浙江省宁波市南三县2014年初中毕业生学业诊断性考试数学试题(扫描版,含答案)
2014年浙江省宁波市中考数学试卷(含解析版)

2014年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)下列各数中,既不是正数也不是负数的是()A.0B.﹣1C.D.22.(4分)宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为()A.253.7×108B.25.37×109C.2.537×1010D.2.537×1011 3.(4分)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.4.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克5.(4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π6.(4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.57.(4分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.8.(4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA的面积比为()A.2:3B.2:5C.4:9D.:9.(4分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1B.b=2C.b=﹣2D.b=010.(4分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱11.(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H 是AF的中点,那么CH的长是()A.2.5B.C.D.212.(4分)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)二、填空题(每小题4分,共24分)13.(4分)﹣4的绝对值是.14.(4分)方程=的根x=.15.(4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支.16.(4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).17.(4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)18.(4分)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为cm2.三、解答题(本大题有8小题,共78分)19.(6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.20.(8分)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.(10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO =CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.23.(10分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.(12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.26.(14分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.2014年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)下列各数中,既不是正数也不是负数的是()A.0B.﹣1C.D.2【考点】11:正数和负数;27:实数.【分析】根据实数的分类,可得答案.【解答】解:0既不是正数也不是负数,故选:A.【点评】本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.2.(4分)宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学记数法表示为()A.253.7×108B.25.37×109C.2.537×1010D.2.537×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253.7亿=253 7000 0000=2.537×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)用矩形纸片折出直角的平分线,下列折法正确的是()A.B.C.D.【考点】PB:翻折变换(折叠问题).【专题】121:几何图形问题.【分析】根据图形翻折变换的性质及角平分线的定义对各选项进行逐一判断.【解答】解:A.当长方形如A所示对折时,其重叠部分两角的和中,一个顶点处小于90°,另一顶点处大于90°,故A错误;B.当如B所示折叠时,其重叠部分两角的和小于90°,故B错误;C.当如C所示折叠时,折痕不经过长方形任何一角的顶点,所以不可能是角的平分线,故C错误;D.当如D所示折叠时,两角的和是90°,由折叠的性质可知其折痕必是其角的平分线,故D正确.故选:D.【点评】本题考查的是角平分线的定义及图形折叠的性质,熟知图形折叠的性质是解答此题的关键.4.(4分)杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克【考点】11:正数和负数.【专题】11:计算题.【分析】根据有理数的加法,可得答案.【解答】解:(﹣0.1﹣0.3+0.2+0.3)+5×4=20.1(千克),故选:C.【点评】本题考查了正数和负数,有理数的加法运算是解题关键.5.(4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB.8πC.12πD.16π【考点】MP:圆锥的计算.【专题】11:计算题.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:此圆锥的侧面积=•4•2π•2=8π.故选:B.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6.(4分)菱形的两条对角线长分别是6和8,则此菱形的边长是()A.10B.8C.6D.5【考点】KQ:勾股定理;L8:菱形的性质.【专题】11:计算题.【分析】根据菱形的性质及勾股定理即可求得菱形的边长.【解答】解:∵四边形ABCD是菱形,AC=8,BD=6,∴OB=OD=3,OA=OC=4,AC⊥BD,在Rt△AOB中,由勾股定理得:AB===5,即菱形ABCD的边长AB=BC=CD=AD=5.故选:D.【点评】本题考查了菱形的性质和勾股定理,关键是求出OA、OB的长,注意:菱形的对角线互相平分且垂直.7.(4分)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【考点】X4:概率公式.【专题】24:网格型.【分析】找到可以组成直角三角形的点,根据概率公式解答即可.【解答】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形.P=,故选:D.【点评】本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(4分)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA的面积比为()A.2:3B.2:5C.4:9D.:【考点】S9:相似三角形的判定与性质.【专题】121:几何图形问题.【分析】先求出△CBA∽△ACD,得出=,得出△ABC与△DCA的面积比=.【解答】解:∵AD∥BC,∴∠ACB=∠DAC又∵∠B=∠ACD=90°,∴△CBA∽△ACD===,∵=()2=∴△ABC与△DCA的面积比为4:9.故选:C.【点评】本题主要考查了三角形相似的判定及性质,解决本题的关键是利用△ABC与△DCA 的面积比等于相似比的平方.9.(4分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1B.b=2C.b=﹣2D.b=0【考点】AA:根的判别式;O1:命题与定理.【专题】1:常规题型.【分析】先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.【解答】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.10.(4分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱【考点】I1:认识立体图形.【专题】121:几何图形问题.【分析】根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.