2017上海中考数学压轴题专项训练
2017年上海中考数学一模压轴25题

25.(12分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.25.已知,如图,Rt△ABC中,∠ACB=90°,BC=8,cot∠BAC=34,点D在边BC上(不与点B、C重合),点E在边BC的延长线上,∠DAE=∠BAC,点F 在线段AE上,∠ACF=∠B.设BD=x.(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=AFEF,求y关于x的函数关系式,并写出它的定义域;(3)当△ADE是以AD为腰的等腰三角形时,求线段BD的长.25.(14分)如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.25.(14分)如图,在梯形ABCD中,AD∥BC,AC与BD相交于点O,AC=BC,点E在DC的延长线上,∠BEC=∠ACB,已知BC=9,cos∠ABC=1 3.(1)求证:BC2=CD•BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBC∽△DEB,求CE的长.25.(14分)如图,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC=34.点E为线段BD上任意一点(点E与点B,D不重合),过点E作EF∥CD,与BC相交于点F,连接CE.设BE=x,y=S△ECF S△BCD.(1)求BD的长;(2)如果BC=BD,当△DCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量x的取值范围.25.(14分)如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;(1)当点E在线段BC上时,求证:△AEF∽△ABD;(2)在(1)的条件下,联结AG,设BE=x,tan∠MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.25.(14分)如图,在直角三角形ABC中,∠ACB=90°,AB=10,sinB=35,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC 的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.25.(14分)已知:如图,在菱形ABCD中,AB=5,联结BD,sin∠ABD=√55.点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE;(2)当点P在线段BC上时,设BP=x,△PEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若△PEC是直角三角形,求线段BP的长.25.(14分)如图,已知四边形ABCD是矩形,cot∠ADB=34,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.25.(14分)如图,已知△ABC中,AB=AC=3,BC=2,点D是边AB上的动点,过点D作DE∥BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y.(1)求y关于x的函数解析式及定义域;(2)当△PQE是等腰三角形时,求BD的长;(3)连接CQ,当∠CQB和∠CBD互补时,求x的值.。
专题12 压轴题-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)
![专题12 压轴题-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/486869443b3567ec102d8a3e.png)
B. AC
C. DB
D. CA
【考点】向量的几何意义。 【分析】根据向量的意义, a b= AC 。故选 B。 9.(上海市 2009 年 4 分)如图,已知 AB ∥CD ∥ EF ,那么下列结论正确的是【 】
AD BC DF CE CD BC C. EF BE
A. 【答案】A。
BC DF CE AD CD AD D. EF AF
(B) 点 B 在圆 P 外、点 C 在圆 P 内; (D) 点 B、C 均在圆 P 内.
【考点】点与圆的位置关系,矩形的性质,勾股定理。 【分析】根据 BP=3AP 和 AB 的长度求得 AP=2,然后利用勾股定理求得圆 P 的半径 PD= AP 2 +AD2 22 3 5
2
7 。点 B、C 到 P 点的距离分别为:PB=6,
】
B、两个等腰三角形一定相似 D、两个等边三角形一定相似
【分析】根据相似三角形的判定定理对各个选项进行分析:A 不正确,不符合相似三角形的判定方法;B
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
不正确,没有指明相等的角或边比例,故不正确;C 不正确,没有指明另一个锐角相等或边成比例,故不正 确;D 正确,三个角均相等,能通过有两个角相等的三角形相似来判定。故选 D。 5.(上海市 2006 年 4 分)在下列命题中,真命题是【 A.两条对角线相等的四边形是矩形; B.两条对角线互相垂直的四边形是菱形; C.两条对角线互相平分的四边形是平行四边形; D.两条对角线互相垂直且相等的四边形是正方形。 】
关注微信公众号“上海初升高”,获取更多中考分析、试题资料
添加 A 选项中条件可用 ASA 判定△ACB≌△ACB’,从而推出 AB=AB’; 添加 B 选项中条件无法判定△ACB≌△ACB’,推不出 AB=AB’; 添加 C 选项中条件可用 ASA 判定△ACB≌△ACB’,从而推出 AB=AB’; 添加 D 选项以后是 AAS 判定△ACB≌△ACB’,从而推出 AB=AB’。 故选 A,C,D。 3.(上海市 2004 年 3 分)在函数 y (k 0 、 A2 ( x 2 ,y 2 ) 、A3 ( x 3 ,y 3 ) , ) 的图象上有三点 Ax (1 , y ) 1 1 已知 x ,则下列各式中,正确的是【 x x 1 2 0 3 】
上海市2017年中考数学压轴题专项训练(含答案).docx

