中考数学材料阅读题专题练习(2020年整理).pdf

合集下载

中考数学材料阅读题专题练习(2020年整理).pptx

中考数学材料阅读题专题练习(2020年整理).pptx
典型例题:
阅读理解(二)(24题)
例 1、进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数 目称为基数,基数为 n,即可称 n 进制.现在最常用的是十进制,通常使用 10 个阿拉伯数
字 0~9 进行记数,特点是逢十进一.对于任意一个用n n 10 进制表示的数,通常使用n 个
a b 2 m2 2n2 2mn 2 .
∴ a m2 2n2 , b 2mn .这样小明就找到了一种把类似a b 2 的式子化为平方式的
方法. 请你仿照小明的方法探索并解决下列问题:
若有 5 个连续整数:102+112+316252+132+142=2;
若有 7 个连续整数:212+222+232+2204320+252+262+272 =2; … 由此获得启发,若存在 n(7<n<11)个连续正整数也满足上述规律,求这n 个数.
例5、观察下列等式: 12×231=132×21 , 14×451=154×41, 32×253=352×23, 34×473=374×43 ,45×594=495×54,…… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字 之 间具有相同规律,我们称这类等式为“数字对称等式”.
例 3、如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大
1,那么我们把这样的自然数叫做“妙数”.例如:321, 6543 , 98数的153 倍,则这个“妙数”为;
2
证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果
1 根据上述各式反映的规律填空,使式子成为“数字对称等式”:

2022年九年级数学中考冲刺(材料阅读)专题复习

2022年九年级数学中考冲刺(材料阅读)专题复习

之和的和记为 PM ,A 的各个数位数字之和与 B 的各个数位数字之和的差的绝对值记为 QM .令
GM
= PM QM
,当 GM
能被 4 整除时,求出所有满足条件的 M .
2. 2020 重庆 在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数.现 在我们利用整数的除法运算来研究一种数——“差一数”. 定义:对于一个自然数,如果这个数除以 5 余数为 4,且除以 3 余数为 2,则称这个数为“差一数”. 例如:14 ÷ 5 = 2 ⋯⋯ 4,14 ÷ 3 = 4 ⋯⋯ 2,所以 14 是“差一数”; 19 ÷ 5 = 3 ⋯⋯ 4,但 19 ÷ 3 = 6 ⋯⋯ 1,所以 19 不是“差一数”. (1) 判断 49 和 74 是否为“差一数”?请说明理由; (2) 求大于 300 且小于 400 的所有“差一数”.
n ,记
F(m)
=
m+n 111
.
例如 :m
=
153 ,因为
1
+
5
=
2
×
3 ,所以
153
是一个
“巧数”,那么 n
=
513,所以 F(153)
=
153 + 513 111
=
6.
(1) 写出最小和最大的“巧数”m,并求出对应的 F m 的值;
(2) 若 s 是“巧数”,且 s = 100x + 10y +z(1 ≤ x < y ≤ 9,1 ≤ z ≤ 9,x,y,z 均为整数 ),规定 Qs
4. 2021BZ 九下一模 一个四位正整数 m = 1000a + 100b + 10c,(1 ≤ a,b,c < 9,且 a,b,c 互 不 相 等 ),将 百位与千位对调,并将这个四位数去掉十位,这样得到的三位数 m' 称为 m 的“派生数”,并记 K (m) =