【解答】解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.【点评】此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.11.(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H 是AF的中点,那么CH的长是()A.2.5B.C.D.2【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【专题】121:几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.(4分)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(﹣3,7)B.(﹣1,7)C.(﹣4,10)D.(0,10)【考点】H5:二次函数图象上点的坐标特征;P6:坐标与图形变化﹣对称.【专题】16:压轴题.【分析】把点A坐标代入二次函数解析式并利用完全平方公式整理,然后根据非负数的性质列式求出a、b,再求出点A的坐标,然后求出抛物线的对称轴,再根据对称性求解即可.【解答】解:∵点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,∴(a﹣2b)2+4×(a﹣2b)+10=2﹣4ab,a2﹣4ab+4b2+4a﹣8b+10=2﹣4ab,(a+2)2+4(b﹣1)2=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴a﹣2b=﹣2﹣2×1=﹣4,2﹣4ab=2﹣4×(﹣2)×1=10,∴点A的坐标为(﹣4,10),∵对称轴为直线x=﹣=﹣2,∴点A关于对称轴的对称点的坐标为(0,10).故选:D.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的对称性,坐标与图形的变化﹣对称,把点的坐标代入抛物线解析式并整理成非负数的形式是解题的关键.二、填空题(每小题4分,共24分)13.(4分)﹣4的绝对值是4.【考点】15:绝对值.【专题】11:计算题.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:|﹣4|=4.故答案为:4.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.(4分)方程=的根x=﹣1.【考点】B3:解分式方程.【专题】11:计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣1.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.15.(4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是150支.【考点】VB:扇形统计图.【专题】27:图表型.【分析】首先根据红豆口味的雪糕的数量和其所占的百分比确定售出雪糕的总量,然后乘以水果口味的所占的百分比即可求得其数量.【解答】解:观察扇形统计图知:售出红豆口味的雪糕200支,占40%,∴售出雪糕总量为200÷40%=500(支),∵水果口味的占30%,∴水果口味的有500×30%=150(支),故答案为:150.【点评】本题考查了扇形统计图的知识,解题的关键是正确地从扇形统计图中整理出进一步解题的有关信息.16.(4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】4G:平方差公式的几何背景.【专题】28:操作型.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.【点评】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.17.(4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)【考点】T8:解直角三角形的应用.【专题】129:调配问题.【分析】如图,根据三角函数可求BC,CE,由BE=BC+CE可求BE,再根据三角函数可求EF,再根据停车位的个数=(56﹣BE)÷EF+1,列式计算即可求解.【解答】解:如图,CE=2.2÷sin45°=2.2÷≈3.1米,BC=(5﹣CE×)×≈1.98米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.1米,(56﹣3.1﹣1.98)÷3.1+1=50.92÷3.1+1≈17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.【点评】考查了解直角三角形的应用,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.18.(4分)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6cm2.【考点】KD:全等三角形的判定与性质;KO:含30度角的直角三角形;KQ:勾股定理;M2:垂径定理.【专题】121:几何图形问题;16:压轴题.【分析】作三角形DBF的轴对称图形,得到三角形AGC,三角形AGE的面积就是阴影部分的面积.【解答】解:如图作△DBF的轴对称图形△CAG,作AM⊥CG,ON⊥CE,∵△DBF的轴对称图形△CAG,由于C、D为直径AB的三等分点,∴△ACG≌△BDF,∴∠ACG=∠BDF=60°,∵∠ECB=60°,∴G、C、E三点共线,∵AM⊥CG,ON⊥CE,∴AM∥ON,∴=,在Rt△ONC中,∠OCN=60°,∴ON=sin∠OCN•OC=•OC,∵OC=OA=2,∴ON=×2=,∴AM=2,∵ON⊥GE,∴NE=GN=GE,连接OE,在Rt△ONE中,NE===,∴GE=2NE=2,∴S△AGE=GE•AM=×2×2=6,∴图中两个阴影部分的面积为6,故答案为:6.【点评】本题考查了平行线的性质,垂径定理,勾股定理的应用.三、解答题(本大题有8小题,共78分)19.(6分)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.【考点】4I:整式的混合运算;C6:解一元一次不等式.【专题】11:计算题.【分析】(1)先运用完全平方公式和平方差公式展开,再合并同类项即可;(2)先去括号,再移项、合并同类项.【解答】解:(1)原式=a2+2ab+b2+a2﹣b2﹣2ab=2a2;(2)去括号,得5x﹣10﹣2x﹣2>3,移项、合并同类项得3x>15,系数化为1,得x>5.【点评】本题考查了整式的混合运算以及解一元一次不等式,是基础知识要熟练掌握.20.(8分)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【考点】VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【专题】11:计算题.【分析】(1)找出租车量中车次最多的即为众数,将数据按照从小到大顺序排列,找出中间的数即为中位数,求出数据的平均数即可;(2)由(1)求出的平均数乘以30即可得到结果;(3)求出2014年的租车费,除以总投入即可得到结果.【解答】解:(1)根据条形统计图得:出现次数最多的为8,即众数为8(万车次);将数据按照从小到大顺序排列为:7.5,8,8,8,9,9,10,中位数为8(万车次);平均数为(7.5+8+8+8+9+9+10)÷7=8.5(万车次);(2)根据题意得:30×8.5=255(万车次),则估计4月份(30天)共租车255万车次;(3)根据题意得:=≈3.3%,则2014年租车费收入占总投入的百分率为3.3%.【点评】此题考查了条形统计图,加权平均数,中位数,以及众数,熟练掌握各自的定义是解本题的关键.21.(8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【考点】T8:解直角三角形的应用.【专题】121:几何图形问题.【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH 中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.22.(10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO =CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.【考点】GB:反比例函数综合题.【专题】15:综合题.【分析】(1)利用“HL”证明△AOB≌△DCA;(2)先利用勾股定理计算出AC=1,再确定C点坐标,然后根据点E为CD的中点可得到点E的坐标为(3,1),则可根据反比例函数图象上点的坐标特征求得k=3;(3)根据中心对称的性质得△BFG≌△DCA,所以FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,则可得到G点坐标为(1,3),然后根据反比例函数图象上点的坐标特征判断G点是否在函数y=的图象上.