑反面问题;(2)求解反面问题 对应的参数范围;(3)取反面问题对应的参数范围的 补集.
[错因分析] 由并集的定义容易知道,对于任何一个集合A,都有 A∪∅=A,所以错解忽略了B=∅时的情况.
[正解] ∵A∪B=A,∴B⊆A.
①当 B≠∅时,有aa>≤32,a-1 或2aa≤-21a<--1,2, 解得 a>3. ②当 B=∅时,由 a>2a-1,得 a<1. 综上可知,实数 a 的取值范围是{a|a<1 或 a>3},故填{a|a<1 或 a>3}.
【对点练习】❸ 若集合A={x|ax2+3x+2=0}中至 多有1个元素,则实数a的取值范围为
______________________.
[解析] 假设集合 A 中含有 2 个元素,即 ax2+3x+2=0 有两个不相 等的实数根,则aΔ≠=09,-8a>0, 解得 a<98且 a≠0,则此时实数 a 的取值 范围是{a|a<98且 a≠0}.在全集 U=R 中,集合{a|a<98且 a≠0}的补集是 {a|a≥98或 a=0}.
题型二 交集、并集、补集的综合运算
例2 已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|- 3≤x≤2},求A∩B,(∁UA)∪B,A∩(∁UB). [分析] 对于无限集,可以利用数轴,分别表示出全集U及集合A、 B,先求出∁UA及∁UB,再求解.
由aa≤2+21,≥4, 得aa≤≥2,3或a≤- 3, 故 a≤- 3或 3≤a≤2. 即 A∩B=∅时,a 的取值范围为 a≤- 3或 3≤a≤2, 故 A∩B≠∅时,a 的取值范围为 a>2 或- 3<a< 3.
[归纳提升] 当从正面考虑情况较多,问题较复杂 的时候,往往考虑运用补集思想.其解题步骤为: (1)否定已知条件,考虑反面问题;(2)求解反面问题 对应的参数范围;(3)取反面问题对应的参数范围的 补集.
[错因分析] 由并集的定义容易知道,对于任何一个集合A,都有 A∪∅=A,所以错解忽略了B=∅时的情况.
[正解] ∵A∪B=A,∴B⊆A.
①当 B≠∅时,有aa>≤32,a-1 或2aa≤-21a<--1,2, 解得 a>3. ②当 B=∅时,由 a>2a-1,得 a<1. 综上可知,实数 a 的取值范围是{a|a<1 或 a>3},故填{a|a<1 或 a>3}.
【对点练习】❸ 若集合A={x|ax2+3x+2=0}中至 多有1个元素,则实数a的取值范围为
______________________.
[解析] 假设集合 A 中含有 2 个元素,即 ax2+3x+2=0 有两个不相 等的实数根,则aΔ≠=09,-8a>0, 解得 a<98且 a≠0,则此时实数 a 的取值 范围是{a|a<98且 a≠0}.在全集 U=R 中,集合{a|a<98且 a≠0}的补集是 {a|a≥98或 a=0}.
集合的基本运算(第2课时 全集与补集)-高一数学同步优品讲练课件(人教A版2019必修第一册)

因为 B = {−1,0,1,2,3} ,
所以 ∁R A ∩ B = {−1,2,3} ,故选C.
返回至目录
方法总结 解决集合的混合运算问题时,一般先计算括号内的部分,再计算其他部分.有限
混合运算可借助 Venn 图求解,与不等式有关的集合运算可借助数轴求解.
>
m
<
>
/m
<
返回至目录
巩固训练
1.若全集 U = {1,2,3,4} ,集合 M = {1,2} , N = {2,3} ,则 M ∪ ∁U N = (
A. {1,2,3}
B. {2}
C. {1,3,4}
1
@
D ).
D. {4}
[解析] ∵集合 M = {1,2} , N = {2,3} , ∴ M ∪ N = {1,2,3} ,又全集 U = {1,2,3,4} ,∴
∁U M ∪ N = {4} .故选D.
{1,2,3}
4.设全集为 U , M = {1,2} , ∁U M = {3} ,则 U = _________.
第一章 集合与常用逻辑用语
1.3 集合的基本运算
榆次一中 数学教研组
课时2 全集与补集
学习目标
1.理解全集、补集的概念.(数学抽象)
2.准确使用补集符号和 Venn 图.(直观想象)
>
m
<
>
/m
<
3.会求补集,并能解决一些集合综合运算的问题.(数学运算)
返回至目录
自主预习·悟新知
合作探究·提素养
>
m
<
>
/m
<
[答案] 在有理数范围内的解是 {2} ,在无理数范围内的解是 {2, 3, − 3} .
