上海历年中考数学压轴题复习(试题附答案)解析

合集下载

初中数学中考压轴题及答案详解(上海篇)

初中数学中考压轴题及答案详解(上海篇)

专题训练125.如图9,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连结AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若1tan3BPD∠=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.图9 图10(备用)参考答案:(1)解:∵∠B=30°∠ACB=90°∴∠BAC=60°∵AD=AE ∴∠AED=60°=∠CEP ∴∠EPC=30°∴三角形BDP为等腰三角形∵△AEP与△BDP相似∴∠EAP=∠EPA=∠DBP=∠DPB=30°∴AE=EP=1∴在RT△ECP中,EC=12EP=12(2)过点D作DQ⊥AC于点Q,且设AQ=a,BD=x ∵AE=1,EC=2∴QC=3-a∵∠ACB=90°∴△ADQ与△ABC相似∴AD AQ AB AC=即113ax=+,∴31 ax=+∵在RT△ADQ中2222328111x x DQ AD AQx x+-⎛⎫=-=-=⎪++⎝⎭∵DQ AD BC AB=∴228111x x x x x +-+=+ 解之得x=4,即BC=4 过点C 作CF//DP∴△ADE 与△AFC 相似,∴AE ADAC AF=,即AF=AC ,即DF=EC=2, ∴BF=DF=2∵△BFC 与△BDP 相似 ∴2142BF BC BD BP ===,即:BC=CP=4 ∴tan ∠BPD=2142EC CP ==(3)过D 点作DQ ⊥AC 于点Q ,则△DQE 与△PCE 相似,设AQ=a ,则QE=1-a ∴QE DQEC CP =且1tan 3BPD ∠= ∴()31DQ a =-∵在Rt △ADQ 中,据勾股定理得:222AD AQ DQ =+ 即:()222131a a =+-⎡⎤⎣⎦,解之得41()5a a ==舍去 ∵△ADQ 与△ABC 相似∴445155AD DQ AQ AB BC AC x x====++ ∴5533,44x xAB BC ++==∴三角形ABC 的周长553313344x xy AB BC AC x x ++=++=+++=+ 即:33y x =+,其中x>0专题训练21.如图,在平面直角坐标系中,二次函数26y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1=2tan DAE ∠,EF OD ⊥,垂足为F .(1)求这个二次函数的解析式;(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值.参考答案:解:(1)二次函数y=ax 2+6x+c 的图象经过点A (4,0)、B (﹣1,0),∴,解得。

上海中考数学压轴题专题21 函数综合(相切)(解析版)

上海中考数学压轴题专题21 函数综合(相切)(解析版)

上海中考数学压轴题专题21 函数综合(相切)教学重难点1.掌握用待定系数法求解函数的解析式;2.培养学生能根据题目中的条件画出大致需要的图形;3.培养学生分析问题、解决问题的综合能力。

【备注】本部分为知识点回顾总结,时间大概为5分钟左右,注意让学生多画图回顾。

函数基础知识点梳理:x函数综合题目考点分析:1.求解函数解析式,以二次函数为主;2.求解相关点的坐标,二次函数中一般考察求对称轴、顶点坐标;3以函数为背景,考察相似、等腰、相切、平行四边形、面积等相关知识点;该类题型综合性很强,需要及时画图观察。

1.(2019静安区二模)已知:如图,梯形ABCD中,AD∥BC,AD=2,AB=BC=CD=6.动点P在射线BA上,以BP为半径的⊙P交边BC于点E(点E与点C不重合),联结PE、PC.设BP= x,PC= y.(1)求证:PE∥DC;(2)求y关于x的函数解析式,并写出定义域;(3)联结PD,当∠PDC=∠B时,以D为圆心半径为R的⊙D与⊙P相交,求R的取值范围.【整体分析】(1)根据梯形的性质得到∠B=∠DCB,根据等腰三角形的性质得到∠B=∠PEB,根据平行线的判定定理即可得到结论;(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.推出四边形ADGF是矩形,PH∥AF,求得BF=FG=GC=2,根据勾股定理得到AF===,根据平行线分线段成比例定理得到PH=,13BH x=,求得163CH x=-,根据勾股定理即可得到结论;(3)作EM∥PD交DC于M.推出四边形PDME是平行四边形.得到PE=DM=x,即MC=6-x,根据相似三角形的性质得到PD=EC=1218655-=,根据相切两圆的性质即可得到结论.【满分解答】证明:(1)∵梯形ABCD,AB=CD,∴∠B=∠DCB.∵PB=PE,∴∠B=∠PEB,∴∠DCB=∠PEB,∴PE∥CD.(2)分别过P、A、D作BC的垂线,垂足分别为点H、F、G.∵梯形ABCD中,AD∥BC,AF⊥BC,DG⊥BC,PH⊥BC,∴四边形ADGF是矩形,PH∥AF.∵AD=2,BC=DC=6,∴BF=FG=GC=2.在Rt△ABF中,AF===﹒∵PH∥AF,∴PH BP BHAF AB BF==62x BH==.∴PH=,13 BH x=.∴163 CH x=-.在Rt△PHC中,PC=∴y=(09)y x=<<.(3)作EM∥PD交DC于M.∵PE∥DC,∴四边形PDME是平行四边形.∴PE=DM=x ,即 MC=6-x . PD=ME ,∠PDC=∠EMC , 又∵∠PDC=∠B ,∠B=∠DCB , ∴∠DCB =∠EMC =∠PBE =∠PEB . ∴△PBE ∽△ECM .∴PB BE EC MC =,即232663xx x x =--.整理方程,解得:185x =. 即BE 125=.∴PD=EC=1218655-=. 当两圆外切时,PD=P r R +,即0R =(舍去); 当两圆内切时,PD=P r R -,即10R =(舍去),2365R =; 即两圆相交时,3605R <<. 【点睛】此题考查圆的综合题,梯形的性质,平行四边形的性质,勾股定理,相似三角形的判定和性质,正确的作出辅助线是解题的关键.2.(2018徐汇区二模)如图,在中,,,点是边上一动点(不与点重合),以长为半径的与边的另一个交点为,过点作于点.当与边相切时,求的半径;联结交于点,设的长为,的长为,求关于的函数解析式,并直接写出的取值范围; 在的条件下,当以长为直径的与相交于边上的点时,求相交所得的公共弦的长.【整体分析】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC= ==,即可求解;(2)PD∥BE,则=,即:,即可求解;(3)证明四边形PDBE为平行四边形,则AG=GP=BD,即:AB=DB+AD=AG+AD=4,即可求解.【满分解答】(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=,则sinC=,sinC===,解得:R=;(2)在△ABC中,AC=BC=10,cosC=,设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,则BH=ACsinC=8,同理可得:CH=6,HA=4,AB=4,则:tan∠CAB=2BP==,DA=x,则BD=4-x,如下图所示,PA=PD,∴∠PAD=∠CAB=∠CBA=β,tanβ=2,则cosβ=,sinβ=,EB=BDcosβ=(4-x)×=4-x,∴PD∥BE,∴=,即:,整理得:y=;(3)以EP为直径作圆Q如下图所示,两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,∵点Q时弧GD的中点,∴DG⊥EP,∵AG是圆P的直径,∴∠GDA=90°,∴EP ∥BD ,由(2)知,PD ∥BC ,∴四边形PDBE 为平行四边形, ∴AG=EP=BD , ∴AB=DB+AD=AG+AD=4,设圆的半径为r ,在△ADG 中, AD=2rcosβ=,DG=,AG=2r ,+2r=4,解得:2r=,则:DG==10-2,相交所得的公共弦的长为10-2.【点睛】本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关lyxOC A B2.其它条件:直线l 过点()2,0A -,⊙B 和直线l 相切。

2021年上海市中考数学考点必杀500题专练12(几何压轴题)(30题)(解析版)

2021年上海市中考数学考点必杀500题专练12(几何压轴题)(30题)(解析版)