上海市 2017 年中考数学压轴题专项训练( 含答案 )上海市 2017 年中考数学压轴题专项训练1. (本分 12分,第( 1)小分 3 分,第( 2)小分 4 分,第( 3)小分 5分)如,已知抛物y x2bx cA 0, 1 、 B4, 3两点 .(1)求抛物的解析式;(2 求tan ABO 的;y(3)点 B 作 BC x ,垂足点C,点 M 是抛物上一点,直 MN 平行于y交直 AB 于点 N,如果 M、 N、 B、 C点的四形是平行四形,求点N 的坐 .oxAB(第 24 题图)1.解:( 1)将 A( 0, -1)、 B( 4, -3)分代入y x2bx cc1,,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)得4b c316解,得b 91⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分 ) , c29 x所以抛物的解析式y x21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)2( 2)点 B 作 BC x ,垂足C,点A作AH OB,垂足点 H ⋯⋯⋯( 1 分)在 Rt AOH 中,OA=1,sin AOH sin OBC4,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)5∴ AH OA sin AOH 4,∴ OH3, BH OB OH22,⋯⋯⋯⋯⋯⋯(1 分)555在 Rt ABH 中,tan ABO AH4222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)BH5511(3)直 AB 的解析式y 1 x1,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2点 M 的坐(m, m29 m1) ,点N坐 (m, 1 m1)22那么 MN= (m29 m1)( 1 m1)m24m ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)22∵ M、 N、 B、 C 点的四形是平行四形,∴MN =BC=3解方程m24m =3得m27 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)解方程 m 24m3 得 m 1或 m3 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)所以符合 意的点N 有 4 个 (27,7 7 3 5 22),(27,2),(1, ),(3,)222⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)2. (本 分 14 分,第( 1)小 分 4 分,第( 2)小 分 5分,第( 3)小 分 5分)在 Rt △ABC 中,∠ ACB = 90 °, 点 B 的直 l ( l 不与直 AB 重合)与直BC 的角等于∠ ABC ,分 点 C 、点 A 作直 l 的垂 ,垂足分 点D 、点E .(1)如 1,当点 E 与点 B 重合 ,若 AE=4,判断以 C 点 心 CD 半径的C 与直 AB 的位置关系并 明理由;(2)如 2,当点 E 在 DB 延 上 ,求 :AE=2CD ;ACF 5(3) 直 CE 与直 AB 相交于点 F ,若EF, CD = 4,求 BD 的 .6ACCDB(E)lD Bl(第 25 题图 1)E(第 25 题图 2 )2.解:( 1) 点 C 作 CF ⊥ AB ,垂足 点 F. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ AED =90°,∠ ABC=∠ CBD ,∴∠ ABC=∠ CBD =45°,∵∠ ACB=90 °,∠ ABC=45°, AE=4,∴ CF=2 ,BC= 2 2 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) 又∵∠ CBD=∠ ABC=45°, CD ⊥ l ,∴ CD =2, ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) ∴CD =CF=2,∴ C 与直 AB 相切 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分) (2) 明:延 AC 交直 l 于点 G . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∠ ABC =∠GBC ,∴∠ BAC =∠BGC .∴AB = GB .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ( 1 分) ∴AC = GC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)∵AE ⊥l ,CD ⊥ l ,∴ AE ∥ CD .∴CD GC 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯AE GA 2∴AE = 2CD . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(3)( I )如 1,当点 E 在 DB 延 上 :点 C 作 CG ∥ l 交 AB 于点 H ,交 AE 于点 G , ∠ CBD =∠ HCB .∵∠ ABC =∠CBD ,∴∠ ABC =∠ HCB .∴ CH = BH .⋯⋯⋯( 1 分)∵∠ ACB = 90 °,∴∠ ABC +∠BAC =∠ HCB +∠ HCA = 90 °. CH∴∠ BAC =∠HCA .∴ CH = AH = BH .F∵CG ∥ l ,∴CHCF 5FBEEF.D B6(第 25 题图CH = 5x , BE = 6x , AB = 10 x .( 1 分)( 1 分)AGlE1)在 Rt △ ABE 中, AEAB 2BE 28x .由( 2)知 AE = 2CD = 8,∴ 8x 8 ,得 x 1 .∴CH = 5 , BE = 6 ,AB = 10.∵CG ∥ l ,∴HGAH 1 ,∴ HG=3.⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)ABEAB 2∴CG = CH + HG = 8 .易 四 形 CDEG 是矩形,∴ DE = CG = 8.CGH∴ BD DE BE2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)(II )如 2,当点 E 在 DB 上 :DEl同理可得 CH = 5 , BE = 6 , HG = 3 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(1 分)B(第 25题图 2)∴ DE CG CH HG 2 .∴BD =DE + BE = 8 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( 1 分)上所述, BD 的 2 或 8.3.已知点 A ( 2, 2)和点 B ( 4, n )在抛物 y=ax 2( a ≠0)上.(1)求 a 的 及点 B 的坐 ;(2)点 P 在 y 上,且 △ ABP 是以 AB 直角 的三角形,求点P 的坐 ;(3)将抛物 y=ax 2(a ≠0)向右并向下平移, 平移后点 A 的 点A ′,点B 的点 B ′,若四 形 ABB ′A ′ 正方形,求此 抛物 的表达式.【考点】二次函数图象上点的坐标特征;坐标与图形变化 -平移.【分析】( 1)把点 A (2,﹣ 2)代入 y=ax 2,得到 a ,再把点 B 代入抛物线解析式即可解决问题.