最大公因数和最小公倍数练习题专项练习讲解学习
(完整版)最小公倍数和最大公因数的应用题归纳

最小公倍数与最大公因数典型的应用题汇总一、解题技巧:最大公因数解题技巧:通常从问题入手,所求的数量处于小数(即处于除数、商、因数)的地位时,因为小数(即处于除数、商、因数)是大数(即处于被除数、被除数、积)的因数,此时,所求的数量就处于因数的地位。
如果出现相同的(公有的)/最长的所求数量,即求他们的公因数/最大公因数的应用题。
最小公倍数解题技巧:通常从问题入手,所求的数量处于大数(即处于被除数、被除数、积)的地位时,因为大数(即处于被除数、被除数、积)是小数(即处于除数、商、因数)的倍数,此时,所求的数量应处于倍数的地位。
如果出现相同的(公有的)/最小的所求数量,即求他们的公倍数/最小公倍数的应用题。
补充部分公式小长方形个数=(大正方形边长÷小长方形长)×(大正方形边长÷小长方形的宽)小正方形个数=(大长方形的长÷小正方形边长)×(大长方形的宽÷小正方形边长)小长方体个数=(大正方体边长÷小长方体长)×(大正方体边长÷小长方体的宽)×(大正方体边长÷小长方体高)小正方体个数=(大长方体边长÷小正方体边长)×(大长方体的宽÷小正方体边长)×(大长方体的高÷小正方体边长)剩余定理余数相同时,总数(被除数)=最小公倍数+余数缺数相同时,总数(被除数)=最小公倍数-缺数植树问题公式不封闭型:2、只有一端都栽1、两端都栽间隔个数=株数间隔个数=株数-1株数=间隔个数+1 株数=间隔个数距离=一个间隔的长度×间隔个数距离=一个间隔的长度×间隔个数3、两端都不栽间隔个数=株数+1株数=间隔个数-1封闭型:间隔个数=株数株数=间隔个数距离=一个间隔的长度×间隔个数封闭型再正方形边上栽,并且4个顶点都栽:株数=(每边株数-1)×4备注:上下多少层楼以及锯段数及敲钟问题等实际运用实质上是两端都栽树的植树问题,这类题通常先求一层/一段需要多少时间,再乘以段数即可二、经典题目1、一个大长方形长24厘米,宽18厘米,把它裁成若干个小正方形而没有剩余,如小正方形的边长最长,边长是多少厘米?最多能裁成多少个小正方形?2、一个长方形的长6厘米,宽4厘米,至少要多少个这样的小长方形才能拼成一个大的正方形?此时,大的正方形的边长是多少厘米?3、一个大长方体长24厘米,宽18厘米,高12厘米,把它裁成若干个小正方体而没有剩余,如小正方体的边长最长,正方体的棱长是多少厘米?最多能裁成多少个小正方体?4、一个长方体的长6厘米,宽4厘米,高2厘米。
最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米一共可以截成多少段分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米能截多少个正方形分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束每个花束里至少要有几朵花分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
五年级最大公因数和最小公倍数专项练习(有答案)

五年级最大公因数和最小公倍数专项练习(有答案)一. 填空题。
1. a b和的最大公因数是(),最小公倍数是()。
和都是自然数,如果a b÷=10,a b2. 甲=⨯⨯237,甲和乙的最大公因数是()×()=(),235,乙=⨯⨯甲和乙的最小公倍数是()×()×()×()=()。
3. 所有自然数的公因数为()。
4. 如果m和n是互质数,那么它们的最大公因数是(),最小公倍数是()。
5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6. 用一个数去除15和30,正好都能整除,这个数最大是()。
子*7. 两个连续自然数的和是21,这两个数的最大公因数是(),最小公倍数是()。
*8. 两个相邻奇数的和是16,它们的最大公因数是(),最小公倍数是()。
**9. 某数除以3、5、7时都余1,这个数最小是()。
10. 根据下面的要求写出互质的两个数。
(1)两个质数()和()。
(2)连续两个自然数()和()。
(3)1和任何自然数()和()。
(4)两个合数()和()。
(5)奇数和奇数()和()。
(6)奇数和偶数()和()。
二. 判断题。
1. 互质的两个数必定都是质数。