【解答】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,∴Rt△AOB≌Rt△DCA;(2)解:在Rt△ACD中,CD=2,AD=,∴AC==1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),∴k=3×1=3;(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y=的图象上.【点评】本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、中心对称的性质和三角形全等的判定与性质;会利用勾股定理进行几何计算.23.(10分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【考点】F3:一次函数的图象;H8:待定系数法求二次函数解析式;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【专题】151:代数综合题.【分析】(1)根据二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,代入得出关于a,b,c的三元一次方程组,求得a,b,c,从而得出二次函数的解析式;(2)令y=0,解一元二次方程,求得x的值,从而得出与x轴的另一个交点坐标;(3)画出图象,再根据图象直接得出答案.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,∴,∴a=,b=﹣,c=﹣1,∴二次函数的解析式为y=x2﹣x﹣1;(2)当y=0时,得x2﹣x﹣1=0;解得x1=2,x2=﹣1,∴点D坐标为(﹣1,0);(3)图象如图,当一次函数的值大于二次函数的值时,x的取值范围是﹣1<x<4.【点评】本题考查了用待定系数法求二次函数的解析式以及一次函数的图象、抛物线与x 轴的交点问题,是中档题,要熟练掌握.24.(10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【考点】32:列代数式;8A:一元一次方程的应用;B7:分式方程的应用.【专题】12:应用题.【分析】(1)由x张用A方法,就有(19﹣x)张用B方法,就可以分别表示出侧面个数和底面个数;(2)由侧面个数和底面个数比为3:2建立方程求出x的值,求出侧面的总数就可以求出结论.【解答】解:(1)∵裁剪时x张用A方法,∴裁剪时(19﹣x)张用B方法.∴侧面的个数为:6x+4(19﹣x)=(2x+76)个,底面的个数为:5(19﹣x)=(95﹣5x)个;(2)由题意,得,解得:x=7,经检验,x=7是原分式方程的解,∴盒子的个数为:=30.答:裁剪出的侧面和底面恰好全部用完,能做30个盒子.【点评】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,列代数式的运用以及分式方程的应用,解答时根据裁剪出的侧面和底面个数相等建立方程是关键.25.(12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.。
浙江省宁波市鄞州区2014年初中毕业学业模拟考试数学试题(扫描版试题+Word版答案)

鄞州区2014年初中毕业生学业考试模拟考数学参考答案一:选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1 2 3 4 5 6 7 8 9 10 11 12 DABCB AD CB CD D二:填空题(每小题4分,共24分)1314 15 16171856x -106345(27256964,) 三、解答题(共78分)注: 1. 阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分. 19. 解:原式2354231--++=........................ 5分 0=........................6分 20. 解:(1) (3)分如上图,两辆汽车经过该十字路口共有9种可能的行驶方向,…………………… 4分 都直行的可能性只有1种,…………………… 5分 (2)由(1)得两辆汽车都直行P =91.……………………8分21.解:(1)在矩形BCDF 中,BD =FCBF =DC ∠FDC =90°……………………1分∴FC 为⊙O 的直径 ∴∠FEC =∠FDC =90°,即FE ⊥AC ,……………………2分 ∵E 是AC 的中点, ∴AF =FC ,……………………3分 ∴BD =AF ;……………………4分(2)∵BD =5342222=+=+DC BC =AF ,BF =DC =3,∴AB =AF +BF =5+3=8,……………………6分 ∴tan ∠BAC =2184==AB BC .……………………8分 22.解:(1)设甲商品购进x 件,则乙商品购进(100﹣x )件,由题意,得y =(20﹣15)x +(45﹣35)(100﹣x )=﹣5x +1000,故y 与x 之间的函数关系式为:y =﹣5x +1000;………………………………………5分 (2)由题意,得15x +35(100﹣x )≤3000,解之,得x ≥25.…………………………………………………………………………7分 ∵y =﹣5x +1000,k =﹣5<0, ∴y 随x 的增大而减小,∴当x 取最小值25时,y 最大值,此时y =﹣5×25+1000=875(元), ……………9分 ∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元.………………………………………………………………………………10分第二辆第一辆右转直行左转右转直行左转左转直行右转直行右转左转23.解:(1)作DF ⊥x 轴于点F .在y =﹣3x +3中,令x =0,解得:y =3,即B 的坐标是(0,3).……………………1分 令y =0,解得:x =1,即A 的坐标是(1,0).……………………2分 则OB =3,OA =1. ∵∠BAD =90°,∴∠BAO +∠DAF =90°, 又∵直角△ABO 中,∠BAO +∠OBA =90°, ∴∠DAF =∠OBA ,……………………3分 ∵在△OAB 和△FDA 中,DAF OBA BOA AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OAB ≌△FDA (AAS ),………………………………4分∴AF =OB =3,DF =OA =1, ∴OF =4 ∴ D 的坐标是(4,1)………5分 将D 的坐标是(4,1)代入y =得:k =4;………………………………6分 (2)作CE ⊥y 轴于点E ,交反比例函数图像于点G . 与(1)同理可证,△OAB ≌△EBC ,∴OB =EC =3, OA =BE =1,则可得OE =4,C 的坐标是(3,4)……………………8分,则C 的纵坐标是4,把y =4代入y =得:x =1.即G 的坐标是(1,4),……………9分 ∴CG =2.即m =2.………………………………………………………………10分 24.解:(1)02153612=-+-x x ,解得)(315舍去或==x x ,……………………2分 15-6=9,∴该球落地时与球网的水平距离为9米;……………………4分 (2)当5=x 时,2510951012=⨯+⨯-=y ,则E 点坐标为(5,2)………6分 由题意得A 点坐标为(6,1.5), ……………………7分, 则 ……………………9分解得⎩⎨⎧-==5.105c b ……………………10分25.解:(1)(0,1)τ=(2,2)-; ……………………… 4分(2)a =1-,b =12; ……………………………………… 8分 (3) ∵点(,)P x y 经过变换τ得到的对应点(,)P x y '''与点P 重合,∴(,)(,)τ=x y x y . ∵点(,)P x y 在直线2y x =上,∴(,2)(,2)τ=x x x x . ∴2,22.x ax bx x ax bx =+=-⎧⎨⎩ ……………………………………… 10分即(12)0,(22)0.a b x a b x --=-+=⎧⎨⎩∵x 为任意的实数,2213662215522b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=⎪⎩∴120,220.a b a b --=-+=⎧⎨⎩ 解得3,21.4a b ==-⎧⎪⎪⎨⎪⎪⎩……………………………………… 12分 26. 