2021中考考点必杀500题 专练12(几何压轴题)(30道)1.(2021·上海九年级二模)如图,在矩形ABCD 中,4AB =,8BC =,点P 在边BC 上(点P 与端点B 、C 不重合),以P 为圆心,PB 为半径作圆,圆P 与射线BD 的另一个交点为点E ,直线CE 与射线AD 交于点G .点M 为线段BE 的中点,联结PM .设,==BP x BM y .(1)求y 关于x 的函数解析式,并写出该函数的定义域; (2)联结AP ,当//AP CE 时,求x 的值;(3)如果射线EC 与圆P 的另一个公共点为点F ,当CPF 为直角三角形时,求CPF 的面积.【答案】(1)582⎛⎫=≤< ⎪⎝⎭y x x ;(2)4;(3)6 【分析】(1)勾股定理求出BD 长,利用三角函数求解析式,根据点P 和点G 的位置确定该函数的定义域; (2) 设4=EH k ,则8,8,==-=BH k PH k x PE x ,根据勾股定理列方程即可;(3)根据哪个角是直角分类讨论,利用勾股定理或相似三角形的性质列方程,求出直角边长即可. 【详解】解:(1)由勾股定理,BD == ∵点M 为线段BE 的中点, ∵PM ∵BE ,Rt BMP 中,cos=∠=BM CBD BP ,解得5y x =, 点P 与端点C 不重合,所以8x <,当直线CE 恰好经过A 点时,BE=12BD=BM =52x =,该函数的定义域为:582x ≤<.(2)过点E 作EH BC ⊥于点H ,若CE //AP ,可知=AB EHBP HC设4=EH k ,则8,8,==-=BH k PH k x PE x由勾股定理,可得222(4)(8)=+-x k k x ,解得5x k =所以44588=-k k k ,解得=k (负根舍去)所以54===-BP x k(3)①若90PFC ∠=︒,由垂径定理,可知E 、F 重合,不符合题意; ②90PCF ∠=︒时,此时E 与D 重合,2224(8)x x =+-,解得5x = 所以13,4,3462====⨯⨯=CPFCP CF CD S③90CPF ∠=︒时,过点E 作EQ BC ⊥,交BC 延长线于点Q43,,,855======-PB PE PF x EQ x PQ x PC x 由//PF EQ ,可得54==CP PF CQ EQ ,所以59=CP PQ 代入数据,53895-=⨯x x ,解得16,6262==⨯⨯=PCFx S 综上,PCF 的面积为6.【点睛】本题考查了解直角三角形、相似三角形、圆的有关性质,解题关键是熟练综合运用所学知识,进行推理计算,注意:分类讨论思想的运用.2.(2021·上海九年级专题练习)定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1中,12A O ∠=∠. 已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DC 交射线AO 于点E ,联结OD ,⊙O 的半径为5,3tan 4OAC ∠=. (1)求弦AC 的长.(2)当点E 在线段OA 上时,若DOE ∆与AEC ∆相似,求DCA ∠的正切值. (3)当1OE =时,求点A 与点D 之间的距离(直接写出答案).【答案】(1)8;(2)1tan 3DCA ∠=;(3)当1OE =时,AD 的长是 【分析】(1)如图1,作OH AC ⊥垂足为点H ,OH 过圆心,由垂径定理得:12AH CH AC ==,运用勾股定理和3tan 4OAC ∠=可求解出结果; (2)由相似和一条弧所对的圆周角等于这条弧所对的圆心角的一半可得到DOE A ∠=∠,//OD AC ,通过相似比可求出AE 的长,作EG AC ⊥垂足为G ,得到//GE OH ,再运用相似比求出EG 和CG 的长,即求出最终结果;(3)如图5,当点E 在线段OA 上时,延长AO 交∵O 于M ,通过3tan 4OAC ∠=得到AG 和EG ,再通过勾股定理求出CE 的长,通过MDECAE 求出DE 的长,最后在运用勾股定理运算即可;如图6,当E 在AO 延长线上时,EG AC ⊥,连接DM ,AD ,运用同样的方法可求出第二个结果. 【详解】(1)解:如图3,作OH AC ⊥垂足为点H ,OH 过圆心,由垂径定理得:12AH CH AC ==, ∵在t R OAH ∆中3tan 4OH OAC AH ∠==,设3,4OH x AH x ==, ∵在t R OAH ∆中,可得:222OH AH OA +=,由∵O 的半径为5可得:()()222345x x +=, 解得:1x =±,(1x =-舍去)∵3,4OH AH ==, ∵28AC AH ==.(2)∵DEO AEC ∠=∠,∵当DOE ∆与AEC ∆相似时可得:DOE A ∠=∠或者DOE ACD ∠=∠; 由定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.可知:12ACD DOE ∠=∠, ∵ACD DOE ∠≠∠∵当DOE ∆与AEC ∆相似时不存在DOE ACD ∠=∠情况. ∵当DOE ∆与AEC ∆相似时,DOE A ∠=∠, ∵//OD AC ,∵OD OEAC AE=; ∵5,8OD OA AC ===,得558AE AE -=,∵4013AE =;) 作EG AC ⊥垂足为G ,可得:90AGE AHO ∠=∠=,∵//GE OH ,∵AE EG AGAO OH AH==即4013534EG AG ==, ∵2413EG =,3213AG =,327281313CG =-=,∵在t R CEG ∆中,24113tan 72313EG DCA CG ∠===.(3)如图5,当点E 在线段OA 上时,延长AO 交∵O 于M , 连接DM ,AD ,EG AC ⊥, OE=1,∴AE=4,ME=6,又3tan 4OAC ∠==EG AG, 同(1)中的计算方法,AG=165,125EG =,∴1624855CG =-=,∴CE ==又DME ECA MDE EAC ∠=∠∠=∠,,MDECAE ∴,MD MEAC CE∴=,∴85MD =,∴MD=AD ∴===如图6,当E 在AO 延长线上时,EG AC ⊥,连接DM ,AD ,3tan 4OAC ∠==EG AG, OE=1,AE=6,ME=4, 同理可得,AG=245,185EG =,2416855CG ∴=-=,5EC ∴==, 同理DMEACE ,ME DMCE AC∴=,85DM,29DM ∴=,29AD ∴===,∴当1OE =时,AD 的长是 【点睛】本题考查圆的综合运用,难度比较大,涉及圆的基本性质,相似三角形,勾股定理,锐角三角函数等知识,需要有较强的数形结合能力,根据条件添加适当的辅助线是和解决本题的关键.3.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =,点D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且BQ BP =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.【答案】(1)见解析;(2;(3BP <<【分析】(1)证明∵BPQ∵∵BAC 即可;(2)由∵PQD<90︒,只需要讨论两类情况,当90DPQ ∠=︒时,利用tan3AC B BC ===,求出∵B=30,30DPC ∠=︒,计算tan 30CDCP ︒===,根据BP=BC -CP 求值;当90PDQ ∠=︒时,过Q作QE∵AC 交AC 于E ,则∵QED=∵PDQ=90C ∠=︒,证明∵EQD∵∵CDP ,得到QE EDCD CP=,设BP t =,过点Q 作QF∵BC 于F ,则四边形CEQF 是矩形,求出1344t QE F t t C +===,1CD =,CP t =,1DE CE CD =-=-,代入比例式求出t 的值; (3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,由'30DD C B ∠=∠=︒求出'CD =,'DP D P =,列得()'2CP D P CP DP m m +=+=+=计算求值即可;②另外一个极限情况时,如图4,当PQ 经过点D 时,求出PC=tan 60CD =︒BP = 【详解】解:(1)在ABC 中,90C ∠=︒,2AC =,BC =∵4AB ==,∵BC AB ==,∵2BQ BP =,∵BQ BP =, ∵BQ BCBP AB=, ∵QBP CBA ∠=∠,BPQBAC ∴,∵90BQP BCA ∠=∠=︒,PQ AB ∴⊥;(2)90PQD ∠<︒,所以只需要讨论两类情况,当90DPQ ∠=︒时,如图1,在Rt∵ABC中,tan AC B BC ===∵∵B=30,∵9060QPB B ∠=︒-∠=︒,30DPC ∴∠=︒,∵2AC =,点D 为边AC 的中点, ∵CD=1,∵tan 30CDCP ︒===,BP BC CP ∴=-=当90PDQ ∠=︒时,如图2,过Q 作QE∵AC 交AC 于E ,则∵QED=∵PDQ=90C ∠=︒, ∵∵EQD+∵EDQ=∵EDQ+∵CDP=90︒,EQD CDP ∴,QE EDCD CP∴=, 设BP t =,过点Q 作QF∵BC 于F ,则四边形CEQF 是矩形, ∵∵B=30,∵BQP=90︒, ∵PQ=12t , ∵60QPB ∠=︒, ∵cos 6014PF PQ t =⋅︒=,sin 60QF PQ =⋅︒=,∵1344t QE F t t C +===,1CD =,CP t =,14DE CE CD t =-=-,134t -∴=6t ∴=或6t =(舍去),综上,BP(3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,'DD PQ ⊥,'30DD C B ∴∠=∠=︒,'CD ∴=30CDP ∠=︒,又'DP D P =,()'2CP D P CP DP m m ∴+=+=+=m ∴=;②另外一个极限情况时,如图4,当PQ 经过点D 时,∵60P ∠=︒,90DCP ∠=︒,CD=1,∵PC=tan 60CD =︒∵BP =综上:33BP <<..【点睛】此题考查相似三角形的判定及性质,锐角三角函数,直角三角形30度角所对的直角边等于斜边的性质,矩形的判定及性质,熟记各定理是解题的关键.4.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数;()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.【答案】(1)72;(2)18°;(3)53 【分析】(1)方法一:作OG BC ⊥,利用垂径定理和余弦即可求得;方法二:连接AC ,根据直径所对的圆周角等于90°可得∵ACB=90°,利用余弦解直角三角形即可;(2)先根据已知条件确定两个相似三角形的对应角,得出P PED PAO OEB ∠=∠=∠=∠,设ABC α∠=,利用等腰三角形等边对等角和弧与圆心角的关系,圆周角定理分别表示∵AOP 和∵OEB ,利用三角形外角的性质即可求得α即ABC ∠;(3)分当90EOB ∠=和当90OEB ∠=时两种情况讨论,画出对应图形,利用相似三角形和解直角三角形的知识求解即可.【详解】解析:方法一:作OG BC ⊥, ∵BC=2BG,7cos 4BG BO CBO =⋅∠=,722BC BG ∴==; 方法二:连接AC ,∵AB 为直径,90ACB ∴∠=7cos 2BC AB CBO ∴=⋅∠=; (2)∵AO=OP ,∵∵PAO=∵P , ∵P P ∠=∠,EDP ∆与AOP ∆相似,,DPE OPA ∴∆∆P PED PAO OEB ∴∠=∠=∠=∠, C 是AP 中点,CO ∴平分AOP ∠,CO BO =,设,ABC α∠=2,4AOC AOP αα∴∠=∠=,18049022PAO OEB αα-∴∠==-=∠, AOP OEB ABC ∴∠=∠+∠,即4902a a a =-+,18a ABC ∴=∠=;()3 I .当90EOB ∠=时,作DH AB ⊥∵DH//OP ,∵∵ADH∵∵APO , ∵23AH DH AD AD AO OP AP AD DP ====+, 23AH AO ∴=, ∵AB=4,∵OA=OB=2,428,,333AH HO BH ∴===, 2,AO OP ==43AH DH ∴==, ∵DH//OP ,∵∵BOE∵∵BHD , 28433EO OB EO DH HB ∴===, 1EO ∴=,AHD AOED HOED S S S ∆∴=+四边形梯形21414251232333⎛⎫⎛⎫=⨯+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; II .当90OEB ∠=时连接,AC由()1得//AC DP ,∵∵ACD∵∵PED ,∵ACB∵∵OEB ,2AD DP =, ∵2CD AC AD DE PE DP===, 2AC EP ∴=,又,AO BO = ∵=2CB AC AB BE OE BO==, 2,AC EO ∴=2,30AC OP ABC ∴==∠=,60,EOB CAO ∴∠=∠=∵AO=OP ,∵∵PAO=∵APO ,∵PAO+∵APO=∵EOB=60°,∵30CAD AP O O PA ∠=∠==∠,ABC OEB ACD AOED S S S S ∆∆∆∴=--四边形111222AC BC OE BE CD AC =⋅-⋅-⋅ 4,AB =2,AC BC BE ∴===1OE =,CD =111212222AOED S ∴=⨯⨯⨯=四边形综上所述,四边形AOED 的面积为53 【点睛】本题考查圆周角定理、垂径定理、相似三角形的性质和判定,解直角三角形,等腰三角形的性质等.(1)中能借助定理构造直角三角形是解题关键;(2)能借助相似三角形以及圆周角定理表示相关角是解题关键;(3)中注意分类讨论和正确构造图形.5.(2021·上海九年级专题练习)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠.(1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.【答案】(1)FB =(2)()243604520x y x x +=<<+;(3)94AD =或32或78. 