()2. 两个不同的奇数一定是互质数。
()3. 最小的质数是所有偶数的最大公约数。
()4. 有公约数1的两个数,一定是互质数。
()5. a是质数,b也是质数,a b m⨯=,m一定是质数。
()三. 直接说出每组数的最大公约数和最小公倍数。
26和13()13和6()4和6()5和9()29和87()30和15()13、26和52()2、3和7()四. 求下面每组数的最大公因数和最小公倍数。
(三个数的只求最小公倍数)45和6036和60 27和7276和8042、105和5624、36和48五. 动脑筋,想一想:1、学校买来40支圆珠笔和50本练习本,平均奖给四年级三好学生,结果圆珠笔多4支,练习本多2本,四年级有多少名三好学生,他们各得到什么奖品?2、小军每4天去一次少年宫,小华每6天去一次少年宫。
最大公因数和最小公倍数计算练习

最大公因数和最小公倍数练习
一、用短除法求几个数的最大公因数
12和30 24和3639和78 72和84 36和60 45和60 45和75 45和60
42、105和56 24、36和48
二、用短除法求几个数的最小公倍数
25和30 24和30 39和78 60和84
18和20 126和60 45和75 12和24
12和14 45和60 76和80 36和60
27和72 42、105和56 24、36和48
三、用短除法求几个数的最大公因数与最小公倍数。
45和60 36和60 27和72 76和80
四、填空
15和5的最大公因数是最小公倍数是;9和3的最大公因数是最小公倍数是
9和18的最大公因数是最小公倍数是;11和44的最大公因数是最小公倍数是
30和60 的最大公因数是最小公倍数是;13和91 的最大公因数是
最小公倍数是
7和12的最大公因数是最小公倍数是;8和11的最大公因数是最小公倍数是
1和9的最大公因数是最小公倍数是;8和10的最大公因数是最小公倍数是
6和9的最大公因数是最小公倍数是;8和6的最大公因数是最小公倍数是
10和15的最大公因数是最小公倍数是;4和6的最大公因数是最小公倍数是
26和13的最大公因数是最小公倍数是13和6的最大公因数是最小公倍数是
4和6的最大公因数是最小公倍数是;5和9的最大公因数是最小公倍数是
29和87的最大公因数是最小公倍数是;
30和15的最大公因数是最小公倍数是
13、26和52的最大公因数是最小公倍数是
2、3和7的最大公因数是最小公倍数是
16、32和64的最大公因数是最小公倍数是
7、9和11的最大公因数是最小公倍数是。
最大公因数与最小公倍数练习题(解题方法)

最大公因数与最小公倍数练习题(解题方法)引言最大公因数和最小公倍数是数学中常见的概念,在解题过程中需要掌握它们的计算方法。
本文将给出一些练题,并提供解题方法。
练题1. 求下列两个数的最大公因数和最小公倍数:a) 12和18b) 24和36c) 15和252. 求下列两个数的最大公因数和最小公倍数:a) 42和56b) 60和84c) 72和1083. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48b) 54和72c) 90和120解题方法1. 方法一:列举法首先,列举出两个数的所有因数,然后找出它们的共同因数,最大公因数即为共同因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
2. 方法二:因数分解法先将两个数进行因数分解,然后找出它们的所有公因数,最大公因数即为公因数中的最大值,最小公倍数即为两个数的乘积除以最大公因数。
答案1. 求下列两个数的最大公因数和最小公倍数:a) 12和18- 最大公因数:6- 最小公倍数:36b) 24和36- 最大公因数:12- 最小公倍数:72c) 15和25- 最大公因数:5- 最小公倍数:752. 求下列两个数的最大公因数和最小公倍数:a) 42和56- 最大公因数:14- 最小公倍数:168b) 60和84- 最大公因数:12- 最小公倍数:420c) 72和108- 最大公因数:36- 最小公倍数:2163. 通过因数分解法求解下列两个数的最大公因数和最小公倍数:a) 36和48- 最大公因数:12- 最小公倍数:144b) 54和72- 最大公因数:18- 最小公倍数:216c) 90和120- 最大公因数:30- 最小公倍数:360结论通过练题中的解题方法,我们可以求出两个数的最大公因数和最小公倍数。