解:(1)BC =5342222=+=+AC AB ,∵DG ∥BC ,D 是AB 的中点, ∴G 是AC 的中点, ∴DG =21BC =25, 设PN =PG =x ,∵PF ∥AC , ∴△DPN ∽△DGA ,…………………………………… 1分∴DGDPAG NP =, ∴252523xx -=,解得1615=x , ∴PG =1615;…………………………………… 3分(2)四边形EFMN 是菱形,理由如下:………… 4分 连结MN 、NE 、FM , ∵DG ∥BC ,PF ∥AC ,PE ∥AB ,∴四边形ANPM 、DBEP 、PFCG 都是平行四边形, ∴□ANPM 、□DBEP 、□PFCG 两两等高.∵PFCG D BEP ANPM S S S 四边形四边形四边形==,∴EP =PM ,PF =PN , ∴四边形EFMN 是平行四边形. ……………… 6分∵在□ANPM 中,∠BAC =90°,∴□ANPM 是矩形,∴∠MPN =90°,即EM ⊥FN∴平行四边形EFMN 是菱形;……………………… 7分 (3)∵四边形EFMN 是平行四边形, ∴MN ∥BC . ∵DG ∥BC , ∴MN ∥DG .∵四边形ANPM 、PGMN 、PFCG 都是平行四边形, ∴PN =AM ,PN =GM 、PF =GC . ∵PF =PN ,∴AM =MG =GC =1. 同理AN =ND =DB =34,……………………… 9分 ∴M (0,1),N (34,0);…………………… 11分 (4)⊙P 与AB 、BC 都相切,理由如下: ∵四边形ANPM 是菱形,∠BAC 是直角, 则四边形ANPM 是正方形 ∴PM =PN ,∠PNA =90°,∴AB 是⊙P 的切线. …………………… 12分 连结PC ,作PQ ⊥BC 垂足Q , ∵四边形PFCG 是菱形,∴CP 平分∠FCG . ………………………… 13分xy CG M A F P ND EBxyP NBDEFAM G C Q∵PM⊥AC,PQ⊥BC,∴PM=PQ,∴BC是⊙P的切线. ……………………… 14分。
(试题)宁波市2014年中考数学试卷及答案(Word解析版)

浙江省宁波市2014年中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求).2.(4分)(2014•宁波)宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7D.|a|的绝对值与小数点移动的位数相同.是,)A....4.(4分)(2014•宁波)杨梅开始采摘啦!每框杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4框杨梅的总质量是()0.3+0.2+0.3,底面半径为,则此圆锥的侧面积是()解:此圆锥的侧面积本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.4)AB==5本题考查了菱形的性质和勾股定理,关键是求出7.(4分)(2014•宁波)如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()....,故选的可能性相同,其中事件.8.(4分)(2014•宁波)如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为().:,求出=,DAC=的面积比.AD=,==,==,DAC==•=×==,,.9.(4分)(2014•宁波)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()<0本题考查了命题与定理:判断一件事情的语句,叫做命题.许多10.(4分)(2014•宁波)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()B此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.11.(4分)(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()..,=AF=2.点评:12.(4分)(2014•宁波)已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A+4a=二、填空题(每小题4分,共24分)13.(4分)(2014•宁波)﹣4的绝对值是4.专题:一个正数的绝对值是它本身;14.(4分)(2014•宁波)方程=的根x= ﹣1.:分式方程去分母转化为整式方程,求出整式方程的解得到经检验15.(4分)(2014•宁波)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是150支.分析:16.(4分)(2014•宁波)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).))17.(4分)(2014•宁波)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)EF+1××÷9618.(4分)(2014•宁波)如图,半径为6cm的⊙O中,C、D为直径AB的三等分点,点E、F分别在AB两侧的半圆上,∠BCE=∠BDF=60°,连接AE、BF,则图中两个阴影部分的面积为6cm2.解:如图作△ACG≌△==•OCOA=2,AM=2NE=GN=NE== GE=2NE=2AM=××=6三、解答题(本大题有8小题,共78分)19.(6分)(2014•宁波)(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;(2)解不等式:5(x﹣2)﹣2(x+1)>3.)先运用完全平方公式和平方差公式展开,再合并同类项即20.(8分)(2014•宁波)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).:年的租车费,除以总投入即可得到结果.)根据题意得:=21.(8分)(2014•宁波)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75),再根据AB=AH+BHAB=AH+BH=9.1+5.6=14.7此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,22.(10分)(2014•宁波)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.)利用y=)解:在AD==1),)解:点y=23.(10分)(2014•宁波)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.,﹣,y=﹣时,得x﹣2=∴点24.(10分)(2014•宁波)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?(x∴盒子的个数为:25.(12分)(2014•宁波)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成3张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.我们有多少种剪法,图1是其中的一种方法:定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能的值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一以一底角作为新等腰三角形的底角,则另一底脚被分为角,而后确定一边为的角平分线,则可得第一个等腰三角形.而后EAC=a所以联立得方程组,即三分线长分别是26.(14分)(2014•宁波)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),圆的半径为y.①求y关于x的函数解析式;②当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.,那么直接取圆直径最大为2,即为半径.由设半径为中,..比较知,方案三半径较大.时,(x=r=);时,(>r=)<﹣时,r=(﹣=时,r=(),x=最大为.<<,生物达人12:中考数学真题,答案解析,真题,模拟试题,中考真题。
宁波市2014年初中毕业生学业考试(数学)