2020中考数学阅读理解题试题汇编

2020中考数学阅读理解题试题汇编

中考数学阅读理解题试题分类汇编一、选择题1、(2020最新模拟四川眉山)为确保信息安全,信息需加密传翰,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.己知某种加密规则为:明文a、b对应的密文为2a-b、2a+b.例如,明文1、2对应的密文是-3、4.当接收方收到密文是1、7时,解密得到的明文是().CA.-1,1B.1,3C.3,I D.1,l2、(2020最新模拟湖南长沙)在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a,b,c,…,z(不论大小写)依次对应1,2,3,…,26这26个自然数(见表格).当明码对应的序号x为奇数时,密码对应的序号y=x+1;2当明码对应的序号x为偶数时,密码对应的序号y=x+13.2字母a b c d e f g h i j k l m序号1字母n 2o3p4q5r6s7t8u910111213v w x y z序号14151617181920212223242526按上述规定,将明码“love”译成密码是()BA.gawq B.shxc C.sdri D.love二、填空题1、(2020最新模拟四川德阳)阅读材料:设一元二次方程ax2+bx+c=0的两根为x,x,则两根与方程系数之间有如下关系:x+x=-b,x g x=c.根121212a axx2 ⨯1一般地,从 m 个元素中选取 n 个元素组合,记作: C n5 ⨯ 4 ⨯ 3 ⨯ 2 ⨯1据该材料填空:已知 x , x 是方程 x 2 + 6 x + 3 = 0 的两实数根,则 x 2 + x 1 的值为______.10121 22、(2020 最新模拟四川巴中)先阅读下列材料,然后解答问题:从 A ,B ,C 三张卡片中选两张,有三种不同选法,抽象成数学问题就是从 3个元素中选取 2 个元素组合,记作 C 2 = 3 ⨯ 2 = 3 .3m = m (m - 1)L (m - n + 1) n (n - 1)L ⨯ 3 ⨯ 2 ⨯1例:从 7 个元素中选 5 个元素,共有 C 5 = 7 ⨯ 6 ⨯ 5 ⨯ 4 ⨯ 3 = 21 种不同的选法. 7问题:从某学习小组10 人中选取 3 人参加活动,不同的选法共有种.1203、(2020 最新模拟广东梅州)将 4 个数 a ,b ,c ,d 排成 2 行、2 列,两边各加一条竖直线记成 ab,定义 ab= ad - bc ,上述记号就叫做 2 阶行列cdcd式.若 x + 1x - 1= 6 ,则 x = __________. 1 - xx + 1答: ±2三、解答题1、(2020 最新模拟浙江临安)阅读下列题目的解题过程:已知 a 、b 、c 为的形状.解:的三边,且满足 ,试判断∴ c 2 (a 2 - b 2 ) = (a 2 + b 2 )(a 2 - b 2 ) ( B )∴ c 2 = a 2 + b 2(C )∴ ∆ABC 是直角三角形a ⋅ 2Λ (( 问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:________________;(2 ) 错 误 的 原 因 为 :_______________________________________________________;(3)本题正确的结论为:____________.解:(1)C ---2 分(2)没有考虑 a 2 - b 2 = 0 ---4 分(3) ∆ABC 是直角三角形或等腰三角形 ---6 分2、(2020 最新模拟云南双柏)阅读下列材料,并解决后面的问题.材料:一般地,n 个相同的因数 a 相乘: 14 a 43a 记为a n .如 23=8,此n 个时,3 叫做以 2 为底 8 的对数,记为 log28即log 8 = 3). 2一般地,若 a n = b (a > 0且a ≠ 1, b > 0),则 n 叫做以 a 为底 b 的对数,记为log b 即 l og b = n ). 如34 = 81 , 则 4 叫 做 以 3 为 底 81 的 对 数 , 记 为aalog 81 (即 l og 81 = 4) .3 3问题:(1)计算以下各对数的值:(3 分)log 4 =log 16 =log 64 =.222(2)观察(1)中三数 4、16、64 之间满足怎样的关系式? log之间又满足怎样的关系式?(2 分)24 、log 16 、log 642 2(3)由(2)的结果,你能归纳出一个一般性的结论吗?(2 分)log M + l og N =(a > 0且a ≠1, M > 0, N > 0)aa(4)根据幂的运算法则:a n ⋅ a m = a n +m 以及对数的含义证明上述结论.(3⋅a b=a b+b分)证明:解:(1)log24=2,log16=4,log2264=6(2)4×16=64,log24+log16=log6422(3)logaM+log N=log(MN)a a(4)证明:设logaM=b1,logaN=b2则a b1=M,a b2=N∴MN=a b1212∴b1+b2=loga(MN)即logaM+log N=log(MN)a a3、(2020最新模拟安徽芜湖)阅读以下材料,并解答以下问题.“完成一件事有两类不同的方案,在第一类方案中有m种不同的方法,在第二类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法,这是分类加法计数原理;完成一件事需要两个步骤,做第一步有m种不同的方法,做第二步有n种不同的方法.那么完成这件事共有N =m×n种不同的方法,这就是分步乘法计数原理.”如完成沿图1所示的街道从A点出发向B点行进这件事(规定必须向北走,或向东走),会有多种不同的走法,其中从A点出发到某些交叉点的走法数已在图2填出.(1)根据以上原理和图2的提示,算出从A出发到达其余交叉点的走法数,将数字填入图2的空圆中,并回答从A点出发到B点的走法共有多少种?(2)运用适当的原理和方法算出从A点出发到达B点,并禁止通过交叉点C的走法有多少种?(3)现由于交叉点C道路施工,禁止通行.求如任选一种走法,从A点出发能顺利开车到达B点(无返回)概率是多少?解:解:(1)∵完成从A点到B点必须向北走,或向东走,∴到达A点以外的任意交叉点的走法数只能是与其相邻的南边交叉点和西边交叉点的数字之和.故使用分类加法计数原理,由此算出从A点到达其余各交叉点的走法数,填表如图1,答:从A点到B点的走法共有35种.……………………………………5分(1)方法一:可先求从A点到B点,并经过交叉点C的走法数,再用从A点到B点总走法数减去它,即得从A点到B点,但不经过交叉点C 的走法数.完成从A点出发经C点到B点这件事可分两步,先从A点到C点,再从C 点到B点.使用分类加法计数原理,算出从A点到C点的走法是3种,见图2;算出从C点到B点的走法为6种,见图3,再运用分步乘法计数原理,得到从A点经C点到B点的走法有3×6=18种.∴从A点到B点但不经过C点的走法数为35-18=17种.………………………10分方法二:由于交叉点C道路施工,禁止通行,故视为相邻道路不通,可删除与C点紧相连的线段.运用分类加法计数原理,算出从A点到B点并禁止通过交叉点C的走法有17种.从A点到各交叉点的走法数见图4..∴从 A 点到 B 点并禁止经过 C 点的走法数为 35-18=17 种.………10 分(3) P (顺利开车到达 B 点)=17 . 35答:任选一种走法,顺利开车到达B 点的概率是 17 . ………………12 分354、(2020 最新模拟江苏连云港)如图 1,点 C 将线段 AB 分成两部分,如果 AC = BC ,那么称点 C 为线段 AB 的黄金分割点.ABAC某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线 l 将一个面积为 S 的图形分成两部分,这两部分的面积分别为S ,S ,如果 S 1 = S 2 ,那么称直线l 为该图形的12S S1黄金分割线.(1)研究小组猜想:在 △ A BC 中,若点 D 为 AB 边上的黄金分割点(如图 2),则直线 CD 是 △ A BC 的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点 C 任作一条直线交 AB 于点 E ,再过点 D 作直线 DF ∥CE ,交 AC 于点 F ,连接 E F (如图 3),则直线EF 也是 △ A BC 的黄金分割线.请你说明理由.(4)如图 4,点 E 是 Y ABCD 的边 AB 的黄金分割点,过点 E 作 EF ∥ AD ,交DC 于点 F ,显然直线 EF 是 Y ABCD 的黄金分割线.请你画一条 Y ABCD 的黄金分割线,使它不经过 Y ABCD 各边黄金分割点.△BDC = 2四边形AFGD+ S 又因为 S △S ADC,所以 S △ AEF△ ABCS解:(1)直线 CD 是 △ A BC 的黄金分割线.理由如下:设 △ A BC 的边 AB 上的高为 h .S △ ADC =1 2AD g h , S △BDC = 1 2 BD g h , S △ ABC = 1 2 AB g h ,所以, SADC= AD , S BD . △ ABCABS △ ADCAD······· 2 分又 因 为 点 D 为 边 AB 的 黄 金 分 割 点 , 所 以 有 AD = BD . 因 此ABADS S△S ADC = △BDC△ ABC S△ ADC.所以,直线 CD 是 △ A BC 的黄金分割线. ···· 4 分(2)因为三角形的中线将三角形分成面积相等的两部分,此时s = s = 1 s ,即1 2s s 1 ≠ 2 s s1,所以三角形的中线不可能是该三角形的黄金分割线. 6分(3)因为 DF ∥CE ,所以 △DEC 和 △FCE 的公共边 CE 上的高也相等,所以有 S△DEC =S△FCE.············· 7 分设直线 EF 与 CD 交于点 G .所以 S所以 S△ ADC= S 四边形AFGD + S △FGC△DGE = S △FGC.= S △DGE = S △ AEF, S △BDC = S 四边形BEFC .S= △BDC △ ABCS△ ADCS=四边形BEFC S△ AEF.···9分=(AB+AC)2=(5+10)2=225因此,直线EF也是△A BC的黄金分割线.··10分(4)画法不惟一,现提供两种画法;····12分画法一:如答图1,取EF的中点G,再过点G作一条直线分别交AB,DC于M,N点,则直线MN就是YABCD的黄金分割线.画法二:如答图2,在DF上取一点N,连接EN,再过点F作FM∥NE交AB于点M,连接MN,则直线MN就是Y ABCD的黄金分割线.DN FGC DN F CA E M B(第4题答图1)A E M B(第4题答图2)5、(2020最新模拟浙江衢州)请阅读下列材料:问题:如图(2),一圆柱的底面半径为5dm,BC是底面直径,求一只蚂蚁从A点出发沿圆柱表面爬行到点C的最短路线.小明设计了两条路线:路线1:侧面展开图中的先端AC.如下图(2)所示:设路线1的长度为l,则l2=AC2=AB2+AC2=52+(5π)2=25+25π211路线2:高线AB+底面直径BC.如上图(1)所示:比较两个正数的大设路线2的长度为l,则l222小,有时用它们的平方来比较更方便Θl2-l122=25+25π-225=25π2-200=25(π2-8)>0π - 4 π - 4 π - 4 ∴ l 2 > l 122∴ l1> l2所以要选择路线 2 较短.(1)小明对上述结论有些疑惑,于是他把条件改成:“圆柱的底面半径为 1dm ,高 AB 为 5dm ”继续按前面的路线进行计算.请你帮小明完成下面的计算:路线 1: l 2 1= AC 2 = ___________________;路线 2: l 22 = ( AB + AC ) 2 = __________∵ l 2 _____ l 122∴l _____ l12( 填>或<)所以应选择路线____________(填 1 或 2)较短.(2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为 r ,高为 h 时,应如何选择上面的两条路线才能使蚂蚁从点 A 出发沿圆柱表面爬行到 C 点的路线最短.解:(1) l 2 = AC 2 = AB 2 + AC 2 = 52 + π 2 = 25 + π 21l 2 = ( AB + AC )2 = (5 + 2)2 = 49 2l 2 < l122 ∴ l1< l2所以要选择路线 1 较短.(2) l 2 = AC 2 = AB 2 + AC 2 = h 2 + (π r )21l 2 = ( AB + AC )2 = (h + 2r )22Q l 2- l122 = h 2 + (π r )2 - (h + 2r )2 = r (π 2r - 4r - 4h) = r[(π 2 - 4)r - 4h ]当 r =4h时, l 2 = l 2 ;当 r >4h时, l 2 > l 2 ;当 r <4h时, l 2 < l 2 .2 122122126、(2020 最新模拟甘肃白银等 3 市)阅读下边一元二次方程求根公式的两种推导方法:方法一:教材中方法方法二:Q ∴ax a 2(+x bx 2+a c )==o , 4a 4a ac ,. ∴ a( x + b b )2 = bb 22 --44ac , Q ax 2 +bbx 2a a + c b =2o -, 44a ac 2 b ab ) b )2 = b b 24b 2-a 2-42-4ac 4 . ∴∴x (xx +++2a b )=2 ±= 4b a 2 2- 4ac , , 配方可得:ac ∴ (2ax +b )2=b 2-4ac . ∴ a( x b +22a a )2 b =2 -444a a ac 2 ∴ x + b = 当 b 2-4ac ≥0 时, 22 - 4ac 2 ± 4a , x (∴x +x +2=a b -b =b )2±±= b b b 242--a -4424ac ac .,. ∴ ( x +22a a )2 =2a 44a a 22 a . ∴ x = -bb ± b 2b -2 -4ac ac2ax +b =± b 2 - 4ac , ∴ x += b = ±2a b 2 - 4ac , . ∴ 2ax =-b ± b 2 - 4ac . 2a.+ +b c 2= o ,b 2 - 4ac , a + 2 +Q ( a 2 . Q ax 2 + bx + c = o ,∵ ax 2+bx +c =0,0,Q ax 2 + bx ∴ 4 a 2x 2 +4abx +4ac = b b 2 - 4ac ∴∴((x ++2a ))22 == 2 ∴ ( ax 2 + bx = c = o , . ∴ a , ac ∴ . -b 2± b 2 - 44ac 2 4 ∴ x +2a = ±a 4a 2 ,2a 4a 2-b ± b 2 - 4ac∴ x = -b ± b 2 - 4ac ∴ x = 2a .2a当 b 2-4ac ≥0 时, ∴ x = -b ± b 2 - 4ac请回答下列问题:(1)两种方法有什么异同?你认为哪个方法好?(2)说说你有什么感想?解:(1)都采用配方法.方法一是将二次项的系数化为 1,方法二是将二次项系数变成一个平方式.方法一较好.7、(2020 最新模拟江苏无锡)图 1 是由若干个小圆圈堆成的一个形如正 三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了 n 层.将图 1 倒置后与原图 1 拼成图 2 的形状,这样我们可以算出图 1 中所有圆圈的个数为1 + 2 + 3 + L + n = n (n + 1) .22 3 4 L0) 0) 4) 图1图2 图3 图4如果图 1 中的圆圈共有 12 层,(1)我们自上往下,在每个圆圈中都按图3 的方式填上一串连续的正整数1,,, , ,则最底层最左边这个圆圈中的数是 ;(2)我们自上往下,在每个圆圈中都按图 4 的方式填上一串连续的整数 -23 , -22 , -21,L ,求图 4 中所有圆圈中各数的绝对值之和.解:(1)67. ··················· 2 分(2)图 4 中所有圆圈中共有1 + 2 + 3 + L + 12 = 12(12 + 1) = 78 个数,2其中 23 个负数,1 个 0,54 个正数, ········· 4 分∴ 图 4 中所有圆圈中各数的绝对值之和 =| -23| + | -22 | +L + | -1| +0 + 1 + 2 + L + 54= (1+ 2 + 3 + L + 23) + (1+ 2 + 3 + L + 54) = 276 + 1485 = 1761 .···· 6 分8、(2020 最新模拟鄂尔多斯)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为 勾股四边 形,这两条相邻的边称为这个四边形的勾股边.(1 )写出你所学过的特殊四边形中是勾股四边形的两种图形的名称 _________,________;(2)如图 16(1),已知格点(小正方形的顶点)O(0, , A(3, , B(0, ,请你画出以格点为顶点, OA ,OB 为勾股边且对角线相等的勾股四边形OAMB ;yBOA图 16(1)xB M4)3)2(3)如图16(2),将△A BC绕顶点B按顺时针方向旋转60o,得到△DBE,连结AD,DC,∠DCB=30o.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.CDA B60oE图16(2)解:(1)正方形、长方形、直角梯形.(任选两个均可)2分(填正确一个得1分)(2)答案如图所示.M(3,或M(4,.(没有写出不扣分)y·······M分(根据图形给分,一个图形正确得1分)CDO A xA B60oE(3)证明:连结ECQ△ABC≌△DBE···················5分∴AC=DE,BC=BE·················6分Q∠CBE=60o∴EC=BC,∠BCE=60o···········7分Q∠DCB=30o∴∠DCE=90o∴DC2+EC2=DE2·······8分∴DC2+BC2=AC2,即四边形ABCD是勾股四边形·····9分。