【分析】29)(944x x ++ 【详解】(1)在Rt∵ABD 中,AD=1,AB=3,==,∵//AM BC ,∵∵ADF∵∵CBF , ∵F AD CB DF B ==14, ∵BF=4DF ,∵FB =(2)∵∵ADF∵∵CBF , ∵4DF BF AF AD x CF CB ===,,∵BF=4x +,DF=4x+, 在Rt∵ABC 中,AB=3,BC=4,=5, ∵AF=54x x+, ∵AM∵BC ,∵∵CAD=∵C ,∵DBE C ∠=∠,∵∵CAD=∵DBE ,∵∵AFD=∵BFG ,∵∵ADF∵∵BGF , ∵F GBF A DF F =, ∵AF FG BF DF ⋅=⋅,∵FG y =,∵5444x y x x x⋅=+++, ∵()243604520x y x x +=<<+;(3)∵∵ADF∵∵BGF , ∵D GBG A DF F =,∵42054BG x x=++,∵BG = ∵AM∵BC ,∵∵DBE=∵C ,∵DEB=∵CBG ,∵∵BDE∵∵CGB ,∵BE CG BC BD ⋅=⋅,∵4xBE =-,∵GE=BE - ∵AM∵BC ,∵∵DEG∵∵HBG ,∵DE BG BH EG ⋅=⋅, ∵BH=29)(944x x ++, 分三种情况:①当BD=BH 时,29()494x x =++78x =; ②当BD=DH 时,则BH=2AD=2x , ∵29)24(94x x x ++=,解得x=32;③当BH=DH 时,过H 作HP∵BD 于P ,此时BP=12BD =, ∵∵ABD+∵PBH=∵ABD+∵ADB=90︒,∵∵ADB=∵PBH ,∵∵BAD=∵BPH=90︒,∵∵ABD∵∵PHB ,∵BP BD BH AD ⋅=⋅, ∵229)92(449x x x =+++,解得x=94, 综上,线段AD 的长为94或32或78.【点睛】此题考查勾股定理,相似三角形的判定及性质,等腰三角形的性质,分情况讨论问题进行解答,(3)多次证明三角形相似,目的是求出线段BH 的长度,再根据等腰三角形的性质进行解答,如用(2)的思路进行求解BH 的长度,则无法进行求值,只能是通过其他方法求BH ,这是此题的难点.6.(2021·上海)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-3. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB中,AD =AB ∴==142ADB SDB AC ∴=⋅= 12ADB S AB DH =⋅DH ∴=AH == 1tan 3DH DAB AH ∴∠==; (2)过E 作EH∵CB 于H∵EDB ADC ∠=∠,90C EHD ∠=∠=︒ ∵ACD EHD .∵AC EH CD DH = 即44EHx x EH=--. ∵()444x EH x -=+ .∵EH∵CB ,90ACB ∠=︒,4AC BC ==∵)44x EB x -==+ ,AB =∵)44x AE x -=+∵EF AD ⊥,90C ∠=︒ ∵AFG ADC ∠=∠ . ∵EDB ADC ∠=∠ ∵AFG EDB ∠=∠. ∵45FAE B ∠=∠=︒ ∵AFEBDE .∵AF AE DB BE =即)4444x yxx --=-+整理得,()2402y x x =-+<≤; (3)在Rt∵MDB 中,DB=4-x, 所以MD=MB=(4).2x - 在Rt∵ADM 中,AM=AB 一MB=)(4).22x x -=+ 所以tan∵DAB=44DM xAM x-=⋅+ 按照点F 的位置,分两种情况讨论∵CDF 与∵AGE 相似: ①点F 在线段AC 上,此时y=4-2x. 如图,如果∵FDC=∵DAB ,由tan∵FDC=tan∵DAB,得44y x x x-=⋅+ 结合y=4-2x ,整理,得x2+8x+16=0. 解得-4 或--4 (舍去),如果∵CFD=∵DAB ,由tan∵CFD=tan∵DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x -4如图如果∵FDC=∵DAB,由44y x x x-=+结合y=2x -4,整理,得23160.x -=解得或(舍去) 如果∵CFD=∵DAB, 44x xy x-=+与y=2x -4 整理,得238160.x x -+= 此方程无解.综上,CD 的值为-4、8- 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.7.(2021·上海九年级专题练习)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数; (3)试问:在点M 、N 的运动过程中,线段比PQMN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置. 【答案】(1)45;(2)45°;(3)不会发生变化,35. 【分析】(1)连接AC,利用垂直平分线性质,构造Rt∵ABC ,由正弦三角函数即可求得;(2)证明 ∵BCG∵∵DCN ,得到角相等,再由角相等,得∵GMC∵∵NMC ,由DN DC =解答即可; (3)由D 、C 、N 、P 四点共圆,得到∵CPD=∵CND=∵MNC ,再得∵CPQ∵∵CNM ,由此解答即可. 【详解】 解:(1)连接AC∵4AB AD ==,3CB CD == ∵AC 垂直平分BD ∵∵ACB=∵ACD=12∵BCD=∵MCN 在Rt∵ABC 中,AB=4,AC=35==∵sin MCN ∠=sin∵ACB=45AB AC = (2)延长AB 至G 点,使BG=DN ,连接CG , ∵CB=CD ∵CBG=∵CBN=90° ∵∵BCG∵∵DCN∵∵G=∵CND ,CN=CG ,∵BCG=∵DCN∵∵MCN=12∵BCD ∵∵MCB+∵NCD=12∵BCD∵∵GCM=∵GCB+∵GCM=12∵BCD=∵MCN∵CM=CM , ∵G=∵CND, ∵∵GMC∵∵NMC ∵∵G=∵MNC=∵DNC 当DN=NC 时 ∵DNC=∵DCN=45° ∵∵DNC=∵CNM=45°(3)连接NP , ∵∵ADC=∵ADO+∵CDO=90° ∵ADO+∵CDO=90° ∵∵ADO=∵COD=12∵BCD=∵MCN ∵∵NDP=∵NCP∵D 、C 、N 、P 四点共圆, ∵∵NPC+∵NDC=180° ∵∵NDC=90° ∵∵NPC=90° ∵∵CPD=∵CND=∵MNC ∵∵CPQ∵∵CNM ∵PQ CPMN CN= 在Rt∵CPN 中,CPCN =cos∵MCN=cos∵ACB=35∵不会发生变化35PQ MN =【点睛】本题考查了线段垂直平分线的性质,三角形全等性质与判断,三角形相似等知识点,解题的关键是掌握性质与判定.8.(2021·上海九年级专题练习)已知⊙MAN 是锐角,点B 、C 在边AM 上,点D 在边AN 上,⊙EBD =⊙MAN ,且CE ⊙BD ,sin⊙MAN =35, AB =5,AC =9. (1)如图1,当CE 与边AN 相交于点F 时,求证:DF ·CE =BC ·BE ; (2)当点E 在边AN 上时,求AD 的长;(3)当点E 在⊙MAN 外部时,设AD =x ,⊙BCE 的面积为y ,求y 与x 之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<. 【分析】(1)根据CE∵BD ,得出∵CEB=∵DBE ,∵DBA=∵BCE 结合题干证明出∵ABD∵∵ECB ,进而得到AD EBAB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∵AN ,垂足为H .根据条件先证明出∵CEB∵∵CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD .(3)过点B 作BH∵AN ,垂足为H .BH=4,AH=3,DH=4x -根据∵ECB∵∵ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解. 【详解】解:(1)∵CE∵BD , ∵∵CEB=∵DBE ,∵DBA=∵BCE . ∵∵A=∵DBE , ∵∵A=∵BEC . ∵∵ABD∵∵ECB , ∵AD EBAB EC=. ∵AD DFAB BC=, ∵EB DFEC BC=, ∵DF·CE=BC·BE .(2)过点B 作BH∵AN ,垂足为H .∵CE∵BD , ∵∵CEB=∵EBD=∵A , 又∵∵BCE=∵ECA , ∵∵CEB∵∵CAE , ∵CE CACB CE=, ∵2CE =CB CA ⋅. ∵AB=5,AC=9,∵BC=4,∵24936 CE==⨯,∵CE=6.∵BD AB CE AC=,∵561093AB CEBD==AC⋅⨯=.在Rt∵ABH中,3sin535BH AB A=⋅=⨯=,4.==.AD=4.(3)过点B作BH∵AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∵∵ECB∵∵ABD,∵22EBCADBS BCS BD△△=.∵1322ABDS AD BH x=⋅△=,∵21638252yx xx=-+,∵224825xyx x=-+.定义域为4433x-<<+.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.9.(2021·上海九年级专题练习)四边形ABCD是菱形,⊙B≤90°,点E为边BC上一点,联结AE,过点E作EF⊙AE,EF与边CD交于点F,且EC=3CF.(1)如图1,当⊙B=90°时,求ABES与ECFS的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值; (3)如图3,联结AF ,当⊙AFE=⊙B 且CF=2时,求菱形的边长.【答案】(1)94;(2)15;(3)17. 【分析】(1)先证明:,BEA CFE ∽可得:BE ABCF CE=,结合:3,EC CF =可得:3,AB BE =再设,,CF a BE b == 可得3,AB BC b a ==+而3AB b =,建立方程:33,b a b +=可得:3,2b a = 再利用相似三角形的性质可得答案.(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,先证明:,ABE GCE ≌可得:,,AB CG AE GE == 证明:AF FG =, 设,CF a = 再设DH x =, 利用22222,AF AH FH DF DH -==-求解x ,可得cos ,D 从而可得答案;(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG = 证明:6EH EC ==, 设,DF x = ,HG GC y == 证明:,AFE B D ECH H ∠=∠=∠=∠=∠可得:cos ,6EF ycoc AFE H AF ∠==∠=再证明:,FEH AFD ∽利用相似三角形的性质列方程组,解方程组可得答案. 【详解】 解:(1)四边形ABCD 是菱形,90B ∠=︒,∴ 四边形ABCD 是正方形,90B C ∴∠=∠=︒, 90BAE BEA ∴∠+∠=︒,,EF AE ⊥90BEA CEF ∴∠+∠=︒,,BAE CEF ∴∠=∠,BEA CFE ∴∽BE ABCF CE ∴=, ,BE CF AB CE∴= 3,EC CF = 3,AB BE ∴=设,,CF a BE b ==3,CE a ∴=3,AB BC b a ∴==+而33,AB BE b ==33,b a b ∴+=3,2b a ∴=9,2AB a ∴=22992.34ABE CEFaS AB SCE a ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,菱形ABCD ,//,AB CD ∴,BAE G ∴∠=∠ E 为BC 的中点,,BE CE ∴=,AEB CEG ∠=∠()ABE GCE AAS ∴≌,,,AB CG AE GE ∴==,AE EF ⊥,AF FG ∴=设,CF a = 则3,CE BE a == 6AB BC DC CG AD a =====,75,FG AF a DF a ∴===,设,DH x =22222,AF AH FH DF DH ∴-==-()()()2222765,a a x a x ∴--=- ,x a ∴=,DH a ∴=1cos ,55DH a D DF a ∴=== 由菱形ABCD 可得:,B D ∠=∠1cos .5B ∴= (3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG =,,EC EH H ECH ∴=∠=∠23,CF CE CF ==,6CE EH ∴==,设,DF x = ,HG GC y ==则2,DC AD x ==+,6HG y coc H EH ∴∠== 菱形ABCD ,,//,B D AB CD ∴∠=∠,B ECH ∴∠=∠,AFE B ∠=∠,AFE B D ECH H ∴∠=∠=∠=∠=∠cos ,6EF y coc AFE H AF ∴∠==∠= ,AFH AFE EFH D DAF ∠=∠+∠=∠+∠,EFH DAF ∴∠=∠,FEH AFD ∴∽,EH HF EF DF ADAF ∴== 622,26y y x x +∴==+ 361012xy xy y =⎧∴⎨=+⎩, 解得:15,2.4x y =⎧⎨=⎩经检验:152.4x y =⎧⎨=⎩是原方程组的解,217,CD x ∴=+=即菱形ABCD 的边长为:17.【点睛】本题考查的是三角形全等的判定与性质,线段垂直平分线的性质,勾股定理的应用,菱形,正方形的性质,相似三角形的判定与性质,解直角三角形,解分式方程组,掌握以上知识是解题的关键.10.(2021·上海九年级专题练习)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△. (2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED ED B AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDF BDQ △△,再分3种情况讨论,分别求出AP 的长.