宁波市2014年初中毕业生学业考试数学模拟试卷考生须知:1. 全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试题卷共6页,有三个大题,26个小题,满分为150分,考试时间为120分钟.2. 请将姓名、准考证号分别填写在答题卷的规定位置上.3. 答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B 铅笔涂黑、涂满.将试题卷Ⅱ的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效.4. 不允许使用计算器.没有近似计算要求的试题,结果都不能用近似数表示.抛物线2y ax bx c =++的顶点坐标为24(,)24b ac b a a--. 试 题 卷 Ⅰ一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1. 气温由3-℃上升2℃,此时的气温是(A )2-℃(B )1-℃ (C )0℃ (D )1℃2. 宁波市轨道交通1号线一期工程批复总投资8.123亿元,工程于2009年6月全面开工建设,工期为5年,到2014年通车试运营. 8.123亿元用科学记数法表示为 (A )1010238.1⨯元 (B )910238.1⨯元 (C )8108.123⨯元 (D )7108.123⨯元 3.2014年3月份,某市深陷“十面霾伏”,一周空气质量报告中某项污染指数是:231,235,231,234,230,231,225,则这组数据的中位数,众数分别是 (A )232,231 (B )231,232 (C )231,231 (D )232,235 4. 下列运算错误..的是 (A ) (x 2) 3=x6(B )x 2·x 3=x 5 (C )x 2-2xy+y 2=(x -y )2(D )3x -2x =15. 已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是6.下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任B . 3 1 0 2 4 5 D .3 1 0 24 5A . 3 1 0 2 4 5 C . 3 1 0 2 4 5意抽取一张,抽到的图案是中心对称图形的概率是(A)41 (B) 21 (C) 43(D)1 7.如图1所示是几何体的主视图与左视图,那么它的俯视图是图18. 如图所示,在数轴上点A 所表示的数x 的范围是(A )︒<<︒60sin 30sin 23x (B )︒<<︒45cos 2330cos x(C )︒<<︒45tan 30tan 23x (D )︒<<︒60tan 45tan 23x9.把二次函数c bx ax y ++=2的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x 轴的交点是(A )(-2.5,0) (B )(2.5,0) (C )(-1.5,0) (D )(1.5,0) 10.某探究性学习小组仅利用一副三角板不能完成的操作是 (A )作已知直线的平行线 (B )作已知角的平分线 (C )测量钢球的直径 (D )作已知三角形的中位线11.如图,⊙O 是以原点为圆心,2为半径的圆,点P 是直线y =-x +6上的一点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为(A )3 (B )4 (C )6-2 (D )32-112.如图,A 为双曲线y =4x(x >0)上一点,B 为x 轴正半轴上一点,线段AB 的中点C恰好在双曲线上,则△OAC 的面积为(A )1 (B )2 (C )3 (D )4试 题 卷 Ⅱ二、填空题(每小题4分,共24分) 13.16的平方根为 ▲ .14.已知圆锥的底面半径为5cm ,母线长为8cm ,则它的侧面积为 ▲ cm 2.15. 如图,将三角板的直角顶点放在⊙O 的圆心上,两条直角边分别交⊙O 于A 、B 两点,点P 在优弧AB 上,且与点A 、B 不重合,连结PA 、PB .则∠APB 的大小为 ▲ 度.(第15题图) (第17题图)16.在2,2-,0,2四个数中,任取一个,恰好使分式x x-+22有意义...的概率是_▲__. 17.如图,函数y kx =和334y x =-+的图象相交于A (a ,2),则不等式334kx x <-+的解集为_▲__.18.如图,扇形OAB 的圆心角为2α,点P 为弧AB 上一点,将此扇形翻折,当点O 和点P 重合时折痕恰巧过点B ,且65AB PB =,则α余弦值为 ▲ . 三、解答题(本大题有8小题,共78分)19. (本题6分)请将下面的代数式尽可能化简,再选择一个你喜欢的数代入求值.212(1)1a a a a --++- ABO(第18题图)20.(本题8分)现有三块两直角边分别为1和2的三角形纸板,借助下面55⨯的网格,用全部纸板分别拼出周长不同的四边形,并写出相应四边形的周长。
宁波市2014学年九年级上期中质量调研数学试题及答案

浙江省宁波市2014学年第一学期期中质量调研试题卷九年级数学(分值:120分 考试时间:120分钟)一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分)下面每小题给出的四个选项中, 只有一个是正确的. 注意可以用多种不同的方法来选取正确答案.1. 若875c b a ==,且3a -2b +c =3,则2a +4b -3c 的值是( ) A.14 B.42 C.7D.3142. 函数1212+=x y 与221x y =的图象的不同之处是 ( ▲ ) A. 对称轴 B. 开口方向 C. 顶点 D. 形状3. 如图,A 、B 、C 、D 四点都在⊙O 上,∠BOC=110°,则BDC ∠等于( ▲ ) A. 110° B. 70° C. 55° D.125°4. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是 ( ▲ ) A. 点P 在⊙O 内 B. 点P 在⊙O 上C. 点P 在⊙O 外D. 无法确定5. 抛物线3212-=x y 的顶点坐标是 ( ▲ ) A.(21,-3) B. (-3,0) C.(0,-3) D.(0,3) 6. 在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A.116B.18C.14D.127. 函数m x x y +--=822的图象上有两点),(11y x A ,),(22y x B ,若212x x <<-,(第3题图)(第4题图)则 ( ▲ )A.21y y <B.21y y >C.21y y =D.1y 、2y 的大小不确定8. 下列命题中,真命题的个数是( ▲ )①平分弦的直径垂直于弦;②圆内接平行四边形必为矩形;③90°的圆周角所对的弦是直径;④任意三个点确定一个圆;⑤同弧所对的圆周角相等. A .5 B .4 C .3 D .2 9.半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆周角度数为 ( ▲ )A. 600B. 900C. 600或1200D. 450或900 10.如图,已知A 、B 是反比例函数ky x=(k >0,x >0)图象上的两点,O 、A 在正比例函数x y =图象上,BC ∥x 轴,交y 轴于点C 。
2014浙江省宁波市中考数学试卷

2014年浙江省宁波市中考数学试卷(满分150分,考试时间120分钟)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. (2014浙江省宁波市,1,4分)下列各数中,既不是正数也不是负数的是()A.0B.-5C.3D.2【答案】A.2. (2014浙江省宁波市,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学计数法表示为()A.253.7×108B. 25.37×109C. 2.537×1010D. 2.537×1011【答案】C.3. (2014浙江省宁波市,3,4分)用矩形纸片折出直角的平分线,下列折法正确的是()A B C D【答案】D.4. (2014浙江省宁波市,4,4分)杨梅开始采摘了!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这4筐杨梅的总质量是()A.19.7千克B. 19.9千克C. 20.1千克D. 20.3千克【答案】C.5. (2014浙江省宁波市,5,4分)圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A.6πB. 8πC. 12πD. 16π【答案】B.6. (2014浙江省宁波市,6,4分)菱形的两条对角线长分别是6和8,则此菱形的边长是 ( )A.10B. 8C. 6D. 5 【答案】D .7. (2014浙江省宁波市,7,4分)如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一个点C ,使△ABC 为直角三角形的概率是 ( ) A.21 B. 52 C. 73 D. 74【答案】C .8. (2014浙江省宁波市,8,4分)如图,梯形ABCD 中,AD ∥BC ,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA 的面积比为 ( ) A. 2︰3 B. 2︰5 C. 4︰9 D. 2︰3【答案】C .9. (2014浙江省宁波市,9,4分)已知命题“关于x 的一元二次方程012=++bx x ,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是 ( )A.b=-1B. b=2C. b=-2D. b=0 【答案】A .10. (2014浙江省宁波市,10,4分)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是 ( ) A.五棱柱 B. 六棱柱 C. 七棱柱 D. 