(2)求出直线 AB 解析式,再分别求出过点 A 垂直于 AB 的直线的解析式,过点直线 AB 的解析式即可解决问题.B 垂直于( 3)先求出点 A ′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:( 1)把点 A ( 2,﹣ 2)代入 y=ax 2,得到 a=﹣, ∴抛物线为 y= ﹣ x 2, ∴x= ﹣ 4 时, y= ﹣ 8, ∴点 B 坐标(﹣ 4,﹣ 8),∴a=﹣,点 B 坐标(﹣ 4,﹣ 8).(2)设直线AB为 y=kx+b ,则有,解得,∴直线 AB 为 y=x ﹣ 4,∴过点 B 垂直 AB 的直线为 y= ﹣ x ﹣ 12,与 y 轴交于点P ( 0,﹣ 12),过点 A 垂直 AB 的直线为 y= ﹣ x ,与 y 轴交于点 P ′( 0, 0),∴点 P 在 y 轴上,且 △ ABP 是以 AB 为直角边的三角形时.点 P 坐标为( 0,0),或( 0,﹣12).(3)如图四边形 ABB ′A ′是正方形,过点 A 作 y 轴的垂线,过点B 、点 A ′作 x 轴的垂线得到点 E 、 F .∵直线 AB 解析式为 y=﹣ x ﹣ 12, ∴△ ABF , △ AA ′E 都是等腰直角三角形, ∵AB=AA ′= =6 ,∴AE=A ′E=6 ,∴点 A ′坐标为( 8,﹣ 8),∴点 A 到点 A ′是向右平移 6 个单位,向下平移 6 个单位得到,∴抛物线 y=﹣ x 2的顶点( 0,0),向右平移 6 个单位,向下平移6 个单位得到( 6,﹣ 6),∴此时抛物线为 y=﹣( x ﹣ 6) 2﹣ 6.4.已知, AB=5 , tan∠ABM= ,点 C、 D、 E 为动点,其中点 C、D 在射线 BM 上(点 C 在点 D 的左侧),点 E 和点 D 分别在射线 BA 的两侧,且 AC=AD ,AB=AE ,∠ CAD= ∠BAE .(1)当点 C 与点 B 重合时(如图 1),联结 ED ,求 ED 的长;(2)当 EA ∥BM 时(如图 2),求四边形 AEBD 的面积;(3)联结 CE,当△ ACE 是等腰三角形时,求点B、 C 间的距离.【考点】三角形综合题.【分析】( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H ,先证明 BF⊥ DE ,EF=DF ,再利用△ ABH ∽△ DBF ,得= ,求出 DF 即可解决问题.(2)先证明四边形 ADBE 是平行四边形,根据 S 平行四边形ADBE =BD?AH ,计算即可.(3)由题意 AC≠AE ,EC≠AC,只有 EA=EC ,利用四点共圆先证明四边形ADBE 是平行四边形,求出 DH 、 CH 即可解决问题.【解答】解:( 1)如图 1 中,延长 BA 交 DE 于 F,作 AH ⊥ BD 于 H .在RT△ABH 中,∵∠AHB=90°,∴sin ∠ABH= =,∴AH=3 , BH==4,∵A B=AD ,AH ⊥BD ,∴BH=DH=4 ,在△ ABE 和△ ABD 中,,∴△ ABD ≌△ ABE ,∴B E=BD ,∠ ABE= ∠ ABD ,∴B F ⊥ DE, EF=DF ,∵∠ ABH= ∠ DBF ,∠ AHB= ∠ BFD ,∴△ ABH ∽△ DBF ,∴= ,∴D F= ,∴D E=2DF=.(2)如图 2 中,作 AH ⊥ BD 于 H.∵AC=AD , AB=AE ,∠ CAD= ∠ BAE ,∴∠ AEB= ∠ABE= ∠ACD= ∠ADC , ∵AE ∥ BD ,∴∠ AEB+ ∠EBD=180° , ∴∠ EBD+ ∠ADC=180° , ∴EB ∥AD , ∵AE ∥ BD ,∴四边形 ADBE 是平行四边形, ∴ B D=AE=AB=5 ,AH=3 , ∴S 平行四边形 ADBE =BD?AH=15 .( 3)由题意 AC ≠AE ,EC ≠AC ,只有 EA=EC .如图 3 中,∵∠ ACD= ∠ AEB (已证), ∴A 、 C 、 B 、 E 四点共圆,∵ A E=EC=AB , ∴ = , ∴ = ,∴∠ AEC= ∠ABC , ∴AE ∥ BD ,由( 2)可知四边形 ADBE 是平行四边形, ∴AE=BD=AB=5 ,∵ A H=3 , BH=4 , ∴DH=BD ﹣ BH=1 , ∵AC=AD , AH ⊥ CD , ∴ C H=HD=1 , ∴BC=BD ﹣ CD=3 .5.如图,已知二次函数y=x 2+bx +c 图象顶点为 C ,与直线 y=x +m 图象交于 AB 两点,其中A 点的坐标为( 3, 4),B 点在 y 轴上.(1)求这个二次函数的解析式;(2)联结 AC ,求∠ BAC 的正切值;(3)点 P 为直线 AB 上一点,若△ ACP 为直角三角形,求点 P 的坐标.【分析】 ( 1)先把 A 点坐标代入 y=x +m 求出 m 得到直线 AB 的解析式为 y=x +1,这可求出直线与 y 轴的交点 B 的坐标, 然后把 A 点和 B 点坐标代入 y=x 2+bx+c 中得到关于 b 、c 的方程组,再解方程组求出b 、c 即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C ( 1, 0),再利用两点间的距离公式计算出BC 2=2, AB 2=18, AC 2=20,然后利用勾股定理的逆定理可证明△ABC 为直角三角形,∠ACB=90°,于是利用正切的定义计算tan ∠ BAC 的值;(3)分类讨论:当∠ APC=90° 时,有( 2 )得点 P 在 B 点处,此时 P 点坐标为( 0, 1);当∠ ACP=90°时,利用( 2tan ∠ PAC= = ,则 PC= AC P t t 1 )中结论得,设 ( , + ), 然后利用两点间的距离公式得到方程 t 2t 1 1 220,再解方程求出t 即可得到时 P 点 +( + ﹣ ) = 坐标.【解答】解:( 1 )把 A( 3 4 )代入 y=x m 得 3 +m=4 ,解得 m=1, +∴直线 AB 的解析式为 y=x 1+ ,∵当 x=0 时, y=x +1=1,∴B ( 0,1),把 B ( 0,1), A ( 3,4)代入 y=x 2+bx+c 得,解得 ,∴抛物线解析式为y=x 2﹣ 2x+1;(2)如图,∵ y =x 2﹣ 2x+1=( x ﹣ 1)2,∴C ( 1,0),22 2 2 2 +( 4 2 2 2 2∴BC =1 +1 =2,AB =3 ﹣ 1) =18 ,AC =( 3 ﹣ 1) +4 =20,而 2+18=20,∴BC 2+AB 2=AC 2,∴△ ABC 为直角三角形,∠ ACB=90° ,∴tan∠BAC===;(3)当∠ APC=90°时,点 P 在 B 点处,此时P 点坐标为( 0, 1);当∠ ACP=90°时,∵ tan∠ PAC==,∴P C= AC ,设P( t, t+1),∴t2t 1 1220,解得 t 1=﹣, t2=(舍去),此时P 点坐标为(﹣,+( + ﹣) =﹣+ 1),综上所述,满足条件的P 点坐标为( 0, 1)或(﹣,﹣+ 1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.6.