【详解】解:(1) PD QD ⊥,ED AB ⊥∵A DEQ ∠=∠,ADP EDQ ∠=∠,∵ADP EDQ △△. (2)ADP EDQ △△, ∵EQ ED AP AD= 又点D 为斜边AB 的中点, ∵AD BD = ,EQ ED ED AP AD BD== 又ED AB ⊥在Rt BDE 中tan =ED ED EQ B BD AD AP ==, 又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10 D 为AB 中点,∵BD =5, DE =154,由勾股定理得:BE =254 AP x =, 可得34EQ x =, BQ BE EQ =-,253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED ED FPD B DP AD BD∠====, ∵FPD B ∠=∠, 又∵PDF BDQ ∠=∠,∵PDF BDQ △△, ∵PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=,542253544x =-, 解得256x . 若BD BQ =,253544x -=, 解得53x =. ③若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.11.(2021·上海嘉定区·九年级一模)如图,在矩形ABCD 中,6AB =,8AD =,点E 在CD 边上,1tan 2EAD ∠=.点F 是线段AE 上一点,连接BF ,CF .(1)如果3tan 4CBF ∠=,求线段AF 的长; (2)如果12CF BC =. ①求证:CFE DAE ∠=∠;②求线段EF 的长.【答案】(1)5;(2)①证明见解析; 【分析】(1)如图:作FG AB ⊥,设AG k =、FG=2k,然后用k 表示出BG ,在根据AG+BG=AB 求出K 即可完成解答;(2)①作CG EF ⊥,先用矩形的性质和解三角形的相关知识求得EG 、CG 、FG ,最后说明1tan tan 2CFE DAE ∠==∠即可证明; ②直接运用线段的和差计算即可.【详解】解:(1)如图:作FG AB ⊥,设AG k =, ∵1tan 2EAD ∠=∵1tan 2AG GFA FG ∠==,即22FG AG k ==, ∵3tan 4CBF ∠= ∵4tan 3ABF ∠=, ∵43FG BG =,即3342BG FG k == ∵AG+BG=AB∵362k k+=.∵125k=,∵AF====(2)作CG EF⊥,①∵矩形ABCD∵BC=AD=8,CD=AB=6∵12CF BC==4∵1 tan2DEEADAD∠==∵182DE=即DE=4, tan2FED∠=∵CE=CD-DE=6-4=2,∵∵CEG=∵DEA∵tan∵CEG=tan∵DEA=2∵tan∵CEG=2=CG EG设EG=m,则CG=2mCE=,2=,解得∵EG=CG=∵FG===∵1tan tan2CFE DAE∠==∠∵CFE DAE ∠=∠;②EF FG EG =-==. 【点睛】 本题属于三角函数的综合题,主要考查了解三角形、正切以及勾股定理等内容,灵活运用三角函数解直角三角形成为解答本题的关键.12.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.【答案】(1)证明见解析;12;(2)222(02)21x y x x +=<<+;(3)x =x =【分析】 (1)根据垂直关系得到ADE CDF ∠=∠,根据AA 即可证明ADE CDF ∽△△,得到12DE AD DF CD ==,再根据正切的定义即可求解tan EFD ∠;(2)先证明FCH FBE △∽△,得到FC CH FB BE =,代入得到22212x y x x-=+-,故可求解;(3)根据题意分BEG DHE △∽△和EGB HDE △∽△,分别列出比例式求出x 的值即可求解.【详解】解:(1)∵90ADE CDE ︒∠+∠=,90CDF CDE ︒∠+∠=∵ADE CDF ∠=∠在Rt EAD 和Rt FCD 中90ADE CDF EAD FCD ∠=∠⎧⎨∠=∠=︒⎩90EAD FCD ︒∠=∠=∵FAD FCD △∽△∵2AB DC ==,1AD =, ∵12DE AD DF CD == ∵1tan 2DE EFD DF ∠== (2)由(1)可知ADE CDF ∽△△ ∵12EA DE AD FC DF CD === ∵22FC EA x ==∵AB //CD∵FCH FBE △∽△, ∵FC CH FB BE= ∵22212x y x x -=+- ∵222(02)21x y x x +=<<+, (3)∵AE x =,DH y =,过点E 作EM∵CD 于M 点,∵四边形AEMD 为矩形∵MH=DH -DM=DH -AE=y -x ,∵2BE x =-,DE =EH =∵AB //CD∵AEG CHG △∽△ ∵EG AE HG CH= ∵EG AE EH AE CH=+ ∵AE EG EH AE CH =⋅+ ∵BEG DHE ∠=∠, 若BEG DHE △∽△, ∵BE EG DH HE= ∵BE AE DH AE CH =+ 即22x x y x y-=+- 化简得2240x y +-= ∵22221x y x +=+ ∵222212240x x x +⨯-++= 化简得22508x x +=-解得x =x =若EGB HDE △∽△ ∵BE EG EH HD= ∵2AE BE HD HE AE CH⋅=⋅+ 即2(2)1()2x x y y x x y ⎡⎤-=⋅+-⎣⎦+- ∵22221x y x +=+代入化简得22637200x x ++= ∵=372-4×26×20=-711<0,综上,x =x =BGE △与DEH △相似.【点睛】本题考查了矩形的性质、函数关系式、正切的定义、相似三角形的判定和性质等知识点,解题的关键是灵活运用所学知识解决问题,用分类讨论的思想思考问题,属于中考压轴题.13.(2021·上海九年级专题练习)如图,已知在等腰ABC 中,AB AC ==,tan 2ABC ∠=,BF AC ⊥,垂足为F ,点D 是边AB 上一点(不与A ,B 重合)(1)求边BC 的长;(2)如图2,延长DF 交BC 的延长线于点G ,如果CG 4=,求线段AD 的长;(3)过点D 作DE BC ⊥,垂足为E ,DE 交BF 于点Q ,连接DF ,如果DQF △和ABC 相似,求线段BD 的长.【答案】(1)10;(2(3.(1)如图作AH BC ⊥交BC 于点H ,设BH =x ,根据正切可求出AH =2x ,再根据勾股定理解出x 即可. (2)作//DE BC 交AC 于点E ,利用三角形面积公式可求出BF 的长,再利用勾股定理可求出CF ,从而得到AF .再利用ADE ABC 和DEF GCF 结合边的等量关系得到两个关于未知边的方程组,解出方程组即可.(3)根据题意可证明C DQF ∠=∠,所以分两种情况讨论①当DQ=DF 时,如图,作DP BF ⊥交BF 于点P ,BE x =,再反复利用正切函数结合勾股定理求出x 的值,最后再利用正切函数即可求出BD 的长②当DF=QF 时,如图,作FO DQ ⊥ 交DQ 于点O ,同理设BE x =,解出x 的值,最后再利用正切函数即可求出BD 的长.【详解】(1)如图作AH BC ⊥交BC 于点H ,设BH =x , 根据题意,tan 2AH ABC BH∠==, ∵AH =2x ,在Rt ABH 中,222AB AH BH =+,∵222(2)x x =+解得x =5.∵BH = 5.又∵ABC 是等腰三角形,即H 点为BC 中点,∵BC =2BH =10.(2)根据题意可知1122ABC S AH BC BF AC =⨯⨯=⨯⨯,即1010BF ⨯=⨯∵BF=∵CF===,AF AC CF=-==.作//DE BC交AC于点E,∵ADE ABC,得到:DE AEBC AC=,即10DE=.DEF GCF,得到:DE EFCG CF=.又∵EF AF AE AE=-=∵4DE=由104DEDE⎧=⎪⎪⎨⎪=⎪⎩,解得3DE=,AE=.∵//DE BC,ABC是等腰三角形,∵ADE也是等腰三角形,∵AD AE==(3)∵90BQE QBE∠+∠=︒,90C QBE∠+∠=︒,∵BQE C∠=∠,又∵BQE DQF ∠=∠,∵C DQF ∠=∠当DQ=DF 时,如图,作DP BF ⊥交BF 于点P ,设BE x =,∵tan tan tan tan 2ABC C BQE DQP ∠=∠=∠=∠=, ∵2x QE =,∵2BQ x ===,∵QF BF BQ =-=,∵124QP PF QF x ===, ∵tan 2DQP ∠=,∵5104DQ x ==-, ∵531010424x DE DQ QE x x =+=-+=-, ∵tan 2DE ABC BE ∠==,即31042x x-=, 解得x =4011,经检验是原方程的解,即4011BE =.∵11BD ==.当DF=QF 时,如图,作FO DQ ⊥ 交DQ 于点O ,设BE x =, 同理2x QE =,2BQ x =,2QF x =, ∵ tan tan 2OQF BQE ∠=∠=,∵142OQ x ==-, ∵28DQ OQ x ==-, ∵8822x x DE DQ QE x =+=-+=+, 同理∵tan 2DE ABC BE ∠==,即822x x+=, 解得165x =,经检验是原方程的解,165BE =.∵BD == .【点睛】本题考查勾股定理,等腰三角形的性质,相似三角形的判定和性质,正切函数,边的等量关系等知识,作出每一个问的辅助线是解答本题的关键,综合性较强,较难.需特别注意最后问的分情况讨论. 14.(2020·上海九年级二模)如图,在O 中,半径O 长为1,弦//BC OA ,射线BO ,射线CA 交于点D ,以点D 为圆心,CD 为半径的D 交BC 延长线于点E .(1)若85BC =,求O 与D 公共弦的长;(2)当ODA 为等腰三角形时,求BC 的长;(3)设BC x =,CE y =,求y 关于x 的函数关系式,并写出定义域.【答案】(1)4825CM =;(2)BC =(3)22(12)1x x y x x -=<<-. 【分析】(1)设CM 是两圆的公共弦,CM 交BD 于N ,交OA 于K ,BD 交O 于G ,连接OC 、CG 交OA 于H ,由题意易得OA CG ⊥,CH HG =,进而可证KON KCH ∠=∠,1425OH BC ==,最后根据勾股定理及相似三角形的性质可求解;(2)当OAD △是等腰三角形时,观察图形可知,只有OA AD =,则有AOD ADO COA ∠=∠=∠,设AC x =,则有2OC CA CD =⋅,进而求出x ,最后求解即可;(3)作DN CE ⊥于N ,根据题意可证AOC CDE B ∠=∠=∠,进而有BE BD =,则可得BG BC GD CN =,最后进行求解即可.【详解】解:(1)如图1中,设CM 是两圆的公共弦,CM 交BD 于N ,交OA 于K ,BD 交O 于G ,连接OC 、CG 交OA 于H ,∵BG 是直径,∵90BCG ∠=︒,∵//BC OA ,∵90OHG BCG ︒∠=∠=,∵OA CG ⊥,∵CH HG =,∵CM BD ⊥,∵90ONK CHK ︒∠=∠=,∵OKN CKH ∠=∠,∵KON KCH ∠=∠,∵OG OB =,CH HG =, ∵1425OH BC ==, ∵1OC =,∵35CH HG ===, ∵OGH CGN ∠=∠,GCN GOH ∠=∠,∵GCN GOH ∽△△, ∵CN CG OH OG=, ∵65415CN =, ∵2425CN =, ∵48225CM CN ==.(2)如图2中,当OAD △是等腰三角形时,观察图形可知,只有OA AD =,∵AOD ADO COA ∠=∠=∠,∵OCA OCD ∠=∠,∵OCA DCO ∽△△,设AC x =,则有2OC CA CD =⋅,∵1(1)x x =+,∵12x -=或12--(舍弃),∵CD CA AD =+ ∵//OA BC ,∵AOD B ODA ∠=∠=∠,∵BC CD ==;(3)如图3中,作DN CE ⊥于N ,∵DC DE =,∵DCE E ∠=∠,∵//BC OA ,∵OAC DCE OCA ∠=∠=∠,∵AOC CDE B ∠=∠=∠,∵E BDE ∠=∠,∵BE BD =,∵CG BE ⊥,DN BE ⊥,∵//CG DN , ∵BG BC GD CN=, ∵22x y DG =, ∵y DG x=, ∵BD BE =, ∵2y x y x+=+, ∵22(12)1x x y x x -=<<-. 【点睛】本题主要考查圆的综合运用及相似三角形的判定与性质,熟练掌握圆的基本性质及相似三角形的性质与判定是解题的关键.15.(2020·上海浦东新区·九年级三模)已知:如图,在Rt⊙ABC 中,⊙ACB =90°,BC =3,AC =4.D 是边AB 的中点,点E 为边AC 上的一个动点(与点A 、C 不重合),过点E 作EF ⊙AB ,交边BC 于点F .联结DE 、DF ,设CE =x .(1)当x =1时,求⊙DEF 的面积;(2)如果点D 关于EF 的对称点为D’,点D’ 恰好落在边AC 上时,求x 的值;(3)以点A 为圆心,AE 长为半径的圆与以点F 为圆心,EF 长为半径的圆相交,另一个交点H 恰好落在线段DE 上,求x 的值.【答案】(1)9;8DEF S ∆=(2)39;16x = (3)64.41x = 【分析】(1)过点E 作EM AB ⊥,由EF∵AB 得EM 为∵DEF 边EF 上的高,通过计算求出EF 、EM 即可求出∵DEF 面积;(2)过点E 作EN AB ⊥,垂足为点N ,设DD '与EF 相交于点Q ,根据对称性知DD EF '⊥,12QD DD '=,分别在Rt∵AD D’和Rt∵AEN 中解直角三角形即可解得x 值; (3)AF 与DE 相交于点G ,在Rt∵CEF 中,用x 表示出AF ,利用EF∵AB 得AG AD FG EF =,用x 表示出AG ,再用两圆相交的性质知AF∵DE ,进而证得AGE ACF ~即AG AE AC AF =,代入数值即可得关于x 的方程,解之即可解得x 值.【详解】解:(1)如图1,过点E 作EM AB ⊥,垂足为点M .在Rt ACB 中,90ACB ∠=,3BC =,4AC =,5AB ∴=,3sin 5A ∠=. 1CE =,4AC =,3AE ∴=.在Rt AME 中,90AME ∠=,3sin 5A ∠=,3AE =,95EM ∴=. //EF AB ,CE EF CA AB ∴=. 又1CE =,54EF ∴=. EF 11599M 22458D S EF E ∴=⋅=⨯⨯=.。