这些概念在数学中具有重要的作用,并在实际问题中起到指导作用。
五年级公因数和公倍数的题120道

五年级公因数和公倍数的题120道一、公因数相关题目(60道,先20道带解析)1. 求12和18的最大公因数。
- 解析:分别列出12和18的因数。
12的因数有1、2、3、4、6、12;18的因数有1、2、3、6、9、18。
它们共有的因数有1、2、3、6,其中最大的是6,所以12和18的最大公因数是6。
2. 求24和36的最大公因数。
- 解析:24的因数有1、2、3、4、6、8、12、24;36的因数有1、2、3、4、6、9、12、18、36。
共有的因数为1、2、3、4、6、12,最大公因数是12。
3. 求15和25的最大公因数。
- 解析:15的因数是1、3、5、15,25的因数是1、5、25。
它们的公因数有1和5,最大公因数是5。
4. 求8和12的最大公因数。
- 解析:8的因数有1、2、4、8,12的因数有1、2、3、4、6、12。
共有的因数为1、2、4,最大公因数是4。
5. 求20和30的最大公因数。
- 解析:20的因数有1、2、4、5、10、20,30的因数有1、2、3、5、6、10、15、30。
公因数有1、2、5、10,最大公因数是10。
6. 求16和24的最大公因数。
- 解析:16的因数有1、2、4、8、16,24的因数有1、2、3、4、6、8、12、24。
共有的因数为1、2、4、8,最大公因数是8。
7. 求9和15的最大公因数。
- 解析:9的因数有1、3、9,15的因数有1、3、5、15。
公因数为1和3,最大公因数是3。
8. 求14和21的最大公因数。
- 解析:14的因数有1、2、7、14,21的因数有1、3、7、21。
共有的因数为1、7,最大公因数是7。
9. 求28和42的最大公因数。
- 解析:28的因数有1、2、4、7、14、28,42的因数有1、2、3、6、7、14、21、42。
公因数有1、2、7、14,最大公因数是14。
10. 求10和15的最大公因数。
- 解析:10的因数有1、2、5、10,15的因数有1、3、5、15。
五年级数学最大公因数,最小公倍数练习题(含提高)

五年级数学最大公因数,最小公倍数练习题(含提高)定义:最大公约数:最大公约数.也称最大公因数.最大公因子.指两个或多个整数共有约数中最大的一个·a.b的最大公约数记为(a.b).同样的.a.b.c的最大公约数记为(a.b.c).多个整数的最大公约数也有同样的记号·求最大公约数有多种方法.常见的有质因数分解法.短除法.辗转相除法.更相减损法·与最大公约数相对应的概念是最小公倍数.a.b的最小公倍数记为[a.b]·质因数分解法:把每个数分别分解质因数.再把各数中的全部公有质因数提取出来连乘.所得的积就是这几个数的最大公约数·例如:求24和60的最大公约数.先分解质因数.得24=2×2×2×3.60=2×2×3×5.24与60的全部公有的质因数是2.2.3.它们的积是2×2×3=12.所以.(24.60)=12·把几个数先分别分解质因数.再把各数中的全部公有的质因数和独有的质因数提取出来连乘.所得的积就是这几个数的最小公倍数·例如:求6和15的最小公倍数·先分解质因数.得6=2×3.15=3×5.6和15的全部公有的质因数是3.6独有质因数是2.15独有的质因数是5.2×3×5=30.30里面包含6的全部质因数2和3.还包含了15的全部质因数3和5.且30是6和15的公倍数中最小的一个.所以[6.15]=30·短除法:短除法求最大公约数.先用这几个数的公约数连续去除.一直除到所有的商互质为止.然后把所有的除数连乘起来.所得的积就是这几个数的最大公约数·短除法求最小公倍数.先用这几个数的公约数去除每个数.再用部分数的公约数去除.并把不能整除的数移下来.一直除到所有的商中每两个数都是互质的为止.然后把所有的除数和商连乘起来.所得的积就是这几个数的最小公倍数.例如.求12.15.18的最小公倍数·[1]短除法的格式短除法的本质就是质因数分解法.只是将质因数分解用短除符号来进行·短除符号就是除号倒过来·短除就是在除法中写除数的地方写两个数共有的质因数.然后落下两个数被公有质因数整除的商.之后再除.以此类推.直到结果互质为止(两个数互质)·而在用短除计算多个数时.对其中任意两个数存在的因数都要算出.