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用一、单选题1.(2020·自贡)函数与的图象如图所示,则的大致图象为()A. B. C. D.2.(2020·达县)如图,直线与抛物线交于A、B两点,则的图象可能是()A. B. C. D.3.(2020·济宁)数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=154.(2020·菏泽)一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.5.(2020·德州)函数和在同一平面直角坐标系中的大致图象可能是()A. B. C. D.6.(2020·江西)在平面直角坐标系中,点O为坐标原点,抛物线与轴交于点A,与x 轴正半轴交于点B,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为()A. B. C. D.7.(2020·湘西州)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是()A. 正比例函数的解析式是B. 两个函数图象的另一交点坐标为C. 正比例函数与反比例函数都随x的增大而增大D. 当或时,8.(2020·湘潭)如图,直线经过点,当时,则x的取值范围为()A. B. C. D.9.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系10.(2020·安徽)已知一次函数的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. B. C. D.11.(2020·陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A. 2B. 3C. 4D. 6二、填空题12.(2020·南京)将一次函数的图象绕原点O逆时针旋转,所得到的图像对应的函数表达式是________.13.(2020·达县)已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是________;记直线和与x轴围成的三角形面积为,则________,的值为________.14.(2020·临沂)点和点在直线上,则m与n的大小关系是________.15.(2020·德州)在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.16.(2020·北京)在平面直角坐标系中,直线与双曲线交于A,B两点.若点A,B 的纵坐标分别为,则的值为________.三、综合题17.(2020·自贡)甲、乙两家商场平时以同样价格出售相同的商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?18.(2020·重庆A)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣3 0 3 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).19.(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)20.(2020·荆州)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.21.(2020·无锡)在平面直角坐标系中,O为坐标原点,直线交二次函数的图像于点A,,点在该二次函数的图像上,设过点(其中)且平行于轴的直线交直线于点M,交直线于点N,以线段、为邻边作矩形.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点能否落在该二次函数的图像上?若能,求出m的值;若不能,请说明理由;(2)当时,若点恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线的函数表达式.22.(2020·苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存,成本价8元/ ,售价10元/ (除了促销降价,其他时间售价保持不变). 6月9日从6月1日至今,一共售出.6月10、11日这两天以成本价促销,之后售价恢复到10元/ .6月12日补充进货,成本价8.5元/ .6月30日水果全部售完,一共获利1200元.(2)求图像中线段所在直线对应的函数表达式.23.(2020·连云港)如图,在平面直角坐标系中,反比例函数的图像经过点,点B在y轴的负半轴上,交x轴于点C,C为线段的中点.(1)________,点的坐标为________;(2)若点D为线段上的一个动点,过点D作轴,交反比例函数图像于点E,求面积的最大值.24.(2020·鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有x(元/件) 4 5 6y(件)10000 9500 9000(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.25.(2020·河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元) ,且其函数图象如图所示.(1)求和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.26.(2020·安顺)如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.27.(2020·遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB ,以AB为边在第一象限内作正方形ABCD ,直线BD交双曲线y═ (k≠0)于D、E两点,连结CE ,交x轴于点F .(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求的面积.28.(2020·泸县)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A ,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.29.(2020·广元)某网店正在热销一款电子产品,其成本为10元/件,销售中发现,该商品每天的销售量y (件)与销售单价x(元/件)之间存在如图所示的关系:(1)请求出y与x之间的函数关系式;(2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元;(3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出300元捐赠给武汉,为了保证捐款后每天剩余利润不低于450元,如何确定该款电子产品的销售单价?30.(2020·甘孜)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k ,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.31.(2020·枣庄)如图,抛物线交x轴于,两点,与y轴交于点C ,AC ,BC .M为线段OB上的一个动点,过点M作轴,交抛物线于点P ,交BC于点Q .(1)求抛物线的表达式;(2)过点P作,垂足为点N .设M点的坐标为,请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.32.(2020·潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)33.(2020·泰安)如图,已知一次函数的图象与反比例函数的图象交于点,点.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C ,点D为点C关于原点O的对称点,求的面积.34.(2020·青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?35.(2020·聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.36.(2020·聊城)如图,已知反比例函数的图象与直线相交于点,.(1)求出直线的表达式;(2)在x轴上有一点使得的面积为18,求出点P的坐标.37.(2020·济宁)在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是________,x的取值范围是________;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.38.(2020·菏泽)如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交x轴于点C,点P是x轴上的点,若的面积是,求点P的坐标.39.(2020·岳阳)如图,一次函数的图象与反比例函数(为常数且)的图象相交于,B两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求b的值.40.(2020·湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形的顶点A的坐标为.(1)求过点B的反比例函数的解析式;(2)连接,过点B作交x轴于点D,求直线的解析式.41.(2020·怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.42.(2020·常德)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.43.(2020·龙东)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)44.(2020·福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.45.(2020·北京)在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.46.(2020·安徽)在平而直角坐标系中,已知点,直线经过点A.抛物线恰好经过三点中的两点.(1)判断点B是否在直线上.并说明理由;(2)求的值;(3)平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.47.(2020·攀枝花)如图,过直线上一点作轴于点D,线段交函数的图像于点C,点C为线段的中点,点C关于直线的对称点的坐标为.(1)求k、m的值;(2)求直线与函数图像的交点坐标;(3)直接写出不等式的解集.48.(2020·河北)表格中的两组对应值满足一次函数 ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线x -1 0 y -2 1(1)求直线l 的解析式;(2)请在图上画出..直线 (不要求列表计算),并求直线 被直线l 和y 轴所截线段的长;(3)设直线 与直线l , 及 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.49.(2020·牡丹江)在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是________千米1时,B ,C 两地的路程为________千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.50.(2020·陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?答案解析部分一、单选题1.【答案】D【解析】【解答】解:∵反比函数过一三象限,∴,由二次函数开口向下可得,又二次函数的对称轴,∴,∴同号,∴,∴∴一次函数经过第一、二、三象限,故答案为D.【分析】根据反比例函数过一、三象限可确定出k的符号,根据二次函数图像的对称轴可以确定出a,b的符号,进而求解.2.【答案】B【解析】【解答】解:由题图像得中k>0,中a<0,b<0,c<0,∴b-k<0,∴函数对称轴x= <0,交x轴于负半轴,∴当时,即,移项得方程,∵直线与抛物线有两个交点,∴方程有两个不等的解,即与x轴有两个交点,根据函数对称轴交x轴负半轴且函数图像与x轴有两个交点,∴可判断B符合题意.故答案为:B【分析】根据题目所给的图像,首先判断中k>0,其次判断中a<0,b<0,c <0,再根据k、b、的符号判断中b-k<0,又a<0,c<0可判断出图像.3.【答案】A【解析】【解答】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故答案为:A.【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.4.【答案】B【解析】【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,A不符合题意;B、∵二次函数图象开口向上,对称轴在y轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B符合题意;C、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C不符合题意;D、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不符合题意.故答案为:B.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.5.【答案】D【解析】【解答】∵反比例函数和一次函数∴当时,函数在第一、三象限,一次函数经过一、二、四象限,A、B不符合题意,选项D符合题意;当时,函数在第二、四象限,一次函数经过一、二、三象限,C不符合题意,故答案为:D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.6.【答案】B【解析】【解答】解:当y=0时,,解得x1=-1,x2=3,当x=0时,y=-3,∴A(0,-3),B(3,0),对称轴为直线,经过平移,落在抛物线的对称轴上,点落在抛物线上,∴三角形向右平移1个单位,即B′的横坐标为3+1=4,当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形向上平移5个单位,此时A′(0+1,-3+5),∴A′(1,2),设直线的表达式为y=kx+b,代入A′(1,2),B′(4,5),可得解得:,故直线的表达式为,故答案为:B.【分析】先求出A、B两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解.7.【答案】D【解析】【解答】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,,将分别代入,求得,,即正比例函数,反比例函数,故A不符合题意;另一个交点与关于原点对称,即,故B不符合题意;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x 的增大而增大,故C不符合题意;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D符合题意.故答案为:D.【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A不符合题意;两个函数的两个交点关于原点对称,可判断B不符合题意,再根据正比例函数与反比例函数图像的性质,可判断C不符合题意,D符合题意,即可选出答案.8.【答案】A【解析】【解答】解:由题意将代入,可得,即,整理得,,∴,由图像可知,∴,∴,故答案为:A .【分析】将代入,可得,再将变形整理,得,求解即可.9.【答案】B【解析】【解答】解:设水面高度为注水时间为t分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故答案为:B.【分析】设水面高度为注水时间为分钟,根据题意写出h与t的函数关系式,从而可得答案.10.【答案】B【解析】【解答】∵一次函数的函数值y随x的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k= ﹥0,此选项不符合题意,故答案为:B.【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可.11.【答案】B【解析】【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故答案为:B.【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.二、填空题12.【答案】【解析】【解答】∵一次函数的解析式为,∴设与x轴、y轴的交点坐标为、,∵一次函数的图象绕原点逆时针旋转,∴旋转后得到的图象与原图象垂直,旋转后的点为、,令,代入点得,,∴旋转后一次函数解析式为.故答案为.【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;13.【答案】(-1,1);;【解析】【解答】解:联立直线与直线成方程组,,解得,∴这两条直线都交于一个固定的点,这个点的坐标是;∵直线与x轴的交点为,直线与x轴的交点为,∴,∴,故答案为:;;【分析】联立直线和成方程组,通过解方程组,即可得到交点坐标;分别表示出直线和与x轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线和与x轴围成的三角形面积为的表达式,从而可得到和,再依据分数的运算方法即可得解.14.【答案】m<n【解析】【解答】解:∵直线中,k=2>0,∴此函数y随着x的增大而增大,∵<2,∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.15.【答案】【解析】【解答】∵以原点O为位似中心,将线段OA放大为原来的2倍,得到OA',A(-2,1),∴点A的对应点A′的坐标是:(-4,2)或(4,-2).设反比例函数的解析式为( ),∴,∴反比例函数的解析式为:.故答案为:.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A′的坐标.利用待定系数法即可求得反比例函数的解析式.16.【答案】0【解析】【解答】解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,故答案为:0.【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.三、综合题17.【答案】(1)解:由题意可得,,当时,,当时,,由上可得,;(2)解:由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【解析】【分析】(1)根据题意,可以分别写出两家商场对应的关于的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.18.【答案】(1)解:补充完整下表为:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣﹣3 0 3 …(2)解:根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.(3)解:由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣0.3<1.8.【解析】【分析】(1)把x=±3代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.19.【答案】(1)解:由图可知,当时,当时,z是关于x的一次函数,设则,得,即∴关于的函数解析式为(2)解:设第x个生产周期工厂创造的利润为W万元①时,。