22人教A版新教材数学必修第一册课件--补集

[答案] 由 = {| + ≥ 0} = {| ≥ −} 得,
∁ = {|< − } .
把 = {| − 2<<4} , (∁ ) ∩ = ⌀ 表示在同一数轴上,
如图,
由数轴可得, − ≤ −2 ,
即 ≥ 2,
所以实数 的取值范围是 ≥ 2 .
解题感悟
由集合的补集求解参数的问题
(1)如果所给集合是有限集,那么由补集求参数问题时,可利用补集的定
义并结合相关知识求解.
(2)如果所给集合是无限集,那么在求解与交集、并集、补集运算有关的
参数问题时,一般利用数轴求解.
1. 设全集 = ,集合 = {|>1} , = {|>} ,且 (∁ ) ∪ = ,
3. [2020四川棠湖中学实验学校高一期中] 设全集 = ,集合 =
{| − 1<<3} , = {| ≤ −2或 ≥ 1} ,则 ∩ (∁ ) = ( A
A. {| − 1<<1}
B. {| − 2<<3}
C. {| − 2 ≤ <3}
D. {| ≤ −2或> − 1}
求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助
数轴求解.
1. 已知全集 = {|<10, ∈ ∗ } , = {2,4,5,8} , = {1,3,5,8} ,求
∁ ( ∪ ) , ∁ ( ∩ ) , (∁ ) ∩ (∁ ) , (∁ ) ∪ (∁ ) .
≤ 2} ,求 ∩ , (∁ ) ∪ , ∩ (∁ ) .
[答案] 如图,
由图可得 ∁ = {| ≤ −2或3 ≤ ≤ 4}.
如图,
由图可得 ∁ = {|< − 3或2< ≤ 4} .
∁ = {|< − } .
把 = {| − 2<<4} , (∁ ) ∩ = ⌀ 表示在同一数轴上,
如图,
由数轴可得, − ≤ −2 ,
即 ≥ 2,
所以实数 的取值范围是 ≥ 2 .
解题感悟
由集合的补集求解参数的问题
(1)如果所给集合是有限集,那么由补集求参数问题时,可利用补集的定
义并结合相关知识求解.
(2)如果所给集合是无限集,那么在求解与交集、并集、补集运算有关的
参数问题时,一般利用数轴求解.
1. 设全集 = ,集合 = {|>1} , = {|>} ,且 (∁ ) ∪ = ,
3. [2020四川棠湖中学实验学校高一期中] 设全集 = ,集合 =
{| − 1<<3} , = {| ≤ −2或 ≥ 1} ,则 ∩ (∁ ) = ( A
A. {| − 1<<1}
B. {| − 2<<3}
C. {| − 2 ≤ <3}
D. {| ≤ −2或> − 1}
求的集合;当集合是用描述法表示时,如不等式形式表示的集合,则可借助
数轴求解.
1. 已知全集 = {|<10, ∈ ∗ } , = {2,4,5,8} , = {1,3,5,8} ,求
∁ ( ∪ ) , ∁ ( ∩ ) , (∁ ) ∩ (∁ ) , (∁ ) ∪ (∁ ) .
≤ 2} ,求 ∩ , (∁ ) ∪ , ∩ (∁ ) .
[答案] 如图,
由图可得 ∁ = {| ≤ −2或3 ≤ ≤ 4}.
如图,
由图可得 ∁ = {|< − 3或2< ≤ 4} .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主 PPT素材:/sucai/
PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
预习
探新知
栏目导航
4
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/
1.全集
(1)定义:如果一个集合含有所研究问题中涉及的 所有元素
,
那么就称这个集合为全集.
(2)记法:全集通常记作 U.
栏目导航
5
思考:全集一定是实数集 PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/
1.通过补集的运算培养数学运算
2.理解给定集合中一个子集的补 素养.
集的含)
对象进行判断归类,培养数学抽象
3.会用 Venn 图、数轴进行集合的 素养.
运算.(重点)
栏目导航
3
自
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
第一章 集合与常用逻辑用语
1.1 集合 1.1.3 集合的基本运算
第2课时 全集、补集及综合应用
学习目标 1. 了 解 全 集 的 含 义 及 其 符 号 表
2
核心素养
示.(易混点)
PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/ 英语课件:/kejian/ying yu/ 科学课件:/kejian/kexu e/ 化学课件:/kejian/huaxue/ 地理课件:/kejian/dili/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/ 美术课件:/kejian/me ishu/ 物理课件:/kejian/wul i/ 生物课件:/kejian/she ngwu/ 历史课件:/kejian/lish i/