人教版八年级数学上册《公式法》第一课时参考教案
八年级《公式法因式分解(第一课时)》评课稿

八年级《公式法因式分解(第一课时)》评课稿《公式法因式分解(第一课时)》是北师大版八年级下册第四章第三节的内容。
听完郑老师的课,主要有以下亮点:亮点一、老师用她特有的温柔如水的声音,亲切的微笑,与学生课前交流“我的青春我做主,我们的课堂我们做主”,“老师喜欢在课堂上微笑的学生”,给学生提出课堂要求,给人一种如沐春风的感觉。
亮点二、整节课设计合理,讲解点拨细致,并善于给学生总结记忆规律,教给学生记忆的方法,且能及时评价鼓励学生,“数学课堂上,你的胆子有多大,你的收获就有多少”,给学生学习的信心。
亮点三、习题设置开放,提高学生的学习兴趣,拓展他们的思维,使学生从学习者——命题者——阅卷人,角色的变化,使所有学生都“动”了起来,课堂气氛活跃。
亮点四、老师整节课站位合适,能够走到学生之间,拉进老师与学生的距离。
亮点五、教会学生学习数学的四个法宝:学会观察——学会表达——学会用符号表示——学会思考,渗透数学思想,培养学生素养。
建议:
1. 学习目标设置应简介直观,有异议的不能出现。
2. 语言需在精炼,评价学生语言单调。
3. 开放习题的设置风险过大,不适合赛讲。
4. 数学思想需渗透,数学方法要学生体会,而不是老师总结强加给学生。
公式法的教案范文

公式法的教案范文一、教学目标:1. 让学生掌握公式的基本概念和应用。
2. 培养学生运用公式解决实际问题的能力。
3. 引导学生理解公式在数学及其它学科中的重要性。
二、教学内容:1. 公式的定义和特点2. 常见公式的记忆和运用3. 公式在实际问题中的应用三、教学重点与难点:1. 重点:公式的记忆和运用。
2. 难点:公式在实际问题中的应用。
四、教学方法:1. 讲授法:讲解公式的定义、特点和常见公式。
2. 案例分析法:分析实际问题,引导学生运用公式解决问题。
3. 练习法:让学生通过练习巩固所学知识。
五、教学过程:1. 引入:通过生活中的实例,引导学生思考公式的重要性。
2. 讲解:讲解公式的定义、特点和常见公式。
3. 案例分析:分析实际问题,引导学生运用公式解决问题。
4. 练习:布置练习题,让学生巩固所学知识。
5. 总结:对本节课的内容进行总结,强调公式的应用价值。
6. 作业布置:布置课后作业,巩固所学知识。
六、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,以及小组讨论的表现。
2. 练习完成情况:检查学生练习题的完成质量,评估学生对知识的掌握程度。
3. 课后作业:批改课后作业,了解学生对课堂内容的巩固情况。
4. 小组讨论:评估学生在小组讨论中的表现,包括合作态度、问题解决能力等。
七、教学资源:1. 教材:公式法相关教材,用于引导学生学习。
2. PPT:制作精美的PPT,辅助讲解和展示实例。
3. 练习题库:准备一定量的练习题,用于课堂练习和课后作业。
4. 案例材料:收集相关的实际问题案例,用于分析讲解。
八、教学进度安排:1. 第一课时:介绍公式的定义、特点和常见公式。
2. 第二课时:讲解公式在实际问题中的应用,进行案例分析。
3. 第三课时:进行公式练习,巩固所学知识。
4. 第四课时:总结本单元内容,布置课后作业。
九、课后作业:1. 复习本节课所学的公式,并尝试举一反三。
2. 完成课后练习题,巩固公式应用能力。
人教版八年级上册数学教案:14.3.2公式法(第一课时)

3.填空:(1)4a2=( )2(2) b2=( )2(3)0.16a4=( )2
4.因式分解:(1) ;
(2)
小组内个人展示先学成果,相互交流,明确答案。
对疑难问题,小组内共同讨论完成。
提出质疑,组长解答。
汇
报
交
流
教师指导学生归纳总结,并适时点拨、评价。
1.如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.
重点
1.平方差公式;2活运用方法分解因式。
教具
三角尺
难点
1.平方差公式;2活运用方法分解因式。
学具
三角尺
教师活动
学生活动
前
置
性
学
习
教师抽查学生的前置性作业的完成情况,并听取各小组组长的汇报。
学生展示前置性作业,小组长批改,并向老师汇报作业中存在的问题。
小
组
合
作
学
习
1.观察下列多项式:,
问题:(1)它们有什么共同特点吗?(2)能否进行因式分解?你会想到什么公式?
2.适用范围:它们有两项,且都是两个数的平方差。
各小组代表汇报小组合作学习成果,并讨论各小组提出的疑难问题。
班级集体讨论给出各种解决方案.师生共同解决疑难,记录要点。
巩
固
拓
展
练习:
P117 练习 1 、 2
小结:
本节课你有何收获?
学生独立完成练习,小组长批改,小组内纠正。
个别学生总结收获,相互补充,让全班学生更加明确本节课的知识点。
课时案
课题
14.3.2公式法(第一课时)
第2课时
总第53课时
人教版数学八年级上册教学设计14.3.2《公式法》