上海十年中考数学压轴题及答案解析

上海十年中考数学压轴题及答案解析

上海十年中考数学压轴题解析2001年上海市数学中考27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域; ②当CE =1时,写出AP 的长(不必写出解题过程).27.(1)①证明:∵∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴∠ABP =∠DPC .∵在梯形ABCD 中,AD ∥BC ,AB =CD ,∴∠A =∠D .∴△ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252xx -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴DQ AP PD AB =.即y xx +=-252,得225212-+-=x x y ,1<x <4. ②AP =2或AP =3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试27.操作:将一把三角尺放在边长为1的正方形ABCD 上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B ,另一边与射线DC 相交于点Q .图1 图2 图3探究:设A 、P 两点间的距离为x .(1)当点Q 在边CD 上时,线段PQ 与线段PB 之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q 在边CD 上时,设四边形PBCQ 的面积为y ,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当点P 在线段AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出所有能使△PCQ 成为等腰三角形的点Q 的位置,并求出相应的x 的值;如果不可能,试说明理由. 五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分) 27.图1 图2 图3(1)解:PQ =PB ……………………(1分)证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1).∴ NP =NC =MB . ……………………(1分) ∵ ∠BPQ =90°,∴ ∠QPN +∠BPM =90°.而∠BPM +∠PBM =90°,∴ ∠QPN =∠PBM . ……………………(1分) 又∵ ∠QNP =∠PMB =90°,∴ △QNP ≌△PMB . ……………………(1分) ∴ PQ =PB . (2)解法一由(1)△QNP ≌△PMB .得NQ =MP . ∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴ CQ =CD -DQ =1-2·x 22=1-x 2.得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2 (1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1. 即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形. ∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN …(2分)=CN 2=(1-x 22)2=21x 2-x 2+1∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形, 此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3) ……………………(1分) 解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°, ∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD中,AB=1,弧AC是点B为圆心,AB长为半径的圆的一段弧。

上海市中考数学压轴题总复习(附答案解析)

上海市中考数学压轴题总复习(附答案解析)

2021年上海市中考数学压轴题总复习
中考数学压轴题是想获得高分甚至满分必须攻破的考题,得分率低,需要引起重视。

从近10年中考压轴题分析可得中考压轴题主要考查知识点为二次函数,圆,多边形,相似,锐角三角形等。

预计2021年中考数学压轴题依然主要考查这些知识点。

1.如图1,在平而直角坐标系中,直线/:y =勃+m与x轴、y轴分别交于点.4和点
(2)点。

在抛物线上,且点。

的横坐标为f(0Vf<4). 轴交直线/于点£点产在直线/上,且四边形。

FEG为矩形(如图2).若矩形。

尸EG的周长为p,求°与,的函数关系式以及R的最大值:
(3)M是平面内一点,将A4O8绕点M沿逆时针方向旋转90°后,得到△川。

山1,点
A.。

、B的对应点分别是点由、。

1、51.若入41。

1历的两个顶点恰好落在抛物线上,请直
接写出点出的横坐标.
2.已知,抛物线y=aF+Gr+6 (。

#0)与直线y=2rb〃有一个公共点Af (1, 0),且a〈b.
(1)求6与。

的关系式和抛物线的顶点。

坐标(用。

的代数式表示):
(2)直线与抛物线的另外一个交点记为N,求AOMV的面积与。

的关系式:
(3)々=-1时,直线y=-2x与抛物线在第二象限交于点G,点G、H关于原点对称,
现将线段GH沿y轴向上平移,个单位(r>0),若线段GH与抛物线有两个不同的公共点,试求,的取值范围.。

冲刺2022年上海中考数学压轴题第7讲 相似三角形的存在性 解法分析与经典变式(解析版)

冲刺2022年上海中考数学压轴题第7讲 相似三角形的存在性 解法分析与经典变式(解析版)

第7讲相似三角形的存在性在很多与相似三角形相关的压轴题中,其中常见的一种题型就是相似三角形的存在性讨论。

对于相似三角形的存在性问题,一般来说,会有一组等角,然后从边或从角的角度进行分类讨论:通常,我们还可以借助基本图形分析法,找到边与角的数量关系,从而完成上述问题的讨论。

例1.(2022金山一模25题).已知:如图 11,AD⊥直线MN,垂足为D,AD=8,点B 是射线DM 上的一个动点,∠BAC=90°,边AC 交射线DN 于点C,∠ABC 的平分线分别与AD、AC 相交于点E、F.(1)求证:△ABE∽△CBF;(2)如果AE=x,FC=y,求y 关于x 的函数关系式;(3)联结DF,如果以点D、E、F 为顶点的三角形与△BCF 相似,求AE 的长.2022金山一模25题的图形背景是母子型+角平分线,解题路径围绕着相似三角形的性质定理、判定定理以及射影定理展开。