中考数学阅读理解专题训练(2020年整理).pdf

中考数学阅读理解专题训练(2020年整理).pdf

x1 − x2
t
=2,令
= b2
− b + 157 48
,试求 t 的取值范围。
解:(1)∵点 P(2,m)是“梦之点”,∴m=2, ∵点 P(2,2)在反比例函数 y= (n 为常数,n≠0)的图象上,
∴n=2×2=4,∴反比例函数的解析式为 y= ;
(2)假设函数 y=3kx+s﹣1(k,s 是常数)的图象上存在“梦之点”(x,x), 则有 x=3kx+s﹣1,整理,得(3k﹣1)x=1﹣s,
(3)∵二次函数 y=ax2+bx+1(a,b 是常数,a>0)的图象上存在两个不同的“梦之点”A(x1,
x∴1x)1,=aBx(12+xb2x,1+x12),,x2=ax22+bx2+1,
∴ax12+(b﹣1)x1+1=0,ax22+(b﹣1)x2+1=0,
∴x1,x2 是一元二次方程 ax2+(b﹣1)x+1=0 的两个不等实根,
阅读理解专题训练
1、若 x1,x2 是关于 x 的方程 x2+bx+c=0 的两个实数根,且|x1|+|x2|=2|k|(k 是整数),则称
方程 x2+bx+c=0 为“偶系二次方程”.如方程 x2﹣6x﹣27=0,x2﹣2x﹣8=0,

x2+6x﹣27=0,x2+4x+4=0,都是“偶系二次方程”. (1)判断方程 x2+x﹣12=0 是否是“偶系二次方程”,并说明理由; (2)对于任意一个整数 b,是否存在实数 c,使得关于 x 的方程 x2+bx+c=0 是“偶系二次方 程”,并说明理由. (1)不是,解方程 x2+x﹣12=0 得,x1=3,x2=﹣4. |x1|+|x2|=3+4=7=2×3.5.∵3.5 不是整数,∴x2+x﹣12=0 不是“偶系二次方程; (2)存在.理由如下: ∵x2﹣6x﹣27=0 和 x2+6x﹣27=0 是偶系二次方程, ∴假设 c=mb2+n,当 b=﹣6,c=﹣27 时,﹣27=36m+n.

【精选】2020中考数学题型训练:阅读理解题(含答案)

【精选】2020中考数学题型训练:阅读理解题(含答案)

2020中考数学题型训练:阅读理解题1.定义一种运算☆,其规则为a☆b=1a+1b,根据这个规则,计算2☆3的值是()A.56 B.15C.5 D.62.定义:f(a,b)=(b,a),g(m,n)=(-m,-n).例如:f(2,3)=(3,2),g(-1,-4)=(1,4),则g[f(-5,6)]=()A.(-6,5) B.(-5,-6)C.(6,-5) D.(-5,6)3.对于非零的两个实数a,b,规定a⊕b=1b-1a.若2⊕(2x-1)=1,则x的值为()A.56 B.54 C.32D.-164.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1.若输入7,则输出的结果为()A.5 B.6 C.7 D.85.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,距离坐标为(2,3)的点的个数是()A.2个B.1个C.4个D.3个6.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c,d对应密文a+2b,2b +c,2c+3d,4d.例如:明文1,2,3,4对应的密文是5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.4,6,1,7 B.4,1,6,7C.6,4,1,7 D.1,6,4,77.新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x的方程1x-1+1m=1的解为________.8.小明是一位刻苦学习、勤于思考、勇于创新的学生.一天,他在解方程时,有这样的想法:x2=-1这个方程在实数范围内无解,如果存在一个数i2=-1,那么方程x2=-1可以变为x2=i2,则x=±i,从而x=±i是方程x2=-1的两个根.小明还发现i具有如下性质:i1=i,i2=-1,i3=i2·i=(-1)i=-i,i4=(i2)2=(-1)2=1,i5=i4·i=i,i6=(i2)3=(-1)2=1,i7=i6·i=-i,i8=(i4)2=1,……请你观察上述等式,根据发现的规律填空:i 4n +1=________,i 4n +2=________,i 4n +3=__________,i 4n =________(n 为自然数).9.阅读材料:对于任何实数,我们规定符号的意义是=ad -bc .例如:=1×4-2×3=-2,=(-2)×5-4×3=-22. (1)按照这个规定,请你计算的值; (2)按照这个规定,请你计算:当x 2-4x +4=0时,的值.10.给出下列命题:命题1:直线y =x 与双曲线y =1x 有一个交点是(1,1); 命题2:直线y =8x 与双曲线y =2x 有一个交点是;命题3:直线y =27x 与双曲线y =3x 有一个交点是;命题4:直线y =64x 与双曲线y =4x 有一个交点是;……(1)请你阅读、观察上面的命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.a cb d a cb d1 23 42 43 5-5 67 81 21 23x xx x +--1,42⎛⎫⎪⎝⎭1,93⎛⎫⎪⎝⎭1,164⎛⎫⎪⎝⎭11.先阅读理解下列例题,再按要求完成下列问题. 例题:解一元二次不等式6x 2-x -2>0. 解:把6x 2-x -2分解因式, 得6x 2-x -2=(3x -2)·(2x +1).又6x 2-x -2>0,∴(3x -2)(2x +1)>0.由有理数的乘法法则“两数相乘,同号得正”,有: (1)或(2)解不等式组(1),得x >23, 解不等式组(2),得x <-12.∴(3x -2)(2x +1)>0的解集为x >23或x <-12.因此,一元二次不等式6x 2-x -2>0的解集为x >23或x <-12.(1)求分式不等式5x +12x -3<0的解集;(2)通过阅读例题和解答问题(1),你学会了什么知识和方法?12.知识迁移当a >0,且x >0时,因为≥0,所以x -2 a +a x ≥0,从而x +a x ≥2 a (当x =a 时,取等号).记函数y =x +ax ( a >0,x >0).由上述结论,可知:当x = a 时,该函数有最小值为2 a .直接应用已知函数y 1=x (x >0)与函数y 2=1x (x >0),则当x =________时,y 1+y 2取得最小值为________.变形应用已知函数y 1=x +1(x >-1)与函数y 2=(x +1)2+4(x >-1),求y 2y 1的最小值,并指出取得该最小值时相应的x 的值.实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费,每千米1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?320,210,x x ->⎧⎨+>⎩320,210,x x -<⎧⎨+<⎩2参考答案1.A2.A 解析:∵f (-5,6)=(6,-5),∴g [f (-5,6)]=g (6,-5)=(-6,5),故选A. 3.A 4.B 5.C 6.C7.x =3 8.i -1 -i 19.解:(1)⎪⎪⎪⎪⎪⎪5 67 8=5×8-7×6=-2. (2)由x 2-4x +4=0,得x =2. ⎪⎪⎪⎪⎪⎪x +1 2x x -1 2x -3=⎪⎪⎪⎪⎪⎪3 41 1=3×1-4×1=-1. 10.解:(1)直线y =n 3x 与双曲线y =n x 有一个交点是⎝ ⎛⎭⎪⎫1n ,n 2.(2)验证如下:将点⎝ ⎛⎭⎪⎫1n ,n 2代入y =n 3x ,右边=n 3·1n=n 2=左边,∴左边=右边.∴点⎝ ⎛⎭⎪⎫1n ,n 3在直线y =n 3x 上.同理可证,点⎝ ⎛⎭⎪⎫1n ,n 2在直线y =n x 上,∴点⎝ ⎛⎭⎪⎫1n ,n 2是两函数的交点.11.解:(1)由有理数的除法法则“两数相除,异号得负”,有: (1)⎩⎨⎧ 5x +1>0,2x -3<0, 或(2)⎩⎨⎧5x +1<0,2x -3>0.解不等式组(1),得-15<x <32,解不等式组(2),得不等式组(2)无解.因此,分式不等式5x +12x -3<0的解集为-15<x <32.(2)通过阅读例题和解答问题(1),学会了解一元二次不等式、分式不等式的一种方法.12.解:直接应用:1 2.变形应用:y 2y 1=(x +1)2+4x +1=(x +1)+4x +1≥4,∴y 2y 1的最小值是4,此时x +1=4x +1,(x +1)2=4,x =1.实际应用:设该汽车平均每千米的运输成本为y ,则y =360+1.6x +0.001x 2,故平均每千米的运输成本为y x =0.001x +360x +1.6=0.001x +0.360.001x +1.6.由题意,可得当0.001x =0.36,即x =600时,y x 取得最小值.此时yx ≥20.36+1.6=2.8.答:当汽车一次运输路程为600千米时,其平均每千米的运输成本最低,最低是2.8元.。

2020年中考数学复习专题练:《二元一次方程组实际应用》(包含答案)

2020年中考数学复习专题练:《二元一次方程组实际应用》(包含答案)