其它没有这个因数的数则原样落下·直到剩下每两个都是互质关系·求最大公因数便乘一边.求最小公倍数便乘一圈·无论是短除法.还是分解质因数法.在质因数较大时.都会觉得困难·这时就需要用新的方法·辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法.也叫欧几里德算法·这就是辗转相除法的原理·辗转相除法的格式例如.求(319.377):∵ 319÷377=0(余319)∴(319.377)=(377.319);∵ 377÷319=1(余58)∴(377.319)=(319.58);∵ 319÷58=5(余29).∴(319.58)=(58.29);∵ 58÷29=2(余0).∴(58.29)= 29;∴(319.377)=29.可以写成右边的格式·用辗转相除法求几个数的最大公约数.可以先求出其中任意两个数的最大公约数.再求这个最大公约数与第三个数的最大公约数.依次求下去.直到最后一个数为止·最后所得的那个最大公约数.就是所有这些数的最大公约数·更相减损法:也叫更相减损术.是出自《九章算术》的一种求最大公约数的算法.它原本是为约分而设计的.但它适用于任何需要求最大公约数的场合·《九章算术》是中国古代的数学专著.其中的“更相减损术”可以用来求两个数的最大公约数.即“可半者半之.不可半者.副置分母.子之数.以少减多.更相减损.求其等也·以等数约之·”翻译成现代语言如下:第一步:任意给定两个正整数;判断它们是否都是偶数·若是.则用2约简;若不是则执行第二步·第二步:以较大的数减较小的数.接着把所得的差与较小的数比较.并以大数减小数·继续这个操作.直到所得的减数和差相等为止·则第一步中约掉的若干个2与第二步中等数的乘积就是所求的最大公约数·其中所说的“等数”.就是最大公约数·求“等数”的办法是“更相减损”法·所以更相减损法也叫等值算法·例1.用更相减损术求98与63的最大公约数·解:由于63不是偶数.把98和63以大数减小数.并辗转相减:98-63=3563-35=2835-28=728-7=2121-7=1414-7=7所以.98和63的最大公约数等于7·这个过程可以简单的写为:(98.63)=(35.63)=(35.28)=(7.28)=(7.21)=(7.14)=(7.7)=7最小公倍数:两个或多个整数公有的倍数叫做它们的公倍数·两个或多个整数的公倍数里最小的那一个叫做它们的最小公倍数·分解质因数法:先把这几个数的质因数写出来.最小公倍数等于它们所有的质因数的乘积(如果有几个质因数相同.则比较两数中哪个数有该质因数的个数较多.乘较多的次数)·比如求45和30的最小公倍数·45=3*3*530=2*3*5不同的质因数是2,3,5·3是他们两者都有的质因数.由于45有两个3.30只有一个3.所以计算最小公倍数的时候乘两个3.最小公倍数等于2*3*3*5=90又如计算36和270的最小公倍数36=2*2*3*3270=2*3*3*3*5不同的质因数是5·2这个质因数在36中比较多.为两个.所以乘两次;3这个质因数在270个比较多.为三个.所以乘三次·最小公倍数等于2*2*3*3*3*5=54020和40的最小公倍数是40[4]公式法:由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积·即(a.b)×[a.b]=a×b·所以.求两个数的最小公倍数.就可以先求出它们的最大公约数.然后用上述公式求出它们的最小公倍数·例如.求[18.20].即得[18.20]=18×20÷(18.20)=18×20÷2=180·求几个自然数的最小公倍数.可以先求出其中两个数的最小公倍数.再求这个最小公倍数与第三个数的最小公倍数.依次求下去.直到最后一个为止·最后所得的那个最小公倍数.就是所求的几个数的最小公倍数·常用结论:在解有关最大公约数.最小公倍数的问题时.常用到以下结论:(1)如果两个自然数是互质数.那么它们的最大公约数是1.最小公倍数是这两个数的乘积·例如8和9.它们是互质数.所以(8.9)=1.[8.9]=72·(2)如果两个自然数中.较大数是较小数的倍数.那么较小数就是这两个数的最大公约数.较大数就是这两个数的最小公倍数·例如18与3.18÷3=6.所以(18.3)=3.[18.3]=18·(3)两个整数分别除以它们的最大公约数.所得的商是互质数·例如8和14分别除以它们的最大公约数2.