如图, ? ABCD 中, AB=8 ,AD=10 , sinA=,E、F分别是边AB 、BC 上动点(点 E 不与A 、B 重合),且∠ EDF= ∠ DAB , DF 延长线交射线 AB 于G.(1)若 DE⊥AB 时,求 DE 的长度;(2)设 AE=x , BG=y ,求 y 关于 x 的函数解析式,并写出函数的定义域;(3)当△ BGF 为等腰三角形时,求AE 的长度.【分析】( 1) DE⊥ AB 时,根据sinA=即可解决问题.(2)如图 2 中,作 DM ⊥AB 于 M ,根据 DG 2=DM2+MG2=AGEG ,列出等式即可解决问题.(3)分三种情形① BF=BG ,②FB=FG ,③ GB=GF ,根据 BF ∥AD ,得出比例式,列方程即可解决.【解答】解:( 1)如图 1 中,∵DE ⊥ AB ,∴sinA==,∵A D=10 ,∴DE=8 .(2)如图 2 中,作DM ⊥AB 于 M ,由( 1)可知 DM=8 , AM=6 , MG=AB ﹣ AM=8 ﹣ 6=2 ,∴DG 2=DM2+MG2,∵∠ DGE= ∠ DGA ,∠ GDE= ∠ A,∴△ DGE∽△ AGD ,∴= ,∴DG 2=AGEG ,∴DM 2+MG2=AGEG ,∴82+( 2+y)2=( 8+y)( 8+y﹣ x),∴y=(0<x<8)(3)①当 BF=FG 时,∵ BF∥ AD ,∴= ,∴AD=AG=10 ,∴y=2 ,即=2,解得 x=2 ,∴A E=2 .②当 FB=FG 时,∵ BF ∥AD ,∴=,∴A D=DG=10 ,∵DM ⊥AG ,∴A M=MB=6 ,∴A G=12 ,∴y=4 ,即=4,解得 x=.③当 GB=GF 时,∵ BF ∥ AD ,∠ GBF= ∠ BFG,∴∠ A= ∠ GBF ,∠ ADG= ∠ BFG ,∴∠ A= ∠ ADG ,∵∠ A= ∠ EDG ,∴∠ EDG= ∠ ADG ,∴此时点 E 与点 A 重合,不合题意.综上所述 AE=2 或时,△ BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.。
(完整版),2017届上海初三数学各区一模压轴题汇总情况(15套全),推荐文档

2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,为直角的斜边上一点,交于,如果沿着翻折,D ABC D AB DE AB ^AC E AED D DE 恰好与重合,联结交于,如果,,那么A B CD BEF 8AC =1tan 2A =:___________.CF DF =图18图A24(宝山)如图,二次函数的图像与轴交于两点,与轴交于点已知点232(0)2y ax x a =-+¹x A B 、y ,C .(4,0)A -(1)求抛物线与直线的函数解析式;AC (2)若点是抛物线在第二象限的部分上的一动点,四边形的面积为,求关于的函数关(,)D m n OCDA S S m 系;(3)若点为抛物线上任意一点,点为轴上任意一点,当以为顶点的四边形是平行四边形时,E F x A C E F 、、、请直接写出满足条件的所有点的坐标.E 图24图25(宝山)如图(1)所示,为矩形的边上一点,动点同时从点出发,点以的E ABCD AD P Q 、B P 1/cm s 速度沿着折线运动到点时停止,点以的速度沿着运动到点时停止。
设BE ED DC --C Q 2/cm s BC C 同时出发秒时,的面积为,已知与的函数关系图像如图(2)(其中曲线为抛物线P Q 、t BPQ D 2ycm y t OG 的一部分,其余各部分均为线段).(1)试根据图(2)求时,的面积关于的函数解析式;05t <£BPQ D y t (2)求出线段的长度;BC BE ED 、、(3)当为多少秒时,以为顶点的三角形和相似;t B P Q 、、ABE D (4)如图(3)过点作于,绕点按顺时针方向旋转一定角度,如果中的E EF BC ^F BEF D B BEF D E F 、对应点恰好和射线的交点在一条直线,求此时两点之间的距离. H I 、BE CD 、G C I 、图3图图2图图1图图25图崇明县一模压轴题18(崇明)如图,已知 中,,于点,点在上,且,联结,ABC ∆45ABC ∠=o AH BC ⊥H D AH DH CH =BD 将绕点旋转,得到(点、分别与点、对应),联结,当点落在上时,(不BHD V H EHF ∆B D E F AE F AC F 与重合)如果,,那么的长为;C 4BC =tan 3C =AE24(崇明)在平面直角坐标系中,抛物线与轴交于点 ,与轴的正半轴交于点235y x bx c =-++y (0,3)A x (5,0)B ,点在线段上,且 ,联结、将线段绕着点顺时针旋转,得到线段,过点作直D OB 1OD =AD AD D 90︒DE E 线轴,垂足为,交抛物线于点. l x ⊥H F (1)求这条抛物线的解析式;(2)联结,求的值;DF cot EDF ∠(3)点在直线上,且,求点的坐标.G l 45EDG ︒∠=G25(崇明)在中,,,,以为斜边向右侧作等腰直角,是ABC ∆90ACB ︒∠=3cot 2A =BC EBC ∆P 延长线上一点,联结,以为直角边向下方作等腰直角,交线段于点,联结. BE PC PC PCD ∆CD BE F BD (1)求证:;PC CECD BC=(2)若,的面积为,求关于的函数解析式,并写出定义域;PE x =BDP ∆y y x (3)当为等腰三角形时,求的长.BDF ∆PE奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是______.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线与x 轴相交于点A (-1,0)和点B ,与y 轴相2y x bx c =-++交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
2015-2017年上海数学物理中考题压轴题

19.(1 分)将铁粉加到一定量的硝酸银、硝酸铜和硝酸锌的混合溶液中,充分反应后过滤,在滤渣中加入稀盐酸, 无明显现象.则所得滤液中( ) A.只含有硝酸锌 B.一定含有硝酸锌和硝酸亚铁 C.一定没有硝酸银 D.一定没有硝酸银和硝酸铜
24.(6 分)某实验室的废液中含有氯化钙、盐酸、氯化镁和氯化铜,兴趣小组设计以下实验方案从废液制得无水氯 化钙. 查阅资料:氯化钙的溶解度随温度的升高明显增大.
点 B 为圆心, BC 为半径画弧,交线段 OC 于点 E (点 E 不与点 O 、点 C 重合).
(1)求证: OD OE ;
(2)如果⊙ O 的半径长为 5 (如图 9 ),设 OD x , BC y ,求 y 关于 x 的函数解析式,并写出它的定义域;
(3)如果⊙ O 的半径长为 5 ,联结 AC ,当 BE AC 时,求 OD 的长.
已知:正方形 ABCD ,点 E 在边 CD 上,点 F 在线段 BE 的延长线上,且 FCE CBE . (1)如图 5 ,当点 E 为 CD 边的中点时,求证: CF 2EF ; (2)如图 6 ,当点 F 位于线段 AD 的延长线上,求证: EF DE .