八棱柱(第7题图)(第8题图)【答案】B .11. (2014浙江省宁波市,11,4分)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH 的长是 ( ) A. 2.5 B.5 C.223D.2【答案】B .12. (2014浙江省宁波市,12,4分)已知点A (a-2b ,2-4ab )在抛物线1042++=x x y 上,则点A 关于抛物线对称轴的对称点坐标为 ( )A.(-3,7)B. (-1,7)C. (-4,10)D. (0,10) 【答案】D .二、填空题(每小题4分,共24分)13. (2014浙江省宁波市,13,4分)-4的绝对值是 . 【答案】4.14. (2014浙江省宁波市,14,4分)方程xx x -=-212的根x = . 【答案】-1.15. (2014浙江省宁波市,15,4分)某冷饮店一天售出各种口味雪糕数量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支 .(第10题图)(第11题图)(第15题图)【答案】150.16. (2014浙江省宁波市,16,4分)一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是 (用a ,b 的代数式表示).【答案】ab .17. (2014浙江省宁波市,17,4分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 个这样的停车位.(2=1.4)【答案】17.18. (2014浙江省宁波市,18,4分)如图,半径为6cm 的⊙O 中,C 、D 为直径AB 的三等分点,点E 、F 分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连结AE ,BF.则图中两个阴影部分的面积和为 cm 2.【答案】611.三、解答19. (2014浙江省宁波市,19,6分,每题3分) (1)化简:(a +b )2+(a -b )(a +b )-2ab【答案】解:原式=a 2+2ab +b 2+a 2-b 2-2ab ……………………………………2分 =2 a 2.………………………………………………………………………3分(第18题图)(第17题图)(第16题图)(2)解不等式:5(x-2)-2(x+1)>3.【答案】解:5(x-2)-2(x+1)>35x-10-2x-2>3…………………………1分3x>15…………………………2分x>5.…………………………3分20. (2014浙江省宁波市,20,8分)作为宁波市政府民生实事之一的公共自行车建设工作基本完成,某部门对今年4月份中的7天进行了公共自行车租车量的统计,结果如下:(1)求着7天日租车量的众数、中位数和平均数;(2)用(1)中平均数估计4月份(30天)共租车多少万量次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的白费率(精确到0.1%).【答案】解:(1)8,8,8.5;…………………………2分(2)30×8.5=255(万车次);…………………………5分(3)3200×0.1÷9600=3.3%.…………………………8分21. (2014浙江省宁波市,21,8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°.因才城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直后的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【答案】解:(1)作CH⊥AB于点H,在RT△ACH中,CH=AC·sin∠CAB= AC·sin25°=10×0.42=4.2,.…………………………2分AH=AC·cos∠CAB= AC·cos25°=10×0.91=9.1, .…………………………3分在RT△BCH中,BH=CH÷tan37°=4.2÷0.75=5.6,∴AB=AH+BH=9.1+5.6=14.7(千米);.…………………………5分(2)BC=CH÷sin37°=4.2÷0.6=7.0,.…………………………7分∴AC+BC-AB=10+7-14.7=2.3(千米).答:公路改直后比原来缩短了2.3.千米.…………………………8分22.(2014浙江省宁波市,22,10分)如图,点A、B分别在x、y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA y=kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图像上,并说明理由.【答案】解:(1)∵点A、B分别在x、y轴上,DC⊥x轴于点C,∴∠AOB=∠DCA=90°,…………………………1分∵AO=CD=2,AB=DA…………………………2分∴△AOB≌△DCA;…………………………3分(2)∵∠DCA=90°,DA CD=2,∴AC=,∴OC=OA+AC=3,…………………………4分∵CD的中点是E,∴CE=CD=1,∴E(3,1),…………………………5分∴k=3;…………………………6分(3)∵△BFG和△DCA关于某点成中心对称,∴BF=DC=2,FG=AC=1,…………………………7分∵点F在y轴上,∴OF=OB+BF=3,∴G(1,3),…………………………8分把x=1代入kx得y=3,∴点G在反比例函数的图像上. …………………………10分23. (2014浙江省宁波市,23,10分)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点. (1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,求点D的坐标;(3)在同一坐标系中画出直线y=x+1,并写出当x在什么范围内时,一次函数的值大于二次函数的值.【答案】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,∴5952x-+42011645a b cca b c++=⎧⎪=-⎨⎪++=⎩,解得a=12,b=-12,c=-1,∴y=12x2-12x-1;.…………………………3分(2)当y=0时,12x2-12x-1=0,解得x=2或-1,∴D(-1,0);.…………………………6分(3)如图,.…………………………8分当-1<x<4时一次函数的值大于二次函数的值. .…………………………8分24.(2014浙江省宁波市,24,10分)用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形和侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角不再利用).A方法:剪6个侧面;B方法:剪4个侧面和5个底面.现有19张硬纸板,裁剪时x张用A方法,其余用B方法.(1)用x的代数式分别表示裁剪出的侧面和底面各数;(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?【答案】解:(1)裁出的侧面个数为6x+4(19-x)=(2x+76)个, (2)分裁出的底面个数为5(19-x)=(-5x+95)个;.…………………………4分(2)由题意得2763x+=5952x-+,.…………………………7分解得x=7,.…………………………9分当x=7时,∴2763x+=30,答:能做30个盒子. .…………………………10分25. (2014浙江省宁波市,25,12分)课本的作业题中有这样一道题:把一张顶角为36°的等腰三角形纸片剪两刀,分成三张小纸片,使每张小纸片都是等腰三角形,你能办到吗?请画示意图说明剪法.定义:如果两条线段将一个三角形分成三个等腰三角,我们把这两条线段叫做这个三角形的三分线.(1)请你在图2中用两种不同的方法画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,试画出示意图,并求出x所有可能值;(3)如图3,△ABC中,AC=2,BC=3,∠C=2∠B,请画出△ABC的三分线,并求出三分线的长.【答案】解:(1)画图如下 (3)分(2)如图当AD=AE时,2x+x=30+30,∴x=20; .…………………………4分当AD=DE时,30+30+2x+x=180,∴x=40; .…………………………5分当AE=DE时,不存在,∴∠C=20°或40°;.…………………………6分(3)如图,CD、CE就是所求的三分线.设∠B=α,则∠DCB=∠DCA=∠EAC=α,∠ADE=∠AED=2α, (8)分设AE=AD=x,BD=CD=y,∵△AEC∽△BDC,∴x:y=2:3,.…………………………10分又∵△ACD∽△ABC,∴2:x=(x+y):2,解得x y (12)分26. (2014浙江省宁波市,26,14分)木匠黄师傅用长AB =3,宽BC =2的矩形木板做一个尽可能大的圆形桌面.