题型主要围绕证明三角相似,函数关系的建立以及相似三角形的存在性讨论。

本题的关键是根据三角形的相似或角平分线的性质标出图形中的等角,然后再根据角的等量关系确定线段间的数量关系。

解法分析:本题的第一问是相似三角形的判定。

利用角平分线和平行线得到等角,继而再射影定理模型中的等角关系,利用A.A判定相似即可。

解法分析:本题的第二问是函数关系的确立。

利用第一问中相似三角形对应线段成比例以及等角的三角比相等可以顺利地建立函数关系。

解法分析:本题的第三问是相似三角形的存在性讨论。

由第一问中角的数量关系可得∠BFC=∠DEF ,因此由角进行分类讨论。

在分类讨论的过程中,善于运用斜X 型和射影定理模型即可快速得到结论,对于不存在的情况要能够排除。

解:(1)∵AD ⊥直线MN ,∠BAC =90°,∴∠BAD +∠ABD = 90°, ∠BCF +∠ABD = 90°,∴∠BAD =∠BCF ……………………………………………………………………………(1分)∵BF 平分∠ABC ,∴∠ABE =∠CBF ………………………………………………………(1分) ∴△ABE ∽△CBF . …………………………………………………………………………(1分)(2)作FH ⊥BC 垂足为点H .∵△ABE ∽△CBF ,∴∠AEB =∠CFB ,∵∠AEB+∠AEF =180°,∠CFB+∠CFE =180°∴∠AEF =∠CFE ,∴AE =AF=x ;…………………………………………………………(1分) ∵BF 平分∠ABC ,FH ⊥BC ,∠BAC =90°,∴AF=FH=x .∵FH ⊥BC ,AD ⊥直线MN ,∴FH∥AD ,∴FH FC AD AC=,即8x y y x =+,…………(2分) 解得:28x y x=-(48x <<)……………………………………………………………(2分)(3)设AE=x ,由△ABE ∽△CBF ,如果以点D 、E 、F 为顶点的三角形与△BCF 相似,即以点D 、E 、F 为顶点的三角形与△ABE 相似.∵∠AEB =∠DEF ,如果∠BAE =∠FDE ,得DF∥AB ,∴∠ABE =∠DFE ,∵∠ABE =∠DBE , ∴∠DBE =∠DFE ,∴BD=DF , ………………………………………(1分) 由DF∥AB ,得∠DFC=∠BAC =90°,∴∠DFC=∠ABD =90°,又∠BAD =∠BCF ,∴△ABD ≌△CDF ,…………………………………………………(1分)CF=AD=8,即2=88x x-,解得:4x =-±(舍去负值),∴4AE x ==-+…………………………(1分)如果∠BAE =∠DFE ,得AE BE EF DE=,∵∠ABF =∠BED ,∴△AEF ∽△BED ,∴∠AFE =∠BDE , 因为∠AFE 是锐角,∠BDE 是直角,所以这种情况不成立。

决胜2021年中考数学压轴题全揭秘精品(上海专版) 专题01 创新题型(教师版含解析)

决胜2021年中考数学压轴题全揭秘精品(上海专版) 专题01 创新题型(教师版含解析)