BE DF
A
D
A
D
F
F
1 证明含有钾元素的焰色反应现象是
;
2 白色沉淀 A 是
(写化学式);
3 加入 Ba(NO3)2 无明显现象,证明溶液中肯定不含
(填编号);
A.K2CO3
B.KCl
C.K2SO4
④ 原溶液中溶质的组成可能情况为:
。
17.(1 分)以下说法正确的是( )
A.CO2、SO2、CO 都是非金属氧化物,所以它们都能被氢氧化钠溶液吸收 B.氢氧化钠、氢氧化钙、氢氧化铜都是碱,所以它们都能使酚酞试液变红色 C.用 pH 试纸测定某溶液的 pH 时,pH 试纸是不需被湿润,否侧测得 pH 一定会偏大
2017年上海中考数学一模压轴25题

25. (12分)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE - ED - DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,ABPQ 的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线0G为抛物线的部分,其余各部分均为线段)(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF丄BC于F,ABEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线, 求此时C、I两点之间的距离.25.已知,如图,Rt^ABC 中,/ ACB=90 , BC=8, cot/BAC=-,点D 在边BC上(不与点B、C重合),点E在边BC的延长线上,/ DAE= / BAC,点F 在线段AE 上,/ ACF= / B .设BD=x .(1)若点F恰好是AE的中点,求线段BD的长;(2)若y=—,求y关于x的函数关系式,并写出它的定义域;(3)当AADE是以AD为腰的等腰三角形时,求线段BD的长.25. (14分)如图,△ABC边AB上点D、E (不与点A、B重合),满足/ DCE= / ABC,/ ACB=90 , AC=3 , BC=4;(1)当CD丄AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.25. (14分)如图,在梯形ABCD中,AD // BC , AC与BD相交于点O, AC=BC, 点E 在DC 的延长线上,/ BEC=Z ACB,已知BC=9, cos/ ABC二一.(1)求证:BC2=CD?BE;(2)设AD=x,CE=y,求y与x之间的函数解析式,并写出定义域;(3)如果△DBCDEB,求CE 的长.25.( 14 分)如图,已知在梯形ABCD 中,AD // BC,AB=AD=5 ,an/ DBC=-•点E为线段BD上任意一点(点E与点B, D不重合),过点E作EF// CD,与BC(1)求BD的长;(2)如果BC=BD,当ADCE是等腰三角形时,求x的值;(3)如果BC=10,求y关于x的函数解析式,并写出自变量25. x的取值范围.(14分)如图,矩形ABCD中,AB=3 , BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF丄AE,射线EF与对角线BD交于点G,与射线AD交于点M ;(1)当点E在线段BC上时,求证:△AEFABD ;(2)在(1)的条件下,联结AG,设BE=x,ta n/ MAG=y,求y关于x的函数解析式,并写出x的取值范围;(3)当△AGM与△ADF相似时,求BE的长.25. (14 分)如图,在直角三角形ABC 中,/ ACB=90 , AB=10 , sinB=-,点O 是AB的中点,/ DOE=Z A,当/ DOE以点O为旋转中心旋转时,OD交AC 的延长线于点D,交边CB于点M,OE交线段BM于点N .(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果AOMN是以OM为腰的等腰三角形,请直接写出线段CM的长.冒用图25. (14 分)已知:女口图,在菱形ABCD 中,AB=5 ,联结BD, sin/ ABD= —•点P是射线BC上的一个动点(点P不与点B重合),联结AP,与对角线BD相交于点E,联结EC.(1)求证:AE=CE ;(2)当点P在线段BC上时,设BP=x, APEC的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)当点P在线段BC的延长线上时,若APEC是直角三角形,求线段BP的长.25. (14分)如图,已知四边形ABCD是矩形,cot/ADB二-,AB=16 •点E在射线BC 上,点F在线段BD上,且/ DEF= / ADB .(1)求线段BD的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长.25. (14分)如图,已知△ABC中,AB=AC=3 , BC=2,点D是边AB上的动点,过点D 作DE // BC,交边AC于点E,点Q是线段DE上的点,且QE=2DQ,连接BQ并延长,交边AC于点P.设BD=x,AP=y .(1)求y关于x的函数解析式及定义域;(2)当△^QE是等腰三角形时,求BD的长;(3)连接CQ,当/ CQB和/CBD互补时,求x的值.。
【2017年整理】上海中考数学压轴题24和25题独家答案(新光明张老师)

2012年上海中考数学压轴题24和25题独家答案24. 如图,已知二次函数26y ax x c =++的图像过点(4,0)A 和(1,0)B -,交y 轴于点C ,点D 在线段OC 上,OD t =.点E 在第二象限内, 90ADE ∠=︒,1tan 2DAE ∠=,EF OD ⊥于点F . (1) 求二次函数的解析式;(2) 求EF 和OF 的长(用含t 的代数式表示).25. 如下图:在扇形AOB 中,90AOB ∠=︒,2AO BO ==.点C 是 AB 上的一个动点,且不与,A B 重合.OE AC ⊥,OD BC ⊥,垂足分别为,E D ,(1) 当1BC =时,求OD 的值;(2) 在ODE △中是否有边不改变?若存在,请求出改边长,若不存在,请说明理由。
(3) 设BD x =,ODE △的面积为y ,求函数解析式和定义域。
解: (1) 因为OD BC ⊥,所以12BD CD ==,作文优美语段集锦1、青春是用意志的血滴和拼搏的汗水酿成的琼浆——历久弥香;青春是用不凋的希望和不灭的向往编织的彩虹——绚丽辉煌;青春是用永恒的执著和顽强的韧劲筑起的一道铜墙铁壁——固若金汤。
2、信念是巍巍大厦的栋梁,没有它,就只是一堆散乱的砖瓦;信念是滔滔大江的河床,没有它,就只有一片泛滥的波浪;信念是熊熊烈火的引星,没有它,就只有一把冰冷的柴把;信念是远洋巨轮的主机,没有它,就只剩下瘫痪的巨架。