他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O 1、O 2分别在CD 、AB 上,半径分别是O 1C ,O 2A ,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC 将矩形锯成两个三角形,适当平移三角形并锯成一个最大圆; 方案四:锯一块小矩形BCEF 拼成矩形AFED 下面,利用拼成的木板锯成一个尽可能大的圆.(1)写出方案一中圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE =x (0<x <1),圆的半径为y .①求y 和x 的函数关系式;②当x 取何值时圆的半径最大,最大半径是多少?并说明四种方案中哪一个圆形桌面半径最大.【答案】解:(1)方案一中圆的半径为1;.…………………………3分(2)方案二 如图,连接O 1 O 2,作E O 1⊥AB 于E ,设O 1 C =x ,那么(2x)2=22+(3-2x ) 2, .………………………4分解得x =1312,.…………………………4分 方案一 方案二 方案三方案四 方案四备用图1 方案四备用图2连接OG ,∴OG ⊥CD ,∵∠D =90°,∴OG ∥DE ,∴△CGO ∽△CDE , ∴OG CG DE CD=,.…………………………5分 设OG =y , ∴3524x -=323y y -=,.…………………………6分 ∴y =65, ∴方案三的圆半径最大;.…………………………8分(3)①当0<x <12时, y =22x +;.…………………………10分 12≤x ≤1时, y =32x -;.…………………………12分②当x =12时,y 值最大,最大值为54, 四中方案中,第四种方案圆形桌面的半径最大..…………………………14分方案三。
浙江省宁波市南三县2023-2024届初中毕业生学业诊断性考试数学模拟试题(一模)含答案
....AB4以上80分以下为C 等,70分以下为D 等)绘制成如图1,图2两个不完整的统计图,请根据相关信息,解答下列问题:(1)参与本次调查的学生人数为________,图1中m 的值是________.(2)补全条形统计图,并计算测试成绩为“A 等”的部分所在扇形统计图中圆心角的度数.(3)结合调查的结果,估计全校1200名学生中测试成绩为“C 等”的人数.学生测试成绩扇形统计图图1学生测试成绩条形统计图图220.2023年中央电视台兔年春晚国朝舞剧《只此青绿》引人入胜,图1是舞者“青绿腰”动作,引得观众争相模仿,图2是平面示意图.若舞者上半身BC 为1.1米,下半身AB 为0.6米,下半身与水平面的夹角,与上半身的夹角.(参考数据:70BAD ∠=︒130ABC ∠=︒,,)sin200.34︒≈cos200.94︒≈tan200.36︒≈图1 图2(1)此时舞者的垂直高度CD约为多少米.(2)如图3,下半身与水平面的夹角不变,当AB与BC在同一直线上时,舞者的垂直高度增加了多少米?图321.(8分)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续驶往乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为________km/h,C点的坐标为________.(2)慢车出发多少小时后,两车相距200km.图2①求的值;sin ACB ∠②如图3,连结BM ,CN 交于点D ,取OC 中点F ,连结MF 交NC 于E ,若,求3OF =DE 的长.图3(或设慢车时间为t ,则,解得)6分60100200480t t ++=74t =在快车出现故障后,慢车1小时行驶了60km ,然后两车共同行驶了20060140km-=共同行驶时间为7140(10060)h 8÷+=两车相距200km 所用时间为.∴7394h 88+=(或,解得)8分()601001480200t t +--=398t =答:两车相距200km 所用时间为和.7h 439h 822.(本题10分)(1)证明:平分,BE ABC ∠,1分ABE CBE ∴∠=∠四边形ABCD 是平行四边形,且,AD BC ∴∥AD BC =,CBE AEB ∴∠=∠,,2分ABE AEB CBE ∴∠=∠=∠AB AE ∴=,,3分AF BE ⊥ EF BF ∴=,AFE GFB ∠=∠ ,()AFE GFB ASA ∴△△≌,4分AE BG ∴=,AD BC ∥四边形AEGB 是平行四边形,∴,AB AE = 四边形AEGB 是菱形;5分∴(2)解:,,6分tan 3ABC ∠=60ABC ∴∠=︒过点F 作于点M ,如图所示:FM BC ⊥,112224GH GC NC ∴===11124FH GO NB ===,HF GM ∥EHFEGM∴△∽△,即HF EH GM EG ∴=14EHEG=48255GE GH ∴==12分821822255DE DG GE ∴=+=+=。
宁波市2014届初中毕业生学业考试数学模拟试卷(1)及答案
2014宁波市初中毕业生学业考试数学模拟1本卷满分150分一.选择题(每题4分,共48分)1. 抛物线y =122+-x x 与坐标轴交点为( )A 、二个交点B 、一个交点C 、无交点D 、三个交点3则 这组数据的极差与众数分别是(A )2,28 (B )3,29 (C )2,27 (D )3,284据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学计数法表示为(A )1.04485×106元 (B )0.104485×106元 (C )1.04485×105元 (D )10.4485×104元5. 如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,折叠正方形ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展平后,折痕DE 分别交AB ,AC 于点E ,G ,连接GF ,下列结论:①AE=AG ;②tan ∠AGE=2;③EFO G D O G S S 四边形=∆;④四边形ABFG 为等腰梯形;⑤BE=2OG ,则其中正确的结论个数为( )。
A .2B .3C .4D .56. 如图,三个半径为3的圆两两外切,且ΔABC 的每一边都与其中的两个圆相切,那么ΔABC 的周长是(A )12+63 (B )18+63 (C )18+123 (D )12+1237. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( ) A)4m cm (B) 2(m +n ) cm (C) 4n cm (D)4(m -n ) cm8. 如图是一把300的三角尺,外边AC=8,内边与外边的距离都是2,那么内边EF 的长度是( )A. 4B.43C. 2.5D. 326-9.的图象开口向上,图象经过点(-1,y轴相交于负半轴.给出四个结论: ① abc<0; ②a+c=1; ③ 2a+b>0; ④b 2-4ac>0. 其中结论正确的个数为( ) A .4 B .3 C .2 D .110. 如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④CO CE CD ⋅=2.其中正确结论的序号是 。
浙江省宁波市鄞州区2014年初中毕业学业模拟考试 数学 扫描版
鄞州区2014年初中毕业生学业考试模拟考数学参考答案一:选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1 2 3 4 5 6 7 8 9 10 11 12 DABCBADCBCDD二:填空题(每小题4分,共24分)1314 15 16171856x -106345(27256964,) 注: 1. 阅卷时应按步计分,每步只设整分;2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分. 19. 解:原式2354231--++=…………………… 5分 0=……………………6分 20. 解:(1)……………………3分如上图,两辆汽车经过该十字路口共有9种可能的行驶方向,…………………… 4分 都直行的可能性只有1种,…………………… 5分 (2)由(1)得两辆汽车都直行P =91.……………………8分 21.解:(1)在矩形BCDF 中,BD=FC BF=DC ∠FDC=90°……………………1分∴FC 为⊙O 的直径 ∴∠FEC=∠FDC=90°,即FE ⊥AC ,……………………2分 ∵E 是AC 的中点, ∴AF=FC ,……………………3分 ∴BD=AF ;……………………4分 (2)∵BD=5342222=+=+DC BC =AF ,BF=DC=3,∴AB=AF+BF=5+3=8,……………………6分 ∴tan ∠BAC=2184==AB BC .……………………8分 22.解:(1)设甲商品购进x 件,则乙商品购进(100﹣x )件,由题意,得第二辆第一辆右转直行左转右转直行左转左转直行右转直行右转左转y=(20﹣15)x+(45﹣35)(100﹣x )=﹣5x+1000,故y 与x 之间的函数关系式为:y=﹣5x+1000;………………………………………5分 (2)由题意,得15x+35(100﹣x )≤3000,解之,得x≥25.