2020年中考数学复习专题练:《二元一次方程组实际应用》1.某超市投入1380元资金购进甲、乙两种矿泉水共50箱,矿泉水的成本价和销售价如表所示:类别类别//单价成本价(元成本价(元//箱)销售价(元销售价(元//箱)甲24 36 乙33 48(1)该超市购进甲、乙两种矿泉水各多少箱?(2)全部售完50箱矿泉水,该超市共获得利润多少元?2.如图,长青化工厂与A 、B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨2000元的原料运回工厂,制成每吨5000元的产品运到B 地,已知公路运价为2元/(吨•千米),铁路运价为1.5元/(吨•千米),且这两次运输共支出公路运输费14000元,铁路运输费87000元.求:(1)该工厂从A 地购买了多少吨原料?制成运往B 地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?3.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?4.学校订做校服,要求在规定期限内完成.若按服装厂原来生产能力,每天可生产这种校服150套,则在期限内只能完成校服数量的;现服装厂改进设备,每天可生产这种校服200套,则可提前1天完成,且多生产25套,求原规定期限多少天?订做校服数量多少套?5.为建设资源节约型、环境友好型社会,切实做好节能减排工作,某市决定对居民家庭用电实行“阶梯电价”.电力公司规定居民家庭每月用电量在80千瓦时以下(含80千瓦时),11千瓦时俗称1度,实行“基本电价”;当居民家庭月用电量超过80千瓦时,超时),过部分实行“提高电价”.已知小张家2017年2月份用电100千瓦时,上缴电费68元;3月份用电120千瓦时,上缴电费88元.若7月份小张家预计用电130千瓦时,请预算小张家7月份应上缴的电费.6.与经典同行,与好书相伴.近期,我校开展了“图书漂流活动”初年级小主人委员会的同学自愿整理图书.若俩个男生和一个女生共整理160本.一个男生和两个女生共整理170本.(1)男生和女生每人各整理多少本图书?(2)如果小主人委员会有12个男生和8个女生,他们恰好能整理完所有图书,请问这些图书一共有多少本?7.某专卖店有A、B两种商品,已知在打折前,买60件A商品和30件B商品共用了1080元,买50件A商品和10件B商品共用了840元,A、B两种商品打相同折以后,某人买500件A商品和450件B商品一共花了7840元,请你计算A、B商品打了多少折?8.云南民族村位于云南省昆明市西南郊的滇池之畔,是反映和展示云南25个少数民族社会文化风情的窗口.某校为让学生了解家乡,热爱家乡,亲近自然,增强学生集体观念和团体意识,特组织七年级师生春游云南民族村,已知师生共有762人,准备了49座和37座两种客车共18辆,刚好满座,求49座和37座客车各有几辆?9.甲、乙二人都以不变的速度在环形路上跑步,如果同时同地出发,反向而行,每隔2min 相遇一次,如果同时同地出发,同向而行,每隔10min 相遇一次,已知甲比乙跑得快,环形跑道每圈400米,甲、乙二人每分钟各跑多少米?1010.某公司准备组织一批工人到某市参观学习,原计划租用.某公司准备组织一批工人到某市参观学习,原计划租用35座客车若干辆,但有5人没有座位;若租用同样数量的40座客车,则有一辆车空15个座位,且其余客车恰好坐满.已知35座客车租金为180元/辆,辆,4040座客车租金为200元/辆.(1)问这一批工人的人数是多少?原计划租用多少辆35座客车?(2)若租用同一种车,要求是每位工人都有座位,应该怎样租用车才合算?1111..在某体育用品商店,购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买10根跳绳和10个毽子只需180元,该店的商品按原价的几折销售?1212.如表是小丽在某路口统计.如表是小丽在某路口统计20分钟各种车辆通过情况的记录表,其中空格处的字迹已模糊.糊.电瓶车 公交车 货车 小轿车 合计(车流总量)(第一时段)8:5050~~9:00m 86 161 (第二时段)9:0000~~9:107n m n 99合计 30 185 (1)根据表格信息,在表格中填写第一时段电瓶车和货车的数量.(2)在第二时段内,电瓶车和公交车的车辆数之和恰好是第二时段车流总量的一半,且两个时段的电瓶车总数为170辆.①求m ,n 的值.②因为第二时段内车流总量较多,造成了交通拥堵现象,据估计,该时段内,每增加1辆公交车,可减少8辆小轿车和5辆电瓶年,若要使得第二时段和第一时段的车流总量最接近,则应增加几辆公交车?1313..5G 网络,是最新一代蜂窝移动通信技术,其数据传输速率远高于以前的蜂窝网络,最高可达10Gbit /s ,比4G 快100倍.倍.55G 手机也成为生活、工作不可缺少的移动设备,某电商公司销售两种5G 手机,已知售出5部A 型手机,3部B 型手机的销售额为51000元;售出3部A 型手机,型手机,22部B 型手机的销售额为31500元. (1)求A 型手机和B 型手机的售价分别是多少元;(2)该电商公司在3月实行“满减促销”活动,活动方案为:单部手机满3000元减500元,满5000元减1500元(每部手机只能参加最高满减活动),结果3月A 型手机的销量是B 型手机的,4月该电商公司加大促销活动力度,每部A 型手机按照3月满减后的售价再降a %,销量比3月增加2a %;每部B 型手机按照满减后的售价再降a %,销量比3月销量增加a %,结果4月的销售总额比3月的销售总额多a %,求a 的值.1414.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价5万元万元//件,乙种产品售价3万元万元//件,生产这两种产品需要A 、B 两种原料,生产甲产品需要A 种原料4吨/件,B 种原料2吨/件,生产乙产品需要A 种原料3吨/件,B 种原料1吨/件,每个季节该厂能获得A 种原料120吨,B 种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%10%,而乙种产品下降,而乙种产品下降10%10%,要求甲种产品比乙种产品,要求甲种产品比乙种产品多生产15件,如何安排甲、乙两种产品,使总产值是131.7万元.1515..为了改善寄宿制学校学生的居住条件,为了改善寄宿制学校学生的居住条件,某市财政局准备给部分学校加装空调.某市财政局准备给部分学校加装空调.某市财政局准备给部分学校加装空调.经市场调经市场调研发现:购买1台A 种型号的空调和2台B 种型导的空调共需资金6400元;购买2台A 型空调和3台B 型空调共需资金10600元.(1)求A ,B 两种型号的空调单价各是多少元;(2)现计划购进A ,B 两种型号的空调共200台,其中A 型空调为m (m ≤7575)台,并且)台,并且要求公司15日内(含15日)完成安装调试.公司承诺:若A 型空调不大于75台,则A 型空调一定能保证15天内完成安装与调试,同时B 型空调每天可以完成10台的安装与调试;价格方面,当购买A 型空调不少于60台时,公司给予A 型空调7折优惠;当购买B 型空调大于140台时,公司给予B 型空调8折优惠.若既能保证如期完成安装调试又能使花费资金少,应购买A ,B 两种型号的空调各多少台?1616..位于红星路济宁师专旧址的济宁学院附中红星校区将于近期开始动工,原计划在年内拆除旧校舍与建造新校舍共12万平方米,万平方米,为建设一座园林式的校园,为建设一座园林式的校园,为建设一座园林式的校园,在实施中调整拆建计在实施中调整拆建计划,新建面积减少10%10%,拆除面积增加,拆除面积增加10%10%,结果拆除和新建总面积不变.根据协议,施,结果拆除和新建总面积不变.根据协议,施工方免费拆除旧校舍,但建造新校舍每平米需要1500元,校园环境建设每平方米需要600元.(1)求原计划拆、建的面积各多少平方米?(2)若把实际的拆、建工程中节余的资金的30%30%用来增加校园环境建设,可建设多少平用来增加校园环境建设,可建设多少平方米?1717.某体育用品商店一共购进.某体育用品商店一共购进20个篮球和排球,进价和售价如下表所示,全部销售完后共获得利润260元;(1)列方程组求解:商店购进篮球和排球各多少个?(2)销售6个排球的利润与销售几个篮球的利润相等?篮球 排球 进价(元进价(元//个)80 50 售价(元售价(元//个)95 601818.学校书法兴趣小组准备到文具店购买.学校书法兴趣小组准备到文具店购买A ,B 两种类型的毛笔,文具店的销售方法是:一次性购买A 型毛笔不超过20支时,按零售价销售;超过20支时,超过部分每支比零售价低0.4元,其余部分仍按零售价销售.一次性购买B 型毛笔都按零售价销售.(1)如果一个小组共有10名同学,若每人各买1支A 型毛笔和1支B 型毛笔,共支付50元;若每人各买2支A 型毛笔和1支B 型毛笔,共支付70元.这家文具店的A ,B 两种类型毛笔的零售价各是多少?(2)为了促销,该文具店对A 型毛笔除了原来的销售方法外,同时又推出了一种新的销售方法:无论购买多少支,一律按原零售价(即(售方法:无论购买多少支,一律按原零售价(即(11)中所求得的A 型毛笔的零售价)的90%90%出售.现要一次性购买出售.现要一次性购买A 型毛笔a 支,在新的销售方法和原来的销售方法中,应选择哪种方法购买花钱较少?并说明理由.1919.某校七、八年级师生开展“一日游”活动,已知七年级师生共.某校七、八年级师生开展“一日游”活动,已知七年级师生共300人,八年级师生共220人.(1)已知七年级教师比八年级教师多6人,七年级学生比八年级学生多37%37%,求七年级,求七年级教师与学生各有多少人;(2)参现某景点时、需要乘船游玩,现有A 、B 两种型号的游船,A 型船的座位数是B 型船的1.5倍,若七年级师生全部乘坐A 型船若干艘,刚好坐满,八年级全部乘坐B 型船,要比七年级乘坐的A 型船多一艘且空20个座位,问:①A 、B 两种游船每艘分别有多少个座位;②若两个年级的师生联合租船,且每艘游船恰好全部坐满,请写出所有的租船方案.2020..(1)某校组织初一年级师生共720人出去春游,学校打算租用旅游公司的大巴车接送,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车满载)车型甲 乙 丙 汽车运载量(人汽车运载量(人//辆)30 48 60 汽车运费(元汽车运费(元//辆) 400 500 600(1)若只租用甲、乙两种车型来接送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,学校打算用甲、乙、丙三种车型同时参与接送,已知它们的总辆为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?