人教版数学八年级上册教学设计14.3.2《公式法》一. 教材分析人教版数学八年级上册第14章是关于二次根式的,而14.3.2《公式法》是这一章节中的一个重要内容。
公式法是解一元二次方程的一种方法,它通过将方程转化成标准形式,应用求根公式来求解。
本节课的内容对于学生来说,既熟悉又陌生。
说熟悉,是因为学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
说陌生,是因为学生还没有系统地学习过公式法,对于公式法的推导和应用还不够熟练。
因此,本节课的教学设计既要考虑学生已有的知识基础,又要注重引导学生深入理解公式法的原理和应用。
二. 学情分析学生在七年级已经接触过一元二次方程,但当时并未深入探究其解法。
在学习本节课之前,学生已经掌握了整式的加减、乘除和因式分解等基本运算,对于解一元二次方程,学生可能还停留在“试错法”和“图像法”等直观解法上。
因此,学生对于公式法的理解和应用会有一定的困难。
另外,学生在学习过程中可能存在以下问题:1. 对公式法的推导过程理解不深,只是机械记忆公式;2. 在应用公式法解题时,容易忽视对方程条件的判断,导致解题错误;3. 对于一些特殊类型的一元二次方程,学生可能无法熟练运用公式法求解。
三. 教学目标1.理解公式法的推导过程,掌握求解一元二次方程的基本步骤。
2.能够灵活运用公式法解一元二次方程,并能够判断解题过程中可能出现的错误。
3.通过对公式法的深入学习,提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.公式法的推导过程和原理的理解。
2.在解题过程中,如何正确运用公式法,并判断解题过程中可能出现的错误。
3.对于一些特殊类型的一元二次方程,如何运用公式法求解。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究、合作交流来理解公式法的原理和应用。
2.使用多媒体课件,通过动画演示和步骤解析,帮助学生直观地理解公式法的推导过程。
3.设计具有梯度的练习题,让学生在实践中巩固公式法的应用。
人教版数学八年级上册《因式分解公式法》(一)课件

(3)0.16x2-0.09y2z2 (4)16(x-1)2-9(x+2)2
(5)–16x4+81y4 (6)3x3y–12xy
(a+b)(a-b)=a2-b2 (整式乘法)
a2-b2 =(a+b)(a-b)ቤተ መጻሕፍቲ ባይዱ因式分解)
想一想
(1)下列多项式中,他们有什么共同特征?
①x2-25 ②9x2-y2
□2 -△2
(2)尝试将它们分别写成两个因式的乘积,并与同伴交流.
①x2-25=(x+5)(x-5)
②9x2-y2=(3x+y)(3x-y)
□2-△2=(□+△)(□-△)
议一议
平方差公式有哪些特点?
a2−b2= (a+b)(a−b)
左边:有两项;每一项都是平方项;两项符号相反 右边:两数的和与差的积
关键:确定公式中的a和b
火眼金睛
下列多项式可不可以用平方差公式因式分解?
①x2+y2
②-x2+y2
③-x2-y2
④x2-(-y)2
例题讲解
公式法因式分解(1)
回顾与思考
1、把下列各式分解因式:
(1)3a3b2-12ab3 关键:确定公因式 =3ab2(a2-4b)
(2)a(m-2)+b(2-m) =(m-2)(a-b)
一 看系数 二 看字母 三 看指数
最大公约数 相同字母最低次幂
回顾与思考
2、填空: ①25x2=(__5_x__)2
名言警句
严谨性之于数学 犹如道德之于人
自我检测
1、判断正误:
(1)x2+y2=(x+y)(x–y) (2)–x2+y2=–(x+y)(x–y) (3)x2–y2=(x+y)(x–y) (4)–x2–y2=–(x+y)(x–y)
(完整版)因式分解——公式法教案