3、站在历史的海岸漫溯那一道道历史沟渠:楚大夫沉吟泽畔,九死不悔;魏武帝扬鞭东指,壮心不已;陶渊明悠然南山,饮酒采菊……他们选择了永恒,纵然谄媚诬蔑视听,也不随其流扬其波,这是执著的选择;纵然马革裹尸,魂归狼烟,只是豪壮的选择;纵然一身清苦,终日难饱,也愿怡然自乐,躬耕陇亩,这是高雅的选择。
在一番选择中,帝王将相成其盖世伟业,贤士迁客成其千古文章。
3、只有启程,才会到达理想和目的地,只有拼搏,才会获得辉煌的成功,只有播种,才会有收获。
2017年中考压轴题(26题)二次函数综合

2017年中考压轴题——二次函数、动点综合题1.(本小题满分13分)如图,二次函数32-+=bx ax y 的图象与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .该抛物线的顶点为M . (1)求该抛物线的解析式; (2)判断△BCM 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形与△BCM 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.2.(13分)如图,已知抛物线y=x 2+bx+c 经过△ABC 的三个顶点,其中点A (0,1),点B (﹣9,10),AC ∥x轴,点P 时直线AC 下方抛物线上的动点. (1)求抛物线的解析式; (2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交于点E 、F,当四边形AECP 的面积最大时,求点P 的坐标; (3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出点Q 的坐标,若不存在,请说明理由.(第26题图)3.(13分)如图1,抛物线y=ax 2+bx +3(a ≠0)与x 轴交于点A 、点B (点A 在点B 左侧),与y 轴交于点C ,点D 为抛物线的顶点,已知点A 、点B 的坐标分别为A (﹣1,0)、B (3,0). (1)求抛物线的解析式;(2)在直线BC 上方的抛物线上找一点P ,使△PBC 的面积最大,求P 点的坐标;(3)如图2,连接BD 、CD ,抛物线的对称轴与x 轴交于点E ,过抛物线上一点M 作MN ⊥CD ,交直线CD 于点N ,求当∠CMN=∠BDE 时点M 的坐标.4.(本小题满分13分) 如图,已知抛物线232y ax x c =-+与x 轴相交于A 、B 两点,并与直线122y x =-交于B 、C 两点,其中点C 是直线122y x =-与y 轴的交点,连接AC . ⑴求抛物线的解析式; ⑵证明:△ABC 为直角三角形;⑶△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由.(第26题图)5.(本小题满分13分)如图,二次函数32-+=bx ax y 的图象与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C .该抛物线的顶点为M .(1)求该抛物线的解析式;(2)判断△BCM 的形状,并说明理由.(3)探究坐标轴上是否存在点P ,使得以点P ,A ,C 为顶点的三角形与△BCM 相似?若存在,请求出点P 的坐标,若不存在,请说明理由.6.(本题满分13分)如图,已知二次函数y =﹣x 2+bx +c 的图象交x 轴于点A (4,0)和点B ,交y 轴于点C (0,4). (1)求这个二次函数的表达式;(2)若点P 在第一象限内的抛物线上,求四边形AOCP 面积的最大值和此时点P 的坐标;(3)在平面直角坐标系内,是否存在点Q ,使A ,B ,C ,Q 四点构成平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.7.(13分)如图,已知抛物线与x 轴交于A (﹣1,0)、B (5,0)两点,与y 轴交于点C (0,5). (1)求该抛物线所对应的函数关系式;(2)D 是笫一象限内抛物线上的一个动点(与点C 、B 不重合),过点D 作DF ⊥x 轴于点F ,交直线BC 于点E ,连结BD 、CD .设点D 的横坐标为m ,△BCD 的面积为S .①求S 关于m 的函数关系式及自变量m 的取值范围;②当m 为何值时,S 有最大值,并求这个最大值; ③直线BC 能否把△BDF 分成面积之比为2:3的两部分?若能,请求出点D 的坐标;若不能,请说明理由.(第26题8.(13分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m ,宽是4m .按照图中所示的直角坐标系,抛物线可以用y=﹣x 2+bx +c 表示,且抛物线的点C 到墙面OB 的水平距离为3m 时,到地面OA 的距离为m .(1)求该抛物线的函数关系式,并计算出拱顶D 到地面OA 的距离;(2)一辆货运汽车载一长方体集装箱后高为6m ,宽为4m ,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m ,那么两排灯的水平距离最小是多少米?9.(13分)如图,已知抛物线与x 轴交于A (﹣1,0)、E (3,0)两点,与y 轴交于点B (0,3). (1)求抛物线的解析式;(2)设抛物线顶点为D ,求四边形AEDB 的面积;(3)△AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由.26. (满分13分) 如图,抛物线经过A (﹣1,0),B (5,0),C (0,25)三点. (1)求抛物线的解析式; (2)在抛物线的对称轴上有一点P ,使PA+PC 的值最小,求点P 的坐标; (3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.(本题满分12分,第(1)小题满分3分,第(2)小题满分4分,第(3)小题满分5分)如图,已知抛物线2y x bx c =++经过()01A -,、()43B -,两点. (1)求抛物线的解析式;(2 求tan ABO ∠的值;(3)过点B 作BC ⊥x 轴,垂足为点C ,点M 是抛物线上一点,直线MN 平行于y 轴交直线AB 于点N ,如果M 、N 、B 、C 为顶点的四边形是平行四边形,求点N 的坐标.24.