参考答案 1.解:(.解:(11)设该超市购进甲种矿泉水x 箱,乙种矿泉水y 箱, 依题意,得:,解得:. 答:该超市购进甲种矿泉水30箱,乙种矿泉水20箱.(2)()(363636﹣﹣2424)×)×)×30+30+30+((4848﹣﹣3333)×)×)×202020==660660(元).(元).答:全部售完50箱矿泉水,该超市共获得利润660元. 2.解:(.解:(11)设该工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨, 依题意,得:,解得:. 答:该工厂从A 地购买了300吨原料,制成运往B 地的产品200吨.(2)50005000××200200﹣﹣20002000××300300﹣﹣1400014000﹣﹣8700087000==299000299000(元).(元). 答:这批产品的销售款比原料费与运输费的和多299000元.3.解:设甜果买了x 个,苦果买了y 个,依题意,得:,解得:, ∴x =803803,,y =196196.. 答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.4.解:设原规定期限为x 天,订做校服数量为y 套,依题意,得:,解得:.答:原规定期限为18天,订做校服数量为3375套.5.解:设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,依题意,得:,解得:, 8080××0.6+0.6+((130130﹣﹣8080)×)×)×11=9898(元).(元).答:预计小张家7月份应上缴的电费98元. 6.解:(.解:(11)设男生每人整理x 本图书,女生每人整理y 本图书,依题意,得:,解得:. 答:男生每人整理50本图书,女生每人整理60本图书.(2)1212××50+850+8××6060==10801080(本).(本).答:这些图书一共有1080本. 7.解:设打折前A 商品的单价为x 元/件,B 商品的单价为y 元/件,依题意,得:,解得:, 1616××500+4500+4××450450==98009800(元),(元),=0.80.8..答:A 、B 商品打了八折.8.解:设49座客车有x 辆,辆,3737座客车有y 辆,依题意,得:,解得:. 答:答:4949座客车有8辆,辆,3737座客车有10辆.9.解:设甲每分钟跑x 米,乙每分钟跑y 米,依题意,得:,解得:. 答:甲每分钟跑120米,乙每分钟跑80米.1010.解:(.解:(.解:(11)设这一批工人的人数是x 人,原计划租用y 辆35座客车,依题意,得:,解得:.答:这一批工人的人数是145人,原计划租用4辆35座客车.(2)租用35座客车的要5辆车,费用为:辆车,费用为:180180180××5=900900(元);(元);租用40座客车的要4辆车,费用为:辆车,费用为:200200200××4=800800(元).(元).∵900900>>800800,,∴选择租用40座客车的才合算.1111.解:(.解:(.解:(11)设跳绳的单价为x 元,毽子的单价为y 元,依题意,得:,解得:.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的m 折销售, 依题意,得:(依题意,得:(161616××10+410+4××1010)×)×=180180,,解得:m =9.答:该店的商品按原价的9折销售.1212..解:(1)根据表格信息得,第一时段电瓶车和货车的数量分别为:(45+n ﹣m )辆,(30﹣n )辆;故答案为:故答案为:45+45+n ﹣m ,3030﹣﹣n ;(2)①根据题意得,,解得:;②设应增加x 辆公交车,根据题意得,根据题意得,77×1616﹣﹣5x +3+x +16+99+16+99﹣﹣8x =161161,,解得:x =5,答:要使得第二时段和第一时段的车流总量最接近,则应增加6辆公交车.1313.解:(.解:(.解:(11)设每部A 型号手机的售价为x 元,每部B 型号手机的售价为y 元. 由题意,得,解得:,答:A 型手机和B 型手机的售价分别是7500元和4500元; (2)设3月B 型手机的销量是m 部,则A 型手机的销量是m 部,根据题意得,根据题意得,[[(75007500﹣﹣15001500)×()×()×(11﹣a %)][m (1+2a %)]+[]+[((45004500﹣﹣500500)×()×()×(11﹣a %)][m •(1+a %)]=[m (75007500﹣﹣15001500))+m (45004500﹣﹣500500))](1+a %),解得:a =30或a =0(不合题意舍去),答:a 的值为3030..1414.解:(.解:(.解:(11)设应安排生产x 件甲种产品,y 件乙种产品,依题意,得:, 解得:, 所以所以 5 5x +3y =135135..答:答:应安排生产应安排生产15件甲种产品,件甲种产品,2020件乙种产品,件乙种产品,才能恰好使两种原料全部用完,才能恰好使两种原料全部用完,才能恰好使两种原料全部用完,此时总此时总产值是135万元.(2)设生产乙种产品m 件,则生产甲种产品(m +15+15)件,)件,依题意,得:依题意,得:55×(×(1+10%1+10%1+10%)()(m +15+15))+3+3×(×(×(11﹣10%10%))m =131.7131.7,,解得:m =6,∴m +15+15==2121(件).(件).答:生产乙种产品6件,则生产甲种产品21件,使总产值是131.7万元.1515.解:(.解:(.解:(11)设购买A 型号的空调单价是x 元,购买B 型号的空调单价是y 元, 根据题意得:,解得:. 答:购买1台A 型空调单价需要2000元,购买1台B 型空调单价需要2200元.(2)根据题意得:A 型空调为m (m ≤7575)台,)台,B 型空调为(型空调为(200200200﹣﹣m )台,≤1515,,m ≥5050,,当5050≤≤m <60时,购买空调总资金w 1=2000m +2200+2200((200200﹣﹣m )×)×0.80.80.8==240m +352000+352000,, ∵240240>>0,∴w 1随m 的增大而增大,∴当m =50时,最少资金为364000元;当6060≤≤m ≤75时,购买空调总资金w 2=20002000××0.7m +2200+2200((200200﹣﹣m )=﹣)=﹣800800m +440000+440000,, ∵﹣∵﹣800800800<<0,∴w 2随m 的增大而减小,∴当m =75时,最少资金为380000元;∵364000364000<<380000380000,,∴当m =50时,购买资金最小,且能保证如期完成安装调试,此时应购买A 种型号的空调是50台,B 种型号的空调150台. 1616.解:(.解:(.解:(11)设原计划拆的面积是x 平方米,建的面积是y 平方米,依题意有,解得. 故原计划拆的面积是60000平方米,建的面积是60000平方米;(2)设在实际的拆、建工程中节余的资金的30%30%用来建设用来建设m 平方米,依题意有600m =15001500××6000060000××10%10%××30%30%,,解得m =45004500..故可建设4500平方米. 1717.解:(.解:(.解:(11)设购进篮球x 个,购进排球y 个,由题意得,,解得:. 答:购进篮球12个,购进排球8个.(2)由表格可得,销售一个篮球利润为15元,销售一个排球利润为10元, 则销售6个排球的利润为:个排球的利润为:6060元,6060÷÷1515==4(个),答:销售6个排球的利润与销售4个篮球的利润相等;1818.解:(.解:(.解:(11)设这家文具店的A 型毛笔零售价为每支x 元,B 型毛笔的零售价为每支y 元,由题意得:,解得:,答:这家文具店A 型毛笔的零售价为每支2元,B 型毛笔的零售价为每支3元;(2)如果按原来的销售方法购买a 支A 型毛笔共需m 元则m =2020××2+2+((a ﹣2020)×()×()×(22﹣0.40.4)=)=)=1.61.6a +8+8,,如果按新的销售方法购买a 支A 型毛笔共需n 元.则n =a ×2×90%90%==1.8a ,于是n ﹣m =1.8a ﹣(﹣(1.61.6a +8+8)=)=)=0.20.2a ﹣8,①当a ≤20时,显然按新的销售方法购买花钱少;②∵②∵202020<<a <4040,,∴0.2a <8,∴n ﹣m <0,∴当2020<<a <40时,按新的销售方法购买花钱少;③∵a =4040,,∴n ﹣m =0,∴当a =40时,两种销售方法购买花钱一样多;④∵a >4040,,∴0.2a >8,∴n ﹣m >0,∴当a >40时,按原来的销售方法购买花钱少.1919.解:(.解:(.解:(11)设八年级教师有x 人,学生有y 人,依题意,得:,解得:, ∴x +6+6==2626,(,(,(1+37%1+37%1+37%))y =274274..答:七年级教师有26人,学生有274人.(2)①设B 型船每艘有m 个座位,则A 型船每艘有1.5m 个座位,依题意,得:﹣=1, 解得:m =4040,,经检验,m =40是原分式方程的解,且符合题意,∴1.5m =6060..答:A 型船每艘有60个座位,B 型船每艘有40个座位.②设需租用A 型船a 艘,租用B 型船b 艘,依题意,得:依题意,得:6060a +40b =300+220300+220,, ∴b =1313﹣﹣a .又∵a ,b 均为非负整数,∴,,,,,∴共有5种租船方案,方案1:租用13艘B 型船;方案2:租用2艘A 型船,型船,1010艘B 型船;方案3:租用4艘A 型船,型船,77艘B 型船;方案4:租用6艘A 型船,型船,44艘B 型船;方案5:租用8艘A 型船,型船,11艘B 型船.2020.解:(.解:(.解:(11)设需要甲种车型x 辆,乙种车型y 辆,根据题意得:,解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设需要甲种车型m 辆,乙种车型n 辆,则需要丙种车型(辆,则需要丙种车型(141414﹣﹣m ﹣n )辆, 根据题意得:根据题意得:3030m +48n +60+60((1414﹣﹣m ﹣n )=)=720720720,,∴m =4﹣n .∵m 、n 为正整数,∴当n =5时,m =2,1414﹣﹣m ﹣n =7,此时运费为400400××2+5002+500××5+6005+600××7=75007500(元);(元);当n =10时,m =0,不合题意舍去.答:安排的三种车型的辆数为甲种车型2辆,乙种车型5辆,丙种车型7辆,此时的运费是7500元.。