…………………………………………………………………………7分 ∵y=﹣5x+1000,k=﹣5<0, ∴y 随x 的增大而减小,∴当x 取最小值25时,y 最大值,此时y=﹣5×25+1000=875(元), ……………9分 ∴至少要购进25件甲种商品;若售完这些商品,商家可获得的最大利润是875元.………………………………………………………………………………10分23.解:(1)作DF⊥x 轴于点F .在y=﹣3x+3中,令x=0,解得:y=3,即B 的坐标是(0,3).……………………1分 令y=0,解得:x=1,即A 的坐标是(1,0).……………………2分 则OB=3,OA=1. ∵∠BAD=90°,∴∠BAO+∠DAF=90°, 又∵直角△ABO 中,∠BAO+∠OBA=90°, ∴∠DAF=∠OBA,……………………3分 ∵在△OAB 和△FDA 中,DAF OBA BOA AFD AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OAB≌△FDA(AAS ),………………………………4分∴AF=OB =3,DF=OA =1, ∴OF=4 ∴ D 的坐标是(4,1)………5分 将D 的坐标是(4,1)代入y=得:k=4;………………………………6分 (2)作CE⊥y 轴于点E ,交反比例函数图像于点G . 与(1)同理可证,△OAB≌△EBC,∴OB=EC=3, OA=BE=1,则可得OE=4,C 的坐标是(3,4)……………………8分, 则C 的纵坐标是4,把y=4代入y=得:x=1.即G 的坐标是(1,4),……………9分 ∴CG=2.即m=2.………………………………………………………………10分 24.解:(1)02153612=-+-x x ,解得)(315舍去或==x x ,……………………2分 15-6=9,∴该球落地时与球网的水平距离为9米;……………………4分 (2)当5=x 时,2510951012=⨯+⨯-=y ,则E 点坐标为(5,2)………6分由题意得A 点坐标为(6,1.5), ……………………7分 , 则……………………9分解得⎩⎨⎧-==5.105c b ……………………10分25.解:(1)(0,1)τ=(2,2)-; ……………………… 4分(2)a =1-,b =12; ……………………………………… 8分(3) ∵点(,)P x y 经过变换τ得到的对应点(,)P x y '''与点P 重合, ∴(,)(,)τ=x y x y . ∵点(,)P x y 在直线2y x =上,∴(,2)(,2)τ=x x x x . ∴2,22.x ax bx x ax bx =+=-⎧⎨⎩ ……………………………………… 10分即(12)0,(22)0.a b x a b x --=-+=⎧⎨⎩∵x 为任意的实数,∴120,220.a b a b --=-+=⎧⎨⎩ 解得3,21.4a b ==-⎧⎪⎪⎨⎪⎪⎩……………………………………… 12分 26. 解:(1)BC=5342222=+=+AC AB ,∵DG ∥BC ,D 是AB 的中点, ∴G 是AC 的中点, ∴DG=21BC=25, 设PN=PG=x , ∵PF ∥AC ,∴△DPN ∽△DGA ,…………………………………… 1分 ∴DGDPAG NP =, ∴252523xx -=,解得1615=x , ∴PG=1615;…………………………………… 3分(2)四边形EFMN 是菱形,理由如下:………… 4分 连结MN 、NE 、FM , ∵DG ∥BC ,PF ∥AC ,PE ∥AB ,2213662215522b c b c ⎧-⨯++=⎪⎪⎨⎪-⨯++=⎪⎩∴四边形ANPM 、DBEP 、PFCG 都是平行四边形, ∴□ANPM 、□DBEP 、□PFCG 两两等高. ∵PFCG DBEP ANPM S S S 四边形四边形四边形==, ∴EP=PM ,PF=PN ,∴四边形EFMN 是平行四边形. ……………… 6分 ∵在□ANPM 中,∠BAC=90°, ∴□ANPM 是矩形, ∴∠MPN=90°,即EM ⊥FN∴平行四边形EFMN 是菱形;……………………… 7分 (3)∵四边形EFMN 是平行四边形, ∴MN ∥BC. ∵DG ∥BC , ∴MN ∥DG.∵四边形ANPM 、PGMN 、PFCG 都是平行四边形, ∴PN=AM ,PN=GM 、PF=GC. ∵PF=PN , ∴AM=MG=GC=1. 同理AN=ND=DB=34,……………………… 9分 ∴M(0,1),N(34,0);…………………… 11分 (4)⊙P 与AB 、BC 都相切,理由如下: ∵四边形ANPM 是菱形,∠BAC 是直角, 则四边形ANPM 是正方形 ∴PM=PN ,∠PNA=90°,∴AB 是⊙P 的切线. …………………… 12分 连结PC ,作PQ ⊥BC 垂足Q , ∵四边形PFCG 是菱形,∴CP 平分∠FCG . ………………………… 13分 ∵PM ⊥AC ,PQ ⊥BC , ∴PM=PQ ,∴BC 是⊙P 的切线. ……………………… 14分x。
浙江省宁波市2014年中考数学试题(word版,含答案)
宁波市2014年初中毕业生学业考试数 学 试 题满分150分,考试时间为120分钟一、选择题(每小题4分,共48分)1. 下列各数中,既不是正数也不是负数的是A. 0B. -1C. 3D. 22. 宁波轨道交通1号线、2号线建设总投资253.7亿元,其中253.7亿用科学计数法表示为A. 253.7×108B. 25.37×109C. 2.537×1010D. 2.537×10113. 用矩形纸片折出直角的平分线,下列折法正确的是4. 杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是A. 19.7千克B. 19.9千克C. 20.1千克D. 20.3千克5. 圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是A. π6B. π8C. π12D. π166. 菱形的两条对角线长分别是6和8,则此菱形的边长是 A. 10 B. 8 C. 6 D. 57. 如图,在2×2的正方形网格中有9个格点,已经取定点A 和B ,在余下的7个点中任取一点C ,使△ABC 为直角三角形的概率是 A. 21 B. 52 C. 73 D. 74 8. 如图,梯形ABCD 中AD ∥BC ,∠B=∠ACD=90°,AB=2,DC=3,则△ABC 与△DCA 的面积比为A. 2:3B. 2:5C. 4:9D.3:2 9. 已知命题“关于x 的一元二次方程012=++bx x ,当0<b 时必有实数解”,能说明这个命题是假命题的一个反例是A. 1-=bB. 2=bC. 2-=bD. 0=b10. 如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥。
如图是一个四棱柱和一个六棱锥,它们各有12条棱,下列棱柱中和九棱锥的棱数相等的是A. 五棱柱B. 六棱柱C. 七棱柱D. 八棱柱11. 如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH 的长是A. 2.5B. 5C. 223 D. 2A. (-3,7)B. (-1,7)C. (-4,10)D. (0,10)二、填空题(每小题4分,共24分)13. -4的绝对值是14. 方程xx x -=-212的根是x = ▲ 15. 某冷饮店一天售出各种口味雪糕数量的扇形统计图如图所示,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是 ▲ 支16. 一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中,未被小正方形覆盖部分的面积是 ▲ (用a ,b 的代数式表示)17. 为解决停车难得问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出 ▲ 个这样的停车位(4.12≈)18. 如图,半径为6cm 的⊙O 中,C ,D 为直径AB 的三等分点,点E ,F 分别在AB 两侧的半圆上,∠BCE=∠BDF=60°,连结AE ,BF ,则图中两个阴影部分的面积为 ▲ cm 2三、解答题(本题有8小题,共78分)19.(本题6分)(1)化简:ab b a b a b a 2))(()(2-+-++;(2)解不等式:3)1(2)2(5>+--x x20.(本题8分)作为宁波市政府民生实事之一的公共自行车建设工程已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车辆的统计,结果如下:(1)求这7天租车辆的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次?(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%)21.(本题8分)如图,从A 地到B 地的公路需要经过C 地,图中AC=10千米,∠CAB=25°,∠CBA=37°。