因式分解——公式法(1)一.教课内容人教版八年级上册数学十四章因式分解——公式法第一课时二.教材剖析分解因式与数系中分解质因数近似,是代数中一种重要的恒等变形,它是在学生学习了整式运算的基础上提出来的,是整式乘法的逆向变形。
在后边的学习过程中应用宽泛,如:将分式通分和约分,二次根式的计算与化简,以及解方程都将以它为基础。
所以分解因式这一章在整个教材中起到了承上启下的作用。
同时,在因式分解中表现了数学的众多思想,如:“化归”思想、“类比”思想、“整体”思想等。
所以,因式分解的学习是数学学习的重要内容。
依据《课标》的要求,本章介绍了最基本的两种分解因式的方法:提公因式法和运用公式法(平方差、完好平方公式)。
所以公式法是分解因式的重要方法之一,是现阶段的学习要点。
三.教课目的知识与技术:理解和掌握平方差公式的构造特色,会运用平方差公式分解因式过程与方法: 1. 培育学生自主研究、合作沟通的能力2.培育学生察看、剖析和创新能力,深入学生逆向思想能力和数学应企图识,浸透整体思想感情、态度与价值观:让学生在合作学习的过程中体验成功的愉悦,进而加强学好数学的梦想和信心四.教课重难点要点:会运用平方差公式分解因式难点:正确理解和掌握公式的构造特色,并擅长运用平方差公式分解因式易错点:分解因式不完全五.教课方案(一)温故知新1.什么是因式分解?以下变形过程中,哪个是因式分解?为何?22(1)( 2x - 1) = 4 x- 4x + 1;(2)3x2 + 9xy - 3x = 3x( x+ 3y + 1);(3)x2 - 4+ 2x = ( x + 2)( x - 2) + 2x.2.我们已经学过的因式分解的方法是什么?将以下多项式分解因式。
(1) a3b3 - 2a2 b - ab ;( 2) - 9 x2 y + 3xy2 - 6 xy.【设计企图】经过复习因式分解的定义和方法,为持续学习公式法作好铺垫。
3.依据乘法公式进行计算:(1)( x + 1)(x -1);(2)( x + 2 y)(x - 2 y).4.依据上题结果分解因式:(1) x2 - 1;(2) x 2 - 4 y 2 .由以上 3、 4 两题,你发现了什么?【设计企图】经过整式乘法中的平方差公式引出公式法因式分解进而引出课题。
初二【数学(人教版)】因式分解——公式法(第一课时) 教学设计

2分钟1.5分钟0.5分钟归纳总结拓展提升例:利用因式分解计算22224914.35114.3)2(202120202020)1(⨯-⨯-+分析:(1)中2220212020-可利用平方差公式分解成)20212020()20212020(-⨯+,进而再进行化简运算;(1)中可以先提取共同的因数3.14,再利用平方差公式分解计算.解:2021202120202020)1()20212020(2020)20212020()20212020(2020202120202020)1(22-=--=-⨯++=-⨯++=-+28.6210014.3)4951()4951(14.3)4951(14.34914.35114.3)2(2222=⨯⨯=-⨯+⨯=-⨯=⨯-⨯例:如图,在一块长为a的正方形纸片的四角,各减去一个边长为b的正方形,其中a=1.86,b=0.34,求剩余部分面积.分析:求正方形减去四角后的面积,即用大正方形的面积,减去四个小正方面即可。
先可以列出式子为a2-4b2,若直接带入数值,发现运算量较大,所以可以先将a2-4b2因式分解后,再代入数值运算,可大大简化运算过程。
解:S剩= a2-4b2=(a+2b)(a-2b)把a=1.86,b=0.34带入S剩=(1.86+2×0.34)×(1.86-2×0.34)=2.72×1 =2.72四.归纳总结问题:今天我们主要学了哪些知识?利用平方差公式分解因式:))((22bababa-+=-问题:怎样判断能否利用平方差公式因式分解?利用平方差公式分解需要满足所给多项式能够写成两项平方差的形课后作业式,或者在变形后能够写成两项平方差的形式.平方差公式中的字母a,b可以表示数、单项式或多项式.问题:在运用平方差公式分解因式时,我们应该注意哪些问题?(1)若多项式中有公因式,应先提取公因式,再进一步分解因式;(2)因式分解要彻底,直到不能继续再分解为止.五.拓展提升如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm,向里依次为99cm,98cm,…,1cm,那么在这个图形中,所有画阴影部分的面积和是多少?解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002-992)+(982-972)+…+(22-12)=100+99+98+97+…+2+1=5050(cm2).答:所有阴影部分的面积和是5050cm2.六.课后作业1.下列所向是能否用平方差公式分解因式?为什么?22222222)4()3()2()1(yxyxyxyx--+--+2.分解因式16)4(4)3(49)2(251)1(422222+----ayyxbaba3.已知x+2y=3, x2-4y2=-15,求x-2y的值和x, y的值.。
公式法优秀教案