2020年中考数学动态问题专题- 阅读理解创新题

2020年中考数学动态问题专题- 阅读理解创新题

专题03 破解动态数学阅读理解等创新题型一、基础知识点综述实行新课标以来中考数学的题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点. 而此类题目不同以往,不是简单的告诉条件求解题目,往往是先给一个数学类的知识材料,或简要介绍一个知识(超纲的内容),又或者给出对于某一种题目的解法,然后再给条件出题.对于这种题来说,如果学生为求速度而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失. 所以如何读懂题以及如何利用题就成为了关键.目前为止,阅读理解型试题在中考试卷中占的比例越来越大. 很多省份均有涉及,这类题目对学生的数学意识、数学思维能力和创新意识有较高要求,解数学阅读理解题存在较大的困难,要求学生具备一定的数学素养,懂得分析问题,善于从题干中提取有用的条件. 下面我们从几个例题中展开论述,逐层拨开它的神秘面纱.二、精品例题解析例1.(2019·台州) 砸“金蛋”游戏:把210个金蛋连续编号为1,2,3,4,……,210. 接着把编号是3的整数倍的“金蛋”全部砸碎,然后将剩下的“金蛋”重新编号为1,2,3,4,……,接着把编号是3的整数倍的“金蛋”全部砸碎,……按照这样的方法操作,直至无编号是3的整数倍的“金蛋”为止. 操作过程中砸碎编号是“66”的“金蛋”共 个.例2.(2019·重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、质数、合数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行n +(n +1)+(n +2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是纯数,因为32+33+34在列竖式计算时各位都没有进位现象. 23不是纯数,因为23+24+25在列竖式计算时个位有进位现象. (1)请直接写出1949至2019之间的“纯数”; (2)求出不大于100的纯数的个数,并说明理由.例3.(2019·重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质;(3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.例4.(2019·凉山州) 根据有理数乘法(除法)法则可知:①若ab >0(或0a b >),则0000a a b b ><⎧⎧⎨⎨><⎩⎩或 ②若ab <0(或0a b <),则0000a ab b ><⎧⎧⎨⎨<>⎩⎩或 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:20203030x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或, 解得:x >2,或x <-3,∴原不等式的解集为:x >2或x <-3.请你运用所学知识,并结合材料回答下列问题: (1)不等式2230x x --<的解集为(2)求不等式401x x+<-的解集(要求写出解答过程).例5.(2019·济宁) 阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有()()12f x f x <,则称()y f x =是增函数;(2)若x 1<x 2,都有()()12f x f x >,则称()y f x =是减函数; 例题:证明函数()()60f x x x=>是减函数. 证明:设0<x 1<x 2,()()()21121212666x x f x f x x x x x --=-= ∵0<x 1<x 2,∴210x x ->,x 1x 2>0 ∴()211260x x x x ->,即()()120f x f x -> ∴()()12f x f x >, ∴函数()()60f x x x=>是减函数. 根据以上材料,解答下面问题: 已知函数()()210f x x x x=+<, ()()()211101f -=+-=-,()()()2172242f -=+-=--(1)计算:()3f -=()4f -=(2)猜想:函数()()210f x x x x=+<是 函数(填“增”或“减”)(3)请仿照例题证明你的猜想.例6.(2019·自贡) 阅读下列材料: 小明为了计算220181222+++…+的值,采用以下方法:设220181222S =+++…+ ①则220192222S =++…+ ②②-①得:2019221S S -=-∴2201820191222=21S =+++-…+请仿照小明的方法解决以下问题: (1)291222=+++…+ (2)23103333=+++…+(3)求21na a a +++…+的和(a >0,n 是正整数,请写出计算过程).例7. (2019·衢州)定义:在平面直角坐标系中,对于任意两点(,)A a b ,(,)B c d ,若点(,)T x y 满足3a c x +=,3b dy +=,那么称点T 是点A ,B 的融合点. 例如: (1,8)A -,(4,2)B -当点(,)T x y 满足1413x -+==,8(2)23y +-==时,则点(1,2)T 是点A ,B 的融合点.(1)已知点(1,5)A -,(7,7)B ,(2,4)C ,请说明其中一个点是另外两个点的融合点; (2)如图,点(3,0)D ,点(,23)E t t +是直线l 上任意一点,点(,)T x y 是点D 、E 的融合点.①试确定y 与x 的关系式;②若直线ET 交x 轴于点H ,当DTH ∆为直角三角形时,求点E 的坐标.xyOD例8.(2019·青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L ”形纸片,图②是一张 a b 的方格纸(a b 的方格纸指边长分别为a ,b 的矩形,被分成 a b 个边长为 1 的小正方形,其中 a ≥2,b ≥2,且a ,b 为正整数) .把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?图①图②问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于22的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.图③探究二:把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在32的方格纸中,共可以找到 2 个位置不同的 2 2 方格,依据探究一的结论可知,把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有2 4=8种不同的放置方法.图④探究三:把图①放置在 a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a 2 的方格纸中,共可以找到_________个位置不同的22方格,依据探究一的结论可知,把图①放置在a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_______种不同的放置方法.图⑤图⑥探究四:把图①放置在 a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在 a 3 的方格纸中,共可以找到_________个位置不同的2 2方格,依据探究一的结论可知,把图①放置在a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了a b c个棱长为1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.图⑦图⑧例9. (2019·南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B 的坐标是.(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)二、精品例题解析例1.(2019·台州)砸“金蛋”游戏:把210个金蛋连续编号为1,2,3,4,……,210. 接着把编号是3的整数倍的“金蛋”全部砸碎,然后将剩下的“金蛋”重新编号为1,2,3,4,……,接着把编号是3的整数倍的“金蛋”全部砸碎,……按照这样的方法操作,直至无编号是3的整数倍的“金蛋”为止. 操作过程中砸碎编号是“66”的“金蛋”共个.【答案】3.【解析】解:210÷3=70,第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)140÷3=46...2,第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)94÷3=31…1,第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,63<66,砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是"66"的"金蛋"共有3个.故答案为:3.例2.(2019·重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、质数、合数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是纯数,因为32+33+34在列竖式计算时各位都没有进位现象.23不是纯数,因为23+24+25在列竖式计算时个位有进位现象.(1)请直接写出1949至2019之间的“纯数”;(2)求出不大于100的纯数的个数,并说明理由.【答案】见解析.【解析】解:设n的个位数字为m,m+m+1+m+2≤9,可得:m≤2,除个位外其余各个位上的数字均小于等于3,否则会发生进位.(1)所以1949至2019之间符合要求的“纯数”有:2000,2001,2002三个数.(2)由上面分析可知:个位小于等于2,且十位、百位小于等于3的数符合“纯数”特征,经过筛选,不大于100的纯数有13个:具体如下:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.例3.(2019·重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.【答案】见解析. 【解析】解:(1)由题意得:23431k b b -+=-⎧⎨-+=-⎩, 解得:324k b ⎧=⎪⎨⎪=-⎩,即函数解析式为:3342y x =-- (2)图如下所示,性质:函数图象为轴对称图形,对称轴为x =2;当x <2时,y 随x 增大而减小;x >2时,y 随x 增大而增大;x =2时函数值取最小值,最小值为-4;函数与x 轴有两个交点,与y 轴有一个交点……(填写一条即可). (3)1≤x ≤4.例4.(2019·凉山州)根据有理数乘法(除法)法则可知:①若ab >0(或0a b >),则0000a a b b ><⎧⎧⎨⎨><⎩⎩或 ②若ab <0(或0a b <),则0000a ab b ><⎧⎧⎨⎨<>⎩⎩或 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:20203030x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或, 解得:x >2,或x <-3,∴原不等式的解集为:x >2或x <-3.请你运用所学知识,并结合材料回答下列问题: (1)不等式2230x x --<的解集为(2)求不等式401x x+<-的解集(要求写出解答过程). 【答案】(1)-1<x <3;(2)见解析. 【解析】解:(1)2230x x --<,即(3)(1)0x x -+< 原不等式可化为:30301010x x x x ->-<⎧⎧⎨⎨+<+>⎩⎩①或②, 由①得:无解由②得:-1<x <3,∴原不等式的解集为:-1<x <3.(2)401x x +<-,即401x x +>-, 原不等式可化为:40401010x x x x +>+<⎧⎧⎨⎨->-<⎩⎩①或②, 由①得:x >1, 由②得:x <-4,∴原不等式的解集为:x >1或x <-4. 例5.(2019·济宁)阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有()()12f x f x <,则称()y f x =是增函数; (2)若x 1<x 2,都有()()12f x f x >,则称()y f x =是减函数; 例题:证明函数()()60f x x x=>是减函数. 证明:设0<x 1<x 2,()()()21121212666x x f x f x x x x x --=-= ∵0<x 1<x 2,∴210x x ->,x 1x 2>0 ∴()211260x x x x ->,即()()120f x f x -> ∴()()12f x f x >, ∴函数()()60f x x x=>是减函数. 根据以上材料,解答下面问题: 已知函数()()210f x x x x=+<, ()()()211101f -=+-=-,()()()2172242f -=+-=--(1)计算:()3f -=()4f -= (2)猜想:函数()()210f x x x x =+<是 函数(填“增”或“减”)(3)请仿照例题证明你的猜想.【答案】(1)2663916--,;(2)增;(3)见解析. 【解析】解:(1)()()()212633=93f -=+---,()()()216344=164f -=+--- (2)增(3)证明:设x 1<x 2<0,()()()1212122122221212111x x f x f x x x x x x x x x ⎛⎫+-=+--=-- ⎪⎝⎭∵0<x 1<x 2, ∴210x x ->,x 1x 2>0,210x x +< ∴1222120x x x x +<,12221210x x x x +-< ∴()1221221210x x x x x x ⎛⎫+--< ⎪⎝⎭即()()120f x f x -<∴()()12f x f x <,∴函数()()210f x x x x=+<是增函数. 例6.(2019·自贡)阅读下列材料:小明为了计算220181222+++…+的值,采用以下方法: 设220181222S =+++…+ ① 则220192222S =++…+ ②②-①得:2019221S S -=- ∴2201820191222=21S =+++-…+请仿照小明的方法解决以下问题:(1)291222=+++…+(2)23103333=+++…+(3)求21n a a a +++…+的和(a >0,n 是正整数,请写出计算过程).【答案】(1)1021-;(2)11332-;(3)见解析. 【解析】解:(1)设291222S =+++…+ ①则2102222S =++…+ ②②-①得:10221S S -=-∴29101222=21S =+++-…+(2)设210333S =++…+ ①则23113333S =++…+ ②②-①得:11331S S -=- ∴1121033333=2S -=++…+. (3)设21n S a a a =+++…+ ①则231n aS a a a a+=+++…+ ② ②-①得:11n aS S a+-=- ∴12111n na S a a a a +-=+++=-…+. 例7. (2019·衢州)定义:在平面直角坐标系中,对于任意两点(,)A ab ,(,)Bcd ,若点(,)T x y 满足3a c x +=,3b d y +=,那么称点T 是点A ,B 的融合点. 例如: (1,8)A -,(4,2)B -当点(,)T x y 满足1413x -+==,8(2)23y +-==时,则点(1,2)T 是点A ,B 的融合点.(1)已知点(1,5)A -,(7,7)B ,(2,4)C ,请说明其中一个点是另外两个点的融合点;(2)如图,点(3,0)D ,点(,23)E t t +是直线l 上任意一点,点(,)T x y 是点D 、E 的融合点.①试确定y 与x 的关系式;②若直线ET 交x 轴于点H ,当DTH ∆为直角三角形时,求点E 的坐标.【解析】解:(1)∵17572422-++==, , ∴点C 是点A 、B 的融合点;(2)①由融合点定义知:33t x +=, 得:33t x =-而2303t y ++=,得:332y t -= ∴33332y x --=, 即:y =2x -1;②由题意知:E 点在直线l 上运动,T 点在直线y =2x -1上运动,若△DTH 为直角三角形,分三种情况讨论:(i )当∠DHT =90°时,即ET ⊥x 轴,如下图所示,x y O D T 点运动轨迹E 点运动轨迹E TH设H (n ,0),则T (n ,2n -1),E (n ,2n +3),由点T 是点D 、E 的融合点可得:33n n +=,解得:n =32即E 点坐标为(32,6);(ii )当∠HDT =90°时,即DT ⊥x 轴,如下图所示,xy O DT 点运动轨迹ETH此时,T 点坐标为(3,5),设E 点坐标为(n ,2n +3)由点T 是点D 、E 的融合点可得:333n +=,解得:n =6,即E 点坐标为(6,15);(iii )当∠HTD =90°时,此种情况不存在;综上所述,E 点坐标为(32,6)或(6,15).例8.(2019·青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L ”形纸片,图②是一张 a b 的方格纸(a b的方格纸指边长分别为a,b的矩形,被分成 a b个边长为 1 的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?图①图②问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于22的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.图③探究二:把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在32的方格纸中,共可以找到 2 个位置不同的 2 2 方格,依据探究一的结论可知,把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有2 4=8种不同的放置方法.图④探究三:把图①放置在 a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a 2 的方格纸中,共可以找到_________个位置不同的22方格,依据探究一的结论可知,把图①放置在a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_______种不同的放置方法.图⑤图⑥探究四:把图①放置在 a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在 a 3 的方格纸中,共可以找到_________个位置不同的2 2方格,依据探究一的结论可知,把图①放置在a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了a b c个棱长为1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.图⑦图⑧【答案】见解析.【解析】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为: a﹣1,4a﹣4;探究四:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)个位置不同的2×2方格,根据探究一,在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为: 2(a﹣2),8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点睛】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.例9. (2019·南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B 的坐标是.(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【答案】(1)3,(1,2);(2)(3)(4)见解析.【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,可得:x=1,y=2,即B(1,2),故答案为:3,(1,2);(2)若函数y=4x(x>0)的图象上存在点C(x,y)使d(O,C)=3,根据题意,得4003 xx-+-=,∵x>0,∴4x>0,方程4003xx-+-=可化为:43xx+=,即x2+4=3x,x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,故该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵225357024x x x⎛⎫-+=-+>⎪⎝⎭,x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P 作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阅读理解(二)(24题)典型例题: 例1、进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n ,即可称n 进制.现在最常用的是十进制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一.对于任意一个用n ()10n ≤进制表示的数,通常使用n 个阿拉伯数字0~()1n −进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数()252342535469=⨯+⨯+=,记作5(234)69=, 七进制数()271361737676=⨯+⨯+=,记作7(136)76=. (1)请将以下两个数转化为十进制:5(331)= ,7(46)= ;(2)若一个正数可以用七进制表示为()7abc ,也可以用五进制表示为()5cba ,请求出这个数并用十进制表示.例2、如果一个自然数能表示为两个自然数的平方差,那么称这个自然数为智慧数,例如: 223-516=,16就是一个智慧数,小明和小王对自然数中的智慧数进行了如下的探索: 小明的方法是一个一个找出来的:220-00=,220-11=,221-23=,220-24=,222-35=,223-47=,221-38=,224-59=,225-611=,。