解:(1)将A (0,-1)、B (4,-3)分别代入2y x bx c =++得1,1643c b c =-⎧⎨++=-⎩, ………………………………………………………………(1分)解,得9,12b c =-=- …………………………………………………………………(1分)所以抛物线的解析式为2912y x x =--……………………………………………(1分) (2)过点B 作BC ⊥x 轴,垂足为C ,过点A 作AH ⊥OB ,垂足为点H ………(1分)在Rt AOH ∆中,OA =1,4sin sin ,5AOH OBC ∠=∠=……………………………(1分)∴4sin 5AH OA AOH =∠=g ,∴322,55OH BH OB OH ==-=, ………………(1分) 在Rt ABH ∆中,4222tan 5511AH ABO BH ∠==÷=………………………………(1分) (3)直线AB 的解析式为112y x =--, ……………………………………………(1分)设点M 的坐标为29(,1)2m m m --,点N 坐标为1(,1)2m m --那么MN =2291(1)(1)422m m m m m -----=-; …………………………(1分) ∵M 、N 、B 、C 为顶点的四边形是平行四边形,∴MN =BC =3解方程24m m -=3得2m =± ……………………………………………(1分)解方程243m m -+=得1m =或3m =; ………………………………………(1分)所以符合题意的点N 有4个35(22),(22),(1,),(3,)22--+--- ……………………………………………………………………………………(1分)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)在Rt △ABC 中,∠ACB = 90°,经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于∠ABC ,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)如图1,当点E 与点B 重合时,若AE =4,判断以C 点为圆心CD 长为半径的圆C 与直线AB 的位置关系并说明理由;(2)如图2,当点E 在DB 延长线上时,求证:AE =2CD ;(3)记直线CE 与直线AB 相交于点F ,若56CF EF =,CD = 4,求BD 的长.25.解:(1)过点C 作CF ⊥AB ,垂足为点F. ……………………………………………(1分) ∵∠AED =90°,∠ABC =∠CBD ,∴∠ABC =∠CBD =45°,∵∠ACB =90°,∠ABC =45°,AE =4,∴CF =2,BC =1分) 又∵∠CBD =∠ABC =45°,CD ⊥l ,∴CD =2, …………………………………………(1分) ∴CD =CF =2,∴圆C 与直线AB 相切.……………………………………………………(1分) (2)证明:延长AC 交直线l 于点G . ………………………………………………(1分) ∵∠ACB = 90°,∠ABC =∠GBC ,∴∠BAC =∠BGC .∴AB = GB .…………………………………………………………………………………(1分) ∴AC = GC .…………………………………………………………………………………(1分) ∵AE ⊥l ,CD ⊥l ,∴AE ∥CD .ACD B (E ) l(第25题图1)(第25题图2)ACD ElB∴12CD GC AE GA ==.…………………………………………………………………………(1分) ∴AE = 2CD . ………………………………………………………………………………(1分)(3)(I )如图1,当点E 在DB 延长线上时:过点C 作CG ∥l 交AB 于点H ,交AE 于点G ,则∠CBD =∠HCB . ∵∠ABC =∠CBD ,∴∠ABC =∠HCB .∴CH = BH .………(1分) ∵∠ACB = 90°,∴∠ABC +∠BAC =∠HCB +∠HCA = 90°. ∴∠BAC =∠HCA .∴CH = AH = BH .∵CG ∥l ,∴56CH CF BE EF ==.设CH = 5x ,则BE = 6x ,AB = 10x .在Rt △ABE 中,8AE x ==. 由(2)知AE = 2CD = 8,∴88x =,得1x =. ∴CH = 5,BE = 6,AB = 10.∵CG ∥l ,∴12HG AH BE AB ==,∴HG =3.……………………(1分) ∴CG = CH + HG = 8.易证四边形CDEG 是矩形,∴DE = CG = 8.∴2BD DE BE =-=.…………………………………………(1分) (II )如图2,当点E 在DB 上时:同理可得CH = 5,BE = 6,HG = 3.…………………………(1分) ∴2DE CG CH HG ==-=.∴BD =DE + BE = 8.…………………………………………………………………………(1分) 综上所述,BD 的长为2或8.24.已知点A (2,﹣2)和点B (﹣4,n )在抛物线y=ax 2(a ≠0)上. (1)求a 的值及点B 的坐标;(2)点P 在y 轴上,且△ABP 是以AB 为直角边的三角形,求点P 的坐标;(3)将抛物线y=ax 2(a ≠0)向右并向下平移,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形ABB ′A ′为正方形,求此时抛物线的表达式.(第25题图1)A CD ElGBHFB(第25题图2)A CD lGE HF【考点】二次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】(1)把点A(2,﹣2)代入y=ax2,得到a,再把点B代入抛物线解析式即可解决问题.(2)求出直线AB解析式,再分别求出过点A垂直于AB的直线的解析式,过点B垂直于直线AB的解析式即可解决问题.(3)先求出点A′坐标,确定是如何平移的,再确定抛物线顶点的坐标即可解决问题.【解答】解:(1)把点A(2,﹣2)代入y=ax2,得到a=﹣,∴抛物线为y=﹣x2,∴x=﹣4时,y=﹣8,∴点B坐标(﹣4,﹣8),∴a=﹣,点B坐标(﹣4,﹣8).(2)设直线AB为y=kx+b,则有,解得,∴直线AB为y=x﹣4,∴过点B垂直AB的直线为y=﹣x﹣12,与y轴交于点P(0,﹣12),过点A垂直AB的直线为y=﹣x,与y轴交于点P′(0,0),∴点P在y轴上,且△ABP是以AB为直角边的三角形时.点P坐标为(0,0),或(0,﹣12).(3)如图四边形ABB′A′是正方形,过点A作y轴的垂线,过点B、点A′作x轴的垂线得到点E、F.