专题01创新题型模块一:定义应用例1.定义[x ]为不超过x 的最大整数,如[3.6] = 3,[ 3.6-] = 4-.对于任意实数x ,下列式子错误的是( ) A .[x ] = x (x 为整数)B .0[]1x x ≤-<C .[][][]x y x y +≤+D .[][]n x n x +=+(n 为整数)【难度】★★ 【答案】C .【解析】由反例[][3.8 2.7] 6.56+==,[3.8][2.7]325+=+=可知C 错误. 【总结】本题考查取整函数[x ]的定义及应用.例 2.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,'y ),给出如下定义:若()()0'0y x y y x ⎧≥⎪=⎨-<⎪⎩,则称点Q 为点P 的“可控变点”.如果点(1-,2-)为点M 的可控变点,则点M 的坐标为___________. 【难度】★★ 【答案】(-1,2)【解析】由题意得,当0<x 时,'=-y y ,且x 不变,所以当1x =-,时'2=y , 即点M 坐标为(1-,2).【总结】把握好“可控变点”的定义,找出'y 与y 两者之间存在的关系.例3.定义一种新运算:2x y x y x +*=,如2212122+⨯*==,则()()421**-=______. 【难度】★★ 【答案】0.【解析】先计算()4224224+⨯*==,再计算()()2122102+-⨯*-==. 【总结】根据运算法则进行运算,注意运算顺序.例4.已知1m x =+,2n x =-+,若规定()()11m n m n y m n m n ⎧+-≥⎪=⎨-+<⎪⎩,则y 的最小值为( )A .0B .1C .1-D .2【难度】★★ 【答案】B .【解析】把1m x =+,2n x =-+代入,得到1221222⎧⎛⎫≥ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+< ⎪⎪⎝⎭⎩x x y x x ,当12≥x 时,1≥y ;当12<x 时,1>y .所以y 的最小值是1,故选B . 【总结】考查分段函数求最值的问题.例5.定义运算“*”:规定x y ax by *=+(其中a 、 b 为常数),若113*=,()111*-=,12*=______.【难度】★★ 【答案】4.【解析】把113*=,()111*-=代入运算法则,得31+=⎧⎨-=⎩a b a b ,解得:21=⎧⎨=⎩a b ,所以12*=2×1+1×2=4.【总结】根据新运算,求出a 、b 的值是解答本题的关键.例 6.对于实数m 、n ,定义一种运算“*”为:m n mn n *=+.如果关于x 的方程()14x a x **=-有两个相等的实数根,那么满足条件的实数a 的值是______.【难度】★★ 【答案】0.【解析】根据运算法则,()*=+a x ax x ,()()*+=+++x ax x x ax x ax x , 整理得()()211104++++=a x a x ,此方程有两个相等的实数根, 则()()210110+≠⎧⎪⎨=+-+=⎪⎩a a a ,解得:1201a a ==-,(舍),所以a=0. 【总结】由运算法则整理得一元二次方程的一般形式,再结合一元二次方程根的判别式进行 求解,注意二次项系数不能为零.例7.(2020黄浦区一模)定义:我们知道,四边形的一条对角线把这个四边形分成两个三角形,如果这两个三角形相似但不全等,我们就把这条对角线叫做这个四边形的相似对角线,在四边形ABCD 中,对角线BD 是它的相似对角线,∠ABC =70°,BD 平分∠ABC ,那么∠ADC =____________度 【答案】145【分析】先画出示意图,由相似三角形的判定可知,在△ABD 和△DBC 中,已知∠ABD=∠CBD ,所以需另一组对应角相等,若∠A=∠C ,则△ABD 与△DBC 全等不符合题意,所以必定有∠A=∠BDC,再根据四边形的内角和为360°列式求解. 【详解】解:根据题意画出示意图,已知∠ABD=∠CBD , △ABD 与△DBC 相似,但不全等, ∴∠A=∠BDC ,∠ADB=∠C.又∠A+∠ABC+∠C+∠ADC=360°, ∴2∠ADB+2∠BDC+∠ABC=360°, ∴∠ADB+∠BDC=145°, 即∠ADC=145°.【点睛】对于新定义问题,读懂题意是关键.例8.(2020杨浦区一模).在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.如图,请在边长为1个单位的2×3的方格纸中,找出一个格点三角形DEF .如果△DEF 与△ABC 相似(相似比不为1),那么△DEF 的面积为______.【答案】1;【分析】根据小正方形的边长,分别求出ABC 和DEF 三边的长,然后判断它们是否对应成比例,再用三角形面积公式求解即可. 【详解】如图,∵1AB BC ==,,AC∴:?:?AB BC AC =∵DE =2EF =,DF =∴::DE EF DF ==∴:?:?::AB BC AC DE EF DF = ∴~ABC DEF ∴12112DEFS=⨯⨯= 故答案为:1【点睛】本题考查了在网格中画与已知三角形相似的三角形、三角形全等的判定以及三角形面积公式,熟练掌握三角形全等的判定是解题的关键.例9.我们把两个三角形的外心之间的距离叫做外心距.如图,在Rt ABC ∆和Rt ACD ∆中,90ACB ACD ∠=∠=︒,点D 在边BC 的延长线上,如果BC = DC = 3,那么ABC ∆和ACD ∆的外心距是______.【难度】★★ 【答案】3.【解析】直角三角形的外心为斜边的中点,所以ABC ∆和ACD ∆ 的外心分别为AB 和AD 的中点,这两个三角形的外心距 即∆ABD 的中位线,长度是132=BD .【总结】本题考查的知识点有直角三角形的外心、三角形的中位线.例10.定义[a ,b ,c ]为函数2y ax bx c =++的“特征数”.如:函数232y x x =+-的“特征数”是[1,3,2-],函数4y x =-+的“特征数”是[0,1-,4].如果将“特征数”是[2,0,4]的函数图像向下平移3个单位,得到一个新函数图像,那么这个新函数的解析式是__________________. 【难度】★★ 【答案】221=+y x .【解析】由题意得“特征数”是[2,0,4]的函数解析式为224=+y x ,向下平移3个单位可 得新函数的解析式为:221=+y x .【总结】特征数[a ,b ,c ]即为二次函数的三个系数,已知特征数则可求得二次函数的解析 式,再根据抛物线的平移法则“上加下减、左加右减”进行解题.例11.在平面直角坐标系xOy 中,C 的半径为r ,点P 是与圆心C 不重合的点,给出如下定义:若点'P 为射线CP 上一点,满足2'CP CP r =,则称点'P 为点P 关于C 的反演点.如图为点P 及其关于C 的反演点'P 的示意图.请写出点M (12,0)关于以原点O 为圆心,以1为半径的O 的反演点'M 的坐标 .AB D【难度】★★★【答案】(2,0).【解析】由反演点的定义可得2'=OM OM r ,即21'12=OM ,解得:'2=OM ,又点'M 在x 轴上, 所以点'M 的坐标为(2,0).【总结】掌握“反演点”的定义中,两点之间存在的关系.例12.如图1,对于平面上不大于90°的MON ∠,我们给出如下定义:如果点P 在MON ∠的内部,作PE OM ⊥,PF ON ⊥,垂足分别为点E 、F ,那么称PE + PF 的值为点P 相对于MON ∠的“点角距离”,记为d (P ,MON ∠).如图2,在平面直角坐标系xOy 中,点P 在第一象限内,且点P 的横坐标比纵坐标大1,对于xOy ∠,满足d (P ,xOy ∠)= 5,点P 的坐标是__________.【难度】★★★ 【答案】(3,2).x yP' CPO ENF OPM 图1yx-11-11O图2【解析】过点P 分别作PA ⊥x 轴,PB ⊥y 轴, ∵点P 在第一象限内且横坐标比纵坐标大1, ∴设PA =a ,则PB =a +1, ∵d (P ,xOy ∠)= 5,可得:PA +PB =5,即a +a +1=5,解得:a =2, 所以点P 的坐标为(3,2).【总结】本次考查“点角距离”的定义,利用定义求解相关点的坐标.模块二:阅读理解例1.一组数1,1,2,x ,5,y ,…,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y 表示的数为______. 【难度】★ 【答案】8.【解析】由题得,x =1+2=3,y =3+5=8. 【总结】本题难度不大,运算也比较简单.例2.四个数a 、b 、c 、d 排列成a b c d,我们称之为二阶行列式.规定它的运算法则为:a b ad bc c d=-.若331233x x x x +-=-+,则x =______.【难度】★★ 【答案】1.【解析】由运算法则得()()22333333+-=+---+x x x x x x ,整理得:1212=x ,解得:x =1.【总结】由运算法则整理,再解关于x 的方程即可.例3.对于两个不相等的实数a 、b ,我们规定符号{max a ,}b 表示a 、b 中的较大值,如:{max 2,}44=,按照这个规定,方程{max x ,}21x x x+-=的解为( )A .1B .2-C .11D .11-【难度】★★ 【答案】D .【解析】当x >0时,{}max x x x -=,,解方程21+=x x x,得:1=±x所以1=+x 当x <0时,{}max x x x -=-,,解方程21x x x+-=,得:121==-x x ,所以1=-x ;综上,1=x 1-,故选D .【总结】本题注意分类讨论,根据定义进行取值,再解关于x 的方程.例4.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于______. 【难度】★★ 【答案】1或2.45x +,45,则180x =,解得:45x =,此三角形为等腰直角三角形, ∴此三角形的面积=12当顶角为x 时,则4545180x x x ++++=,解得:30x =. 如图,2==AB AC ,30A ∠=,作CD ⊥AB ,在Rt ADC ,∵30A ∠=,∴112==CD AC , 211⨯=.综上所述,该三角形的面积等于1或2.【总结】本题注意分类讨论.根据“内角正度值”的定义求出三角形各内角的度数,再进行 面积的求解.例 5.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三D CBA角形”,这条中线称为“有趣中线”.已知Rt ABC ∆,90C ∠=︒,较短的一条直角边边长为1,如果Rt ABC ∆是“有趣三角形”,那么这个三角形“有趣中线”长等于 . 【难度】★★【解析】“有趣中线”有三种情况:若“有趣中线”为斜边AB 上的中线,直角三角形的斜边中点到三顶点距离相等,不合 题意;若“有趣中线”为BC 边上的中线,根据斜边大于直角边,矛盾,不成立;若“有趣中线”为另一直角边AC 上的中线, 如图所示,BC =1,设2BD x =,则CD x =. 在Rt BCD 中,勾股定理得1+()222=x x , 解得:xBD =2x. 【总结】本题考查“有趣中线”的定义,注意分类讨论.例6.如果一个平行四边形一个内角的平分线分它的一边为1 : 2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,它的周长为______. 【难度】★★ 【答案】8或10.【解析】由题意可知,存在两种情况:(1)一组邻边长分别为3和1,周长=8; (2)一组邻边长分别为3和2,周长=10.【总结】本题考查“协调平行四边形”的定义及平行四边形的性质.例7.设正n 边形的半径为R ,边心距为r ,如果我们将Rr的值称为正n 边形的“接近度”,那么正六边形的“接近度”是______(结果保留根号).DCBA【难度】★★【解析】设正六边形的边长为a ,则半径为R=a ,边心距为,所以R r. 【总结】本题考查“接近度”的定义及正六边形的性质.例8.将关于x 的一元二次方程20x px q ++=变形为2x px q =--,就可将2x 表示为关于x 的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”.已知210x x --=,可用“降次法”求得431x x --的值是____________. 【难度】★★ 【答案】1.【解析】由210x x --=,得21=+x x ,代入431x x --=()221311+--=-=x x x x . 【总结】本题运用“降次”及“整体代入”的思想进行解题.例9.在平面直角坐标系中,我们把半径相等且外切、连心线与直线y = x 平行的两个圆,称之为“孪生圆”;已知圆A 的圆心为(2-,3)A 的所有“孪生圆”的圆心坐标为_________. 【难度】★★【答案】(0,5)或(-4,1).【解析】由题意得,连心线所在直线为5=+y x ,因为两圆外切,设另一圆心为圆B ,所以圆心距=AB ,设(),5+B x x ,所以AB 解得:10=x ,24=-x ,所以圆心B 的坐标为(0,5)或(-4,1).【总结】本题考查了“孪生圆”的定义、一次函数的图像以及圆与圆的位置关系.例10.当两个圆有两个公共点,且其中一个圆的圆心在另一圆的圆内时,我们称此两圆的位置关系为“内相交”.如果1O 、2O 半径分别3和1,且两圆“内相交”,那么两圆的圆心距d 的取值范围是___________. 【难度】★★ 【答案】23<<d .【解析】两个圆有两个公共点即两圆相交,可得24<<d ,当小圆的圆心恰好在大圆上时,3=d ,所以内相交的圆心距d 取值范围是23<<d .【总结】本题考查圆与圆的位置关系及“内相交”的定义.模块三:规律探究例1.观察下列各数:1,43,97,1615,…,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .6263【难度】★★ 【答案】C .【解析】根据题意,可知规律为221n n -,故第6个数为:3663,化简为47,故选C .【总结】本题考查针对给定的一列数字找规律.例2.按一定规律排列的一列数:12,22,32,52,82,132,….若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的解析式是____________. 【难度】★★ 【答案】=xy z .【解析】由给出的这一列数字,可得出规律:从第三个数字开始,每个数等于它两个数的乘积,所以=xy z .【总结】本题考查针对给定的一列数字找规律.例3.在平面直角坐标系中,有三个点A (1,1-)、B (1-,1-)、C (0,1),点P (0,2)关于点A 的对称点为1P ,1P 关于点B 的对称点为2P ,2P 关于点C 的对称点为3P ,按此规律,继续以点A 、B 、C 为对称中心重复前面的操作,依次得到点4P ,5P ,6P ,…,则点2017P 的坐标为( ) A .(0,0) B .(0,2)C .(2,4-)D .(4-,2)【难度】★★ 【答案】C .【解析】由题意得1P (2,-4)、2P (-4,2)、3P (4,0)、4P (-2,-2)、5P (0,0),6P (0,2),每6个数形成一个周期,2017÷6=336……1,所以2017P 的坐 标和1P 的坐标相同,故选C .【总结】本题考查了点的对称问题及周期问题的处理.例4.如图,正方形ABCD 的边长为2,其面积标记为1S ,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为2S ,…,按照此规律继续下去,则2017S 的值为_____________.【难度】★★★【答案】20141()2.【解析】由题意得1S =2×2=4=22,2S 12=,3S =111⨯==20,…… 由以上规律,可知2017S =2-201420141()2=.【总结】本题考查了找规律在几何图形中的应用.1.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于 度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y , 由题意得,,解得:,答:该三角形的最小内角等于22.5°, 故答案为:22.5.2.(2020静安二模)如果一条直线把一个四边形分成两部分,这两部分图形的周长相等,那么这条直线称为这个四边形的“等分周长线”.在直角梯形ABCD中,AB∥CD,∠A=90°,DC=AD,∠B是锐角,cot B=,AB=17.如果点E在梯形的边上,CE是梯形ABCD的“等分周长线”,那么△BCE的周长为.【分析】作CH⊥AB于H,设BH=5a,证明四边形ADCH为矩形,得到AD=CH=12a,根据题意求出a,根据勾股定理求出BC,根据“等分周长线”计算,得到答案.【解答】解:作CH⊥AB于H,设BH=5a,∵cot B=,∴=,∴CH=12a,∵AB∥CD,∴∠D=∠A=90°,又CH⊥AB,∴四边形ADCH为矩形,∴AD=CH=12a,CD=AH,∵DC=AD,∴AH=CD=12a,由题意得,12a+5a=17,解得,a=1,∴AD=CD=AH=12,BH=5,在Rt△CHB中,BC==13,∴四边形ABCD的周长=12+12+17+13=54,∵CE是梯形ABCD的“等分周长线”,∴点E在AB上,∴AE=17+13﹣27=3,∴EH=12﹣3=9,由勾股定理得,EC==15,∴△BCE 的周长=14+13+15=42, 故答案为:42.3.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个【考查内容】新定义题型,黄金三角形 【评析】中等为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边用内角和公式求得∠β= 45,此时为等腰直角三角 【答案】22或215+4.(2020长宁二模)如果一个四边形有且只有三个顶点在圆上,那么称这个四边形是该圆的“联络四边形”,已知圆的半径长为5,这个圆的一个联络四边形是边长为2的菱形,那么这个菱形不在圆上的顶点与圆心的距离是 .【分析】先根据题意画出图形,连接BD 、OD ,设AM =x ,根据AD 2﹣AM 2=OD 2﹣OM 2,列出方程,求出x ,再根据OC =OA ﹣AM ﹣CM 计算即可. 【解答】解:根据题意画图如下:连接BD ,与AC 交与点M , ∵四边形ABCD 是菱形, ∴∠AMD =∠DMC =90°,∠ACD =∠ACB ,CD =CD ,AM =CM , ∴DM 2=AD 2﹣AM 2,设AM=x,则DM2=(2)2﹣x2,连接OD、OB,在△OCD和△OCB中,,∴△OCD≌OCB(SSS),∴∠OCD=∠OCB,∴∠ACD+∠OCD=∠ACB+∠OCB=180°,∴OC与AC在一条直线上,∴△OMD是一个直角三角形,OM=OA﹣AM=5﹣x,∴DM2=OD2﹣OM2,=52﹣(5﹣x)2,∴(2)2﹣x2=52﹣(5﹣x)2,x=2,∴AM=CM=2,∴OC=OA﹣AM﹣CM=5﹣2﹣2=1.故答案为:1.5.(2020青浦二模)小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH 分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=.【分析】先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x 的式子表示出DH;按照相似分割线可知,△AGC∽DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.解:∵Rt△ABC,AC=3,AB=5,∴由勾股定理得:BC=4,∵△BCG∽△DFH,∴=,已知DF=8,设AG=x,则BG=5﹣x,∴=,∴DH=10﹣2x,∵△BCG∽△DFH,∴∠B=∠FDH,∠BGC=∠CHF,∴∠AGC=∠DHE,∵∠A+∠B=90°,∠EDH+∠FDH=90°,∴∠A=∠EDH,∴△AGC∽DHE,∴=,又DE=4,∴=,解得:x=3,经检验,x=3是原方程的解,且符合题意.∴AG=3.故答案为:3.6.(2020杨浦二模) 定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是 . 【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可. 【解答】解:因为一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”, 可得:k =2, 故答案为:2.7.定义:如果二次函数2111y a x b x c =++(10a ≠,1a 、1b 、1c 是常数)与2222y a x b x c =++(20a ≠,2a 、2b 、2c 是常数)满足120a a +=,12b b =,120c c +=,那么称这两个函数互为“旋转函数”.若函数2423y x mx =-+-与22y x nx n =-+互为“旋转函数”,则()2017m n +=________. 【难度】★★ 【答案】-1.【解析】由“旋转函数”的定义得42320⎧=-⎪⎨⎪-+=⎩m nn ,解得:32=-⎧⎨=⎩m n ,所以()2017m n +=(-1)2017=-1.【总结】本题考查“旋转函数”的定义.8.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.在Rt ABC ∆中,90C ∠=︒,若Rt ABC ∆是“好玩三角形”,则tan A =_______. 【难度】★★【解析】由于直角三角形斜边上的中线等于斜边的一半,因此斜边上的中线不满足; 故只能是直角边上的中线等于此直角边的长, 如图所示,设BD =2x ,CD =x ,则=BC ,在Rt ABC 中,AC =2x,=BC . 当∠A为较小锐角时,tan A =当∠A为较大锐角时,tan A =. 【总结】本题考查“好玩三角形”的定义,注意分类讨论.9.我们把四边形两条对角线中点的连线段称为“奇异中位线”.现有两个全等三角形,边长分别为3cm 、4cm 、5cm .将这两个三角形相等的边重合拼成凸四边形,如果凸四边形的“奇异中位线”的长不为0,那么“奇异中位线”的长是______cm . 【难度】★★【答案】710.【解析】如图,将两个全等的直角ABC 与DEF 的斜边AC 与DF 重合,拼成凸四边形ABCE ,AC 与BE 交于点O ,M 为AC 的中点.∵△ABC ≌△DEF ,易证AO ⊥BE .在Rt AOB 中,AO =AB •cos ∠BAO =95,因为1522==AM AC ,所以5972510=-=-=OM AM OA . 即奇异中位线的长是710. 【总结】本题考查了“奇异中位线”的定义,注意根据题目要求画出合适的图形.10.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将[p ,q ]称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[4-,2].请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[2,3],将这个函数的图像先DCBA向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为______. 【难度】★★ 【答案】[6,8].【解析】特征数是[2,3]的二次函数为223=++y x x ,即2(1)2=++y x ,将其向左平移2个单位,再向下平移3个单位后得到的二次函数为2(3)1=+-y x ,即268=++y x x , 所以特征数为[6,8].【总结】本题考查了“特征数”的定义及二次函数图像的平移.11.如图1,点P 是以r 为半径的圆O 外一点,点'P 在线段OP 上,若满足2'OP OP r =,则称点'P 是点P 关于圆O 的反演点.如图2,在Rt ABO ∆中,90B ∠=︒,AB = 2,BO = 4,圆O 的半径为2,如果点'A 、'B 分别是点A 、B 关于圆O 的反演点,那么''A B 的长是______.【难度】★★★【答案】5.【解析】由反演点的定义,可知:2'=OA OA r ,2'=OB OB r ,则'=OA OA 'OB OB ,即''=OA OB OB OA ,又∠=∠O O ,可证''OA B ∽OBA , ∴'''=OB A B OA AB ,即225''=A B ,解得:''A B =5. 【总结】本题考查了“反演点”的定义,以及相似三角形的判定与性质.12.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置.点1A ,2A ,3A ,…和点1C ,2C ,3C ,…,分别在直线y kx b =+(0k >)和x 轴上,已知点1B (1,1),2B (3,2),OPP'BOA图1 图2则点6B 的坐标是__________,点n B 的坐标是__________.【难度】★★★【答案】(63,32),1(212)nn--,.【解析】由1A (0,1)、2A (1,2), 可求得直线解析式为1=+y x . 可求得3A (3,4)、3B (7,4),4A (7,8)、 4B (15,8),5A (15,16)、5B (31,16), 6A (31,32)、6B (63,32), ……,按照此规律可得n B 1(212)n n --,. 【总结】本题考查了一次函数与几何图形背景下找出点坐标的规律.13.对于平面直角坐标系 xOy 中的点P (a ,b ),若点'P 的坐标为(ba k+,ka b +)(其中k 为常数,且0k ≠),则称点'P 为点P 的“k 属派生点”.例如:P (1,4)的“2属派生点”为'P (412+,214⨯+),即'P (3,6).若点P 的“k 属派生点”'P 的坐标为(3,3),请写出一个符合条件的点P 的坐标:____________. 【难度】★★★ 【答案】(2,1).【解析】由题意得33⎧+⎪=⎨⎪+=⎩b a k ka b ,整理得:33+=⎧⎨+=⎩ka b k ka b ,所以1=k , 只要满足3+=a b 即可,可取点P (2,1).x yO【总结】本题考查了“派生点”的定义,关键是求出k 的值,答案不唯一.14.如图,正方形ABCD 的边长为1,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,…,如此下去,第n 个正方形的边长为__________.【难度】★★★ 【答案】12-n . 【解析】第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,依次规律,第n 个正方形的边长为12-n . 【总结】本题考查了几何图形背景下线段长度上存在的规律.A BC D E FGH。