所得的商分别为4和7.那么4和7是互质数·(4)两个自然数的最大公约数与它们的最小公倍数的乘积等于这两个数的乘积·例如12和16.(12.16)=4.[12.16]=48.有4×48=12×16.即(12.16)× [12.16]=12×16·例1:两个数的最大公因数是15,最小公倍数是90,求这两个数分别是多少?15×1=15,15×6=90;当a1b1分别是2和3时,a.b分别为15×2=30,15×3=45·所以.这两个数是15和90或者30和45·例2:两个自然数的积是360,最小公倍数是120,这两个数各是多少?分析我们把这两个自然数称为甲数和乙数·因为甲.乙两数的积一定等于甲.乙两数的最大公因数与最小公倍数的积·根据这一规律.我们可以求出这两个数的最大公因数是360÷120=3·又因为(甲÷3=a,乙÷3=b)中,3×a×b=120,a和b一定是互质数.所以,a和b可以是1和40,也可以是5和8·当a和b是1和40时.所求的数是3×1=3和3×40=120;当a 和b是5和8时.所求的数是3×5=15和3×8=24·分析甲跑一圈需要600÷3=200秒.乙跑一圈需要600÷4=150秒.丙跑一圈需要600÷2=300秒·要使三人再次从出发点一齐出发.经过的时间一定是200.150和300的最小公倍数·200.150和300的最小公倍数是600,所以.经过600秒后三人又同时从出发点出发·综合练习:一. 填空题·1. 都是自然数.如果.的最大公约数是().最小公倍数是()·2. 甲.乙.甲和乙的最大公约数是()×()=().甲和乙的最小公倍数是()×()×()×()=()·3. 所有自然数的公约数为()·4. 如果m和n是互质数.那么它们的最大公约数是().最小公倍数是()·5. 在4.9.10和16这四个数中.()和()是互质数.()和()是互质数.()和()是互质数·6. 用一个数去除15和30.正好都能整除.这个数最大是()·7. 两个连续自然数的和是21.这两个数的最大公约数是().最小公倍数是()·8. 两个相邻奇数的和是16.它们的最大公约数是().最小公倍数是()·9. 某数除以3.5.7时都余1.这个数最小是()·10. 根据下面的要求写出互质的两个数·(1)两个质数()和()·(2)连续两个自然数()和()·(3)1和任何自然数()和()·(4)两个合数()和()·(5)奇数和奇数()和()·(6)奇数和偶数()和()·11.两个数的最大公因数是6.最小公倍数是144.这两个数的和是()·12.有一个数.同时能被9,10,15整除.满足条件的最大三位数是()·13.筐里装满了鸡蛋.已知这筐鸡蛋两个两个数多一个.五个五个数仍多一个.那么这筐鸡蛋至少有()个·14.有336个苹果.252个橘子.210个梨.用这些果品最多可分成若干份同样的礼物.这时在每份礼物中.三种水果各有()·15.有96多红花和72朵白花扎成花束.如果每个花束里红花的朵数相同.白花的朵数也相同.每个花束至少有()朵花·二. 判断题·1. 互质的两个数必定都是质数·()2. 两个不同的奇数一定是互质数·()3. 最小的质数是所有偶数的最大公约数·()4. 有公约数1的两个数.一定是互质数·()5. a是质数.b也是质数..一定是质数·()三. 直接说出每组数的最大公约数和最小公倍数·26和13() 13和6()4和6() 5和9()29和87() 30和15()13.26和52 () 2.3和7()四.求下面每组数的最大公约数和最小公倍数·(三个数的只求最小公倍数)45和60 36和6027和72 76和8042.105和56 24.36和48五.解答题·1.把一张长120厘米.宽80厘米的长方形的纸裁成正方形.不允许剩余.至少能裁多少张?2.已知两个自然数的最大公因数是12.(1)最小公倍数是72.求这两个数的积(2)满足已知条件的自然数有哪几组?3.一筐梨.按每份2个梨分多一个.每份3个梨多两个.每份5个梨多四个.问筐里至少有多少个梨?4.甲乙丙三人环绕操场步行一周.甲要三分钟.乙要四分钟.丙要六分钟.三人同时同地同向出发.当他们三人第一次相遇时.甲乙丙三人分别绕了多少周?5.某港口停着四艘轮船.一天他们同时开出港口.已知甲船每隔两星期回港一次.乙船每隔四星期回港一次.丙船每隔六星期回港一次.丁船八星期回港一次.至少经过几星期后.这四只轮船再次在港口重新会合?6、有一个自然数.