∵直线AB解析式为y=﹣x﹣12,∴△ABF,△AA′E都是等腰直角三角形,∵AB=AA′==6,∴AE=A′E=6,∴点A′坐标为(8,﹣8),∴点A到点A′是向右平移6个单位,向下平移6个单位得到,∴抛物线y=﹣x2的顶点(0,0),向右平移6个单位,向下平移6个单位得到(6,﹣6),∴此时抛物线为y=﹣(x﹣6)2﹣6.25.已知,AB=5,tan∠ABM=,点C、D、E为动点,其中点C、D在射线BM上(点C 在点D的左侧),点E和点D分别在射线BA的两侧,且AC=AD,AB=AE,∠CAD=∠BAE.(1)当点C与点B重合时(如图1),联结ED,求ED的长;(2)当EA∥BM时(如图2),求四边形AEBD的面积;(3)联结CE,当△ACE是等腰三角形时,求点B、C间的距离.【考点】三角形综合题.【分析】(1)如图1中,延长BA交DE于F,作AH⊥BD于H,先证明BF⊥DE,EF=DF,再利用△ABH∽△DBF,得=,求出DF即可解决问题.=BD•AH,计算即可.(2)先证明四边形ADBE是平行四边形,根据S平行四边形ADBE(3)由题意AC≠AE,EC≠AC,只有EA=EC,利用四点共圆先证明四边形ADBE是平行四边形,求出DH、CH即可解决问题.【解答】解:(1)如图1中,延长BA交DE于F,作AH⊥BD于H.在RT△ABH中,∵∠AHB=90°,∴sin∠ABH==,∴AH=3,BH==4,∵AB=AD,AH⊥BD,∴BH=DH=4,在△ABE 和△ABD中,,∴△ABD≌△ABE,∴BE=BD,∠ABE=∠ABD,∴BF⊥DE,EF=DF,∵∠ABH=∠DBF,∠AHB=∠BFD,∴△ABH∽△DBF,∴=,∴DF=,∴DE=2DF=.(2)如图2中,作AH⊥BD于H.∵AC=AD,AB=AE,∠CAD=∠BAE,∴∠AEB=∠ABE=∠ACD=∠ADC,∵AE∥BD,∴∠AEB+∠EBD=180°,∴∠EBD+∠ADC=180°,∴EB∥AD,∵AE∥BD,∴四边形ADBE是平行四边形,∴BD=AE=AB=5,AH=3,∴S=BD•AH=15.平行四边形ADBE(3)由题意AC≠AE,EC≠AC,只有EA=EC.如图3中,∵∠ACD=∠AEB(已证),∴A、C、B、E四点共圆,∵AE=EC=AB,∴=,∴=,∴∠AEC=∠ABC,∴AE∥BD,由(2)可知四边形ADBE是平行四边形,∴AE=BD=AB=5,∵AH=3,BH=4,∴DH=BD﹣BH=1,∵AC=AD,AH⊥CD,∴CH=HD=1,∴BC=BD﹣CD=3.24.如图,已知二次函数y=x2+bx+c图象顶点为C,与直线y=x+m图象交于AB两点,其中A点的坐标为(3,4),B点在y轴上.(1)求这个二次函数的解析式;(2)联结AC,求∠BAC的正切值;(3)点P为直线AB上一点,若△ACP为直角三角形,求点P的坐标.【分析】(1)先把A点坐标代入y=x+m求出m得到直线AB的解析式为y=x+1,这可求出直线与y轴的交点B的坐标,然后把A点和B点坐标代入y=x2+bx+c中得到关于b、c的方程组,再解方程组求出b、c即可得到抛物线解析式;(2)如图,先抛物线解析式配成顶点式得到C(1,0),再利用两点间的距离公式计算出BC2=2,AB2=18,AC2=20,然后利用勾股定理的逆定理可证明△ABC为直角三角形,∠ACB=90°,于是利用正切的定义计算tan∠BAC的值;(3)分类讨论:当∠APC=90°时,有(2)得点P在B点处,此时P点坐标为(0,1);当∠ACP=90°时,利用(2)中结论得tan∠PAC==,则PC=AC,设P(t,t+1),然后利用两点间的距离公式得到方程t2+(t+1﹣1)2=20,再解方程求出t即可得到时P点坐标.【解答】解:(1)把A(3,4)代入y=x+m得3+m=4,解得m=1∴直线AB的解析式为y=x+1,∵当x=0时,y=x+1=1,∴B(0,1),把B(0,1),A(3,4)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2﹣2x+1;(2)如图,∵y=x2﹣2x+1=(x﹣1)2,∴C(1,0),∴BC2=12+12=2,AB2=32+(4﹣1)2=18,AC2=(3﹣1)2+42=20,而2+18=20,∴BC2+AB2=AC2,∴△ABC为直角三角形,∠ACB=90°,∴tan∠BAC===;(3)当∠APC=90°时,点P在B点处,此时P点坐标为(0,1);当∠ACP=90°时,∵tan∠PAC==,∴PC=AC,设P(t,t+1),∴t2+(t+1﹣1)2=20,解得t1=﹣,t2=(舍去),此时P点坐标为(﹣,﹣ +1),综上所述,满足条件的P点坐标为(0,1)或(﹣,﹣ +1).【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;能运用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式;能利用勾股定理的逆定理证明直角三角形.25.如图,▱ABCD中,AB=8,AD=10,sinA=,E、F分别是边AB、BC上动点(点E 不与A、B重合),且∠EDF=∠DAB,DF延长线交射线AB于G.(1)若DE⊥AB时,求DE的长度;(2)设AE=x,BG=y,求y关于x的函数解析式,并写出函数的定义域;(3)当△BGF为等腰三角形时,求AE的长度.【分析】(1)DE⊥AB时,根据sinA=即可解决问题.(2)如图2中,作DM⊥AB于M,根据DG2=DM2+MG2=AGEG,列出等式即可解决问题.(3)分三种情形①BF=BG,②FB=FG,③GB=GF,根据BF∥AD,得出比例式,列方程即可解决.【解答】解:(1)如图1中,∵DE⊥AB,∴sinA==,∵AD=10,∴DE=8.(2)如图2中,作DM⊥AB于M,由(1)可知DM=8,AM=6,MG=AB﹣AM=8﹣6=2,∴DG2=DM2+MG2,∵∠DGE=∠DGA,∠GDE=∠A,∴△DGE∽△AGD,∴=,∴DG2=AGEG,∴DM2+MG2=AGEG,∴82+(2+y)2=(8+y)(8+y﹣x),∴y=(0<x<8)(3)①当BF=FG时,∵BF∥AD,∴=,∴AD=AG=10,∴y=2,即=2,解得x=2,∴AE=2.②当FB=FG时,∵BF∥AD,∴=,∴AD=DG=10,∵DM⊥AG,∴AM=MB=6,∴AG=12,∴y=4,即=4,解得x=.③当GB=GF时,∵BF∥AD,∠GBF=∠BFG,∴∠A=∠GBF,∠ADG=∠BFG,∴∠A=∠ADG,∵∠A=∠EDG,∴∠EDG=∠ADG,∴此时点E与点A重合,不合题意.综上所述AE=2或时,△BFG是等腰三角形.【点评】本题考查四边形综合题、锐角三角函数、相似三角形的判定和性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,学会用方程的思想解决问题,属于中考常考题型.。