公式法【第一课时】【教学目标】(一)知识与技能:(1)使学生了解运用公式法分解因式的意义;(2)会用平方差公式进行因式分解;(3)使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。
【教学重难点】(1)发展学生的观察能力和逆向思维能力;(2)培养学生对平方差公式的运用能力。
【教学过程】(一)练一练活动内容:1.填空:(1)(x+3)(x-3)=_____________;(2)(4x+y)(4x-y)=_____________;(3)(1+2x)(1-2x)=_____________;(4)(3m+2n)(3m-2n)=_____________。
2.根据上面式子填空:(1)9m2-4n2=_____________;(2)16x2-y2=_____________;(3)x2-9=_____________;(4)1-4x2=_____________。
活动目的:学生通过观察、对比,把整式乘法中的平方差公式进行逆向运用,发展学生的观察能力与逆向思维能力。
注意事项:(2)使学生清楚地知道提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式。
注意事项:在教师的引导下,学生能逐步理解平方差公式中的a与b不仅可以表示单项式,也可以表示多项式。
(五)反馈练习1.活动内容:(1)判断正误:a.x2+y2=(x+y)(x-y) ( )b.-x2+y2=-(x+y)(x-y) ( )c.x2-y2=(x+y)(x-y) ( )d.-x2-y2=-(x+y)(x-y) ( )(2)把下列各式因式分解:a.4-m2b.9m2-4n2c.a2b2-m2d.(m-a)2-(n+b)2e.-16x4+81y4f.3x3y-12xy(3)如图,在一块边长为a的正方形纸片的四角,各剪去一个边长为b的正方形。
用a 与b表示剩余部分的面积,并求当a=3.6,b=0.8时的面积。
活动目的:通过学生的反馈练习,使教师能全面了解学生对平方差公式的特征是否清楚,对平方差公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式法(1)
教学目标:
1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。
2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。
3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。
4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。
教学重点:
应用平方差公式分解因式.
教学难点:
灵活应用公式和提公因式法分解因式,并理解因式分解的要求. 教学过程:
一、复习准备 导入新课
1、什么是因式分解?判断下列变形过程,哪个是因式分解?
①(x +2)(x -2)=24x − ②()()243223x x x x x −+=+−+ ③()77771m n m n −−=−−
2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。
(1) x 2+2x
(2) a 2b-ab
3、根据乘法公式进行计算:
(1)(x +3)(x -3)= (2)(2y +1)(2y -1)= (3)(a +b)(a -b)=
二、合作探究 学习新知
(一) 猜一猜:你能将下面的多项式分解因式吗?
(1)29x −= (2)241y −= (3)22a b −=
(二)想一想,议一议: 观察下面的公式:
22a b −=(a +b )
(a —b )(
这个公式左边的多项式有什么特征:_____________________________________ 公式右边是__________________________________________________________ 这个公式你能用语言来描述吗? _______________________________________
(三)练一练:
1、下列多项式能否用平方差公式来分解因式?为什么?
①22x y + ②22x y − ③22x y −+ ④22x y −−
2、你能把下列的数或式写成幂的形式吗?
(1)24x =( )2 (2)22x y =( )2 (3)20.25m =( )2 (4)449
a = ( )2 (5) 36a 4=( )2 (6) 0.49
b 2=( )2 (7) 81n 6=( )2 (8) 100p 4q 2=( )2
(四)做一做:
例3 分解因式:
(1) 4x 2- 9 (2) (x+p)2- (x+q)2
(五)试一试:
例4 下面的式子你能用什么方法来分解因式呢?请你试一试。
(1) x 4- y 4 (2) a 3b- ab
(六)想一想:
某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?
三、课堂练习
课本第168页“练习”第2题。
友情提示:
1、运用平方差公式进行因式分解的条件
①是一个二项式(或可看成一个二项式); ②每项可写成平方的形式; ③两项的符号相反。
2、注意事项
①有公因式要先提取公因式; ②再应用公式分解; ③每个因式要化简,并且分解彻底。
四、课堂小结
1、这节课你有哪些收获?还有哪些疑问没有解决?要及时与同学们和老师交流,及时解决!
2、你说,我说,大家说!有什么好的方法或者建议请记录下来,让我们共同学习,共同进步吧!
建议:
五、拓展延伸
1、给出下列算式: 32-12=8 =8×1;
52-32=16=8×2;
72-52=24=8×3;
92-72=32=8×4.
(1)观察上面一系列式子,你能发现什么规律?_________________________
(2)用含n的式子表示出来____________________________ (n为正整数).
2、对于任意的自然数n,22
+−−能被24整除吗? 为什么?
(7)(5)
n n。