被6除余1.被5除余1.被4除余1.这个自然数最小是几?7、一盒钢笔可以平均分给2.3.4.5.6个同学.这盒钢笔最小有多少枝?8、用96朵红花和72朵白花做成花束.如果各花束里红花的朵数相同.白花的朵数也相同.每束花里最少有几朵花?9、从小明家到学校原来每隔50米安装一根电线杆.加上两端的两根一共是55根电线杆.现在改成每隔60米安装一根电线杆.除两端的两根不用移动外.中途还有多少根不必移动?10.每筐梨.按每份两个梨分多1个.每份3个梨分多2个.每份5个梨分4个.则筐里至少有多少个梨?11.学校买来40支圆珠笔和50本练习本.平均奖给四年级三好学生.结果圆珠笔多4支.练习本多2本.四年级有多少名三好学生.他们各得到什么奖品?12.小明.小红.小王一起分17个苹果.小明分得其中的二分之一.小红分得其中的三分之一.小王分得其中的九分之一.问他们每个人分别分得几个苹果?。
最大公因数和最小公倍数应用的典型例题和专题练习

最大公因数和最小公倍数应用的典型例题和专题练习[典型例题]例1、有三根铁丝,一根长18米,一根长24米,一根长30米。
现在要把它们截成同样长的小段。
每段最长可以有几米?一共可以截成多少段?分析与解:截成的小段一定是18、24、30的最大公因数。
先求这三个数的最大公因数,再求一共可以截成多少段。
解答:(18、24、30)=6(18+24+30)÷6=12段答:每段最长可以有6米,一共可以截成12段。
例2、一张长方形纸,长60厘米,宽36厘米,要把它截成同样大小的长方形,并使它们的面积尽可能大,截完后又正好没有剩余,正方形的边长可以是多少厘米?能截多少个正方形?分析与解:要使截成的正方形面积尽可能大,也就是说,正方形的边长要尽可能大,截完后又正好没有剩余,这样正方形边长一定是60和36的最大公因数。
解答:(36、60)=12(60÷12)×(36÷12)=15个答:正方形的边长可以是12厘米,能截15个正方形。
例3、用96朵红玫瑰花和72朵白玫瑰花做花束。
若每个花束里的红玫瑰花的朵数相同,白玫瑰花的朵数也相同,最多可以做多少个花束?每个花束里至少要有几朵花?分析与解:要把96朵红玫瑰花和72朵白玫瑰花做成花束,每束花里的红白花朵数同样多,那么做成花束的个数一定是96和72的公因数,又要求花束的个数要最多,所以花束的个数应是96和72的最大公因数。
解答:(1)最多可以做多少个花束(96、72)=24(2)每个花束里有几朵红玫瑰花96÷24=4朵(3)每个花束里有几朵白玫瑰花72÷24=3朵(4)每个花束里最少有几朵花4+3=7朵例4、公共汽车站有三路汽车通往不同的地方。
第一路车每隔5分钟发车一次,第二路车每隔10分钟发车一次,第三路车每隔6分钟发车一次。
三路汽车在同一时间发车以后,最少过多少分钟再同时发车?分析与解:这个时间一定是5的倍数、10的倍数、6的倍数,也就是说是5、10和6的公倍数,“最少多少时间”,那么,一定是5、10、6的最小公倍数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最大公因数和最小公倍数练习题专项练习
最大公因数和最小公倍数练习题 姓名: 成绩
一. 填空题。
1. A 与B 的最小公倍数是10,那么它们的下一个公倍数应该是( )。
2、 所有自然数的公因数为( )。
3、a b 和都是自然数,如果a b ÷=10,a b 和的最大公因数是( ),最小公倍数是( )。
4. 如果m 和n 是互质数,那么它们的最大公因数是( ),最小公倍数是( )。
5. 在
4、9、10和16这四个数中,( )和( )是互质数,( )和( )是互质数,( )和( )是互质数。
6. 分母是15的最简真分数一共有( )个。
三. 在左边写出每组数的最大公约数,右边写最小公倍数。
( )26和13( ) ( )13和6( ) ( )4和6( ) ( )5和9( ) ( )29和87( ) ( )30和15( ) ( )13、26和52( )
( )2、3和7( )
四. 用短除法求下面每组数的最大公因数和最小公倍数。
(注意格式完整)
45和60
36和60 27和72
72和80
五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关) 1、五年级同学参加植树活动,如果8人一组
或14人一组,正好分配完,五年级最少有多少人?