小王认为小明的方法太麻烦,他想到:设k 是自然数,由于12)1)(1)122+=−+++=−+k k k k k k k ((。

所以,自然数中所有奇数都是智慧数。

问题:(1) 根据上述方法,自然数中第12个智慧数是______(2) 他们发现0,4,8是智慧数,由此猜测4k(3≥k 且k 为正整数)都是智慧数,请你参考小王的办法证明4k (3≥k 且k 为正整数)都是智慧数。

(3) 他们还发现2,6,10都不是智慧数,由此猜测4k+2(k 为自然数)都不是智慧数,请利用所学的知识判断26是否是智慧数,并说明理由。

例3、如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…,都是“妙数”.(1) 若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为;(2) 证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除;(3) 在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一个新的四位自然数A ,且m 大于自然数A 百位上的数字.是否存在一个一位自然数n ,使得自然数(9)A n +各数位上的数字全都相同?若存在,请求出m 和n 的值;若不存在,请说明理由.例4、连续整数之间有许多神奇的关系,如:32+42=52,这表明三个连续整数中较小两个数的平方和等于最大数的平方,称这样的正整数组为“奇幻数组”,进而推广:设三个连续整数为a ,b ,c (a <b <c )若a 2+b 2=c 2,则称这样的正整数组为“奇幻数组”;若a 2+b 2<c 2,则称这样的正整数组为“魔幻数组”;若a 2+b 2>c 2,则称这样的正整数组为“梦幻数组”。

(1)若有一组正整数组为“魔幻数组”,写出所有的“魔幻数组”;(2)现有几组“科幻数组”具有下面的特征:若有3个连续整数:32+42+5225=2; 若有5个连续整数:102+112+122+132+142365=2; 若有7个连续整数:212+222+232+242+252+262+2722030=2; …由此获得启发,若存在n (7<n<11)个连续正整数也满足上述规律,求这n 个数.例5、观察下列等式:12×231=132×21, 14×451=154×41, 32×253=352×23,34×473=374×43,45×594=495×54,……以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①35× = ×53; ② ×682=286× .(2)设数字对称式左边的两位数的十位数字为m ,个位数字为n ,且2≤m+n ≤9.用含m ,n 的代数式表示数字对称式左边的两位数与三位数的乘积P ,并求出P 能被110整除时mn 的值.例6、阅读材料:材料一:对于任意的非零实数x 和正实数k ,如果满足3kx 为整数,则称k 是x 的一个“整商系数”。

例如:x=2时,k=323⨯=1,则3是2 的一个整商系数; x=2时,k=12,23⨯=8,则12 也是2 的一个整商系数;x=12−时,k=6,16()23⨯−=-1,则6 是12−的一个整商系数; 结论:一个非零实数x 有无数个整商系数k ,其中最小的一个整商系数记为k(x),例如:k(2)=32材料二:对于一元二次方程2ax bx c 0=++ (a ≠0)中,两根1x ,2x 有如下的关系:12x x b a+=−,12x x c a •= 应用:⑴ k(32)= ;k(52−)= ; ⑵若实数a(a <0)满足k(2a )>k(11a +),求a 的取值范围。

⑶若关于x 的方程:2x+bx 40=+的两个根分别为1x ,2x ,且满足k(1x )+k(2x )=9,则b 的值为多少?例7、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如2)21(223+=+.善于思考的小明进行了以下探索: 设2)2(2n m b a +=+(其中n m b a 、、、均为整数),则有222222mn n m b a ++=+.∴mn b n m a 2,222=+=.这样小明就找到了一种把类似2b a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当n m b a 、、、均为正整数时,若2)3(3n m b a +=+,用含m 、n 的式子分别表示a 、b , 得:a= ,b= ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: +=( + )2;(3)若2)3(38n m a +=+,且a 、m 、n 均为正整数,求a 的值?练习:1、能被3整除的整数具有一些特殊的性质:(1)定义一种能够被3整除的三位数abc 的“F ”运算:把abc 的每一个数位上的数字都立方,再相加,得到一个新数.例如213=abc 时,则:)24363(243)36312(3621333333=+→=++→ FF .数字111经过三次“F ”运算得 ,经过四次“F ”运算得 ,经过五次“F ”运算得 ,经过2016次“F ”运算得 .(2)对于一个整数,如果它的各个数位上的数字和可以被3整除,那么这个数就一定能够被3整除,例如,一个四位数,千位上的数字是a ,百位上的数字是b ,十位上的数字为c ,个为上的数字为d ,如果a+b+c+d 可以被3整除,那么这个四位数就可以被3整除.你会证明这个结论吗?写出你的论证过程(以这个四位数为例即可).2、阅读下列材料,解决后面两个问题 我们可以将任意三位数表示为abc (其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”。

(1)写出任意三对“姊妹数”, 并判断2331是否一对“姊妹数”的和(2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除。

3、如果一个四位数的千位数字与十位数字相同,百位数字与个位数字相同,则称这个四位数为“循环四位数”.如1212,5252,6767,…等都是“循环四位数”.如果将一个“循环四位数”的百位数字与千位数字,个位数字与十位数字都交换位置,得到一个新四位数,我们把这个新四位数叫做“原循环四位数的对应数”,如果原循环四位数的百位数字是0,则忽略交换位置后首位的“0”,即它的对应数就是首位“0”忽略后的三位数.如1212的对应数为2121,5252 的对应数为2525,1010的对应数为101.(1)任意写一个“循环四位数”及它的“对应数”;猜想任意一个“循环四位数”与它的“对应数”的差是否都能被101整除?并说明理由;(2)一个“循环四位数”的千位数字为x(1≤x ≤9),百位数字为y (0≤y ≤9,且y <x ),若这个循环四位数与它的对应数的差能被404整除,求y 与x 应满足的数量关系.4、若一个正整数,它的各位数字是左右对称的,则称这个数是对称数,如22,797,12321都是对称数.最小的对称数是11,没有最大的对称数,因为数位是无穷的.(1)有一种产生对称数的方式是:将某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,便可得到一个对称数.如:17的逆序数为71,17+71=88,88是一个对称数;39的逆序数为93,39+93=132,132的逆序数为231,132+231=363,363是一个对称数.请你根据以上材料,求以687产生的第一个对称数;(2)若将任意一个四位对称数分解为前两位数所表示的数,和后两位数所表示的数,请你证明这两个数的差一定能被9整除;(3)若将一个三位对称数减去其各位数字之和,所得的结果能被11整除,则满足条件的三位对称数共有多少个?5、阅读下列材料解决问题:材料:古希腊著名数学家毕达哥拉斯发现把数1,3,6,10,15,21……这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.把数1,3,6,10,15,21……换一种方式排列,即1=11+2=31+2+3=61+2+3+4=101+2+3+4+5=15……从上面的排列方式看,把1,3,6,10,15,……叫做三角形数“名副其实”.(1)设第一个三角形数为11a=,第二个三角形数为23a=,第三个三角形数为36a=,请直接写出第n个三角形数为n a的表达式(其中n为正整数).(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.(3)根据(1)的结论判断所有三角形数的倒数之和T 与2的大小关系并说明理由.6、当一个多位数的位数为偶数时,在其中间位插入一个一位数k ,(09k ≤≤,且k 为整数)得到一个新数,我们把这个新数称为原数的关联数,如:435729中间插入数字6可得435729的一个关联数4356729,其中4357297294351000=+⨯,43567297296100043510000=+⨯+⨯.请阅读以上材料,解决下列问题,(1)若一个三位关联数是原来两位数的9倍,请找出满足这样条件的三位关联数. (2)对于任何一个位数为偶数的多位数,中间插入数字m ,得其关联数(09m ≤≤,且m 为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.7、把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,……如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:1011031132332222222=+→=+→=+→,1011003113079979449077022222222222=+→=++→=+→=+→=+→,所以32和70都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数” .。

相关文档
最新文档