2、五年级某班学生在40—50人间,如果分
成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?
3、两条钢条,一根长18米,一根长24米,
要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?
4、7路车每5分钟发一班车,12路车每8分
钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?
5、有饼干27千克、糖18千克,这些物品都
刚好能平均分给一些小朋友,最多可以分给几个小朋友?
6、两个连续自然数的和是21,这两个数的最大公因数是( ),最小公倍数是( )。
*六. 动脑筋,想一想:
*1某数除以3、5、7时都余1,这个数最小是( )。
*2)甲=⨯⨯235,乙=⨯⨯237,甲和乙的最大公因数是( ),甲和乙的最小公倍数是( )
*3)学校买40支钢笔和50本练习本,平均奖给四年级三好学生,结果钢笔多4支,练习本多2本,三好学生有几人
五、生活中的应用(注意分清楚是与最大公因数有关还是与最小公倍数有关) 6、五年级同学参加植树活动,如果8人一组
或14人一组,正好分配完,五年级最少有多少人?
7、五年级某班学生在40—50人间,如果分
成2人一组、5人一组、4人一组都恰好分完,这个班有多少人?
8、两条钢条,一根长18米,一根长24米,
要把它们截成同样长的小段,每段最长可以有几米?一共截成多少段?
9、7路车每5分钟发一班车,12路车每8分
钟发,这两路车同时出发后,至少再经过多少分钟后又同时发车?
10、 有饼干27千克、糖18千克,这些物
品都刚好能平均分给一些小朋友,最多可以分给几个小朋友?
6、两个连续自然数的和是21,这两个数的最大公因数是( ),最小公倍数是( )。
*六. 动脑筋,想一想:
*1某数除以3、5、7时都余1,这个数最小是( )。
*2)甲=⨯⨯235,乙=⨯⨯237,甲和乙的最大公因数是( ),甲和乙的最小公倍数是( ) *3)学校买40支钢笔和50本练习本,平均奖给四年级三好学生,结果钢笔多4支,练习本多2本,三好学生有几人?
最大公因数和最小公倍数练习题 姓名: 成绩
一. 填空题。
1. A 与B 的最小公倍数是10,那么它们的下一个公倍数应该是( )。
2、 所有自然数的公因数为( )。
3、a b 和都是自然数,如果a b ÷=10,a b 和的最大公因数是( ),最小公倍数是( )。
4. 如果m 和n 是互质数,那么它们的最大公因数是( ),最小公倍数是( )。
5. 在4、9、10和16这四个数中,()和()是互质数,()和()是互质数,()和()是互质数。
6. 分母是15的最简真分数一共有( )个。
三. 在左边写出每组数的最大公约数,右边写最小公倍数。
()26和13()()13和6()()4和6()
()5和9()()29和87()()30和15()
()13、26和52()()2、3和7()
四. 用短除法求下面每组数的最大公因数和最小公倍数。
(注意格式完整)
45和60 36和60 27和72 72和80。