上海中考数学压轴题汇总—25题(2012-2021)-真题

上海中考数学压轴题汇总—25题(2012-2021)-真题

2012-2021年上海中考数学真题解答题第25题201225.(本题满分14分,第(1)小题满分3分,第(2)小题满分5分,第(3)小题满分6分)如图,在半径为2的扇形AOB 中,∠=90AOB,点C 是弧AB 上的一个动点(不与点A 、B 重合)OD ⊥BC ,OE ⊥AC ,垂足分别为D 、E .(1)当=1BC 时,求线段OD 的长;(2)在△DOE 中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设=BD x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域.公众号:奥孚升学孚升学公众号:奥孚:奥孚升学众号公众号:奥孚升公众号:奥孚升学孚升学公众号:奥孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:201325.在矩形ABCD 中,点P 是边AD 上的动点,联结BP ,线段BP 的垂直平分线交边BC 于点Q ,垂足为点M ,联结QP (如图10).已知13AD =,5AB =,设AP x BQ y ==,.(1)求y 关于x 的函数解析式,并写出x 的取值范围;(2)当以AP 长为半径的⊙P 和以QC 长为半径的⊙Q 外切时,求x 的值;(3)点E 在边CD 上,过点E 作直线QP 的垂线,垂足为F ,如果4EF EC ==,求x的值.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升孚升学公众号:奥孚升公众公众号:奥孚升学号:奥孚升学公众号:奥孚公众号:奥孚升公众号:奥孚升学图10备用图公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号201425.如图,已知在平行四边形ABCD 中,AB=5,BC=8,cosB=45,点P 是边BC 上的动点,以CP 为半径的圆C 与边AD 交于点EF(点F 在点E 的右侧),射线CE 与射线BA 交于点G.(1)当圆C 经过点A 时,求CP 的长;(2)联结AP ,当AP//CG 时,求弦EF 的长;(3)当AGE 是等腰三角形时,求圆C 的半径长.201525.已知,如图,AB 是半圆O 的直径,弦//CD AB ,动点,P Q 分别在线段,OC CD 上,且,DQ OP AP =的延长线与射线OQ 相交于点E ,与弦CD 相交于点F (点F 与点C ,D不重合),420,cos 5AB AOC =∠=设OP x =,CPF 的面积为y .(1)求证:AP OQ =;(2)求y 关于x 的函数关系式,并写出它的定义域;(3)当OPE 是直角三角形时,求线段OP的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚公众号201625.如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =,点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函数解析式,并写出x 的取值范围;公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公公众学公众公众号:奥孚升学公众号:奥孚升学学奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号孚公众号201725.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9,已知O e 的半径长为1,AB 、AC 是O e 的两条弦,且AB AC ,BO 的延长线交AC 于点D ,联结OA 、OC.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升学公众号公众公众号:奥孚升学公众号:奥孚升学升学公众号公众号:(1)求证:OAD ABD V :V ;(2)当OCD V 是直角三角形时,求B 、C 两点的距离;(3)记AOB V 、AOD V 、COD V 的面积分别为1S 、2S 、3S ,如果2S 是1S 和3S 的比例中项,求OD 的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:孚升学孚升学奥孚升学公众号:奥孚升学孚公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升学公众号孚升学公众:奥孚升学公众号公众号:奥孚升201825.(14分)已知⊙O 的直径AB=2,弦AC 与弦BD 交于点E .且OD ⊥AC ,垂足为点F .(1)如图1,如果AC=BD ,求弦AC 的长;(2)如图2,如果E 为弦BD 的中点,求∠ABD 的余切值;(3)联结BC 、CD 、DA ,如果BC 是⊙O 的内接正n 边形的一边,CD 是⊙O 的内接正(n +4)边形的一边,求△ACD的面积.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥公众号:奥孚升公众号:奥孚升学公众号201925.(14分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分6分)如图10,AD 、BD 分别是A4BC 的内角∠BAC 、∠4BC 的平分线,过点A 作AE 上AD ,交BD 的延长线于点E.(1)求证:∠E =21∠C ;(2)如图11,如果AE =AB ,且BD :DE =2:3,求cos ∠ABC 的值;(3)如果∠ABC 是锐角,且△ABC 与△ADE 相似,求∠ABC 的度数,并直接写出ABCADES S △△的值.孚升学公众号:奥孚升公众号:奥孚升学孚升学众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:202025.如图,△ABC 中,AB =AC ,⊙O 是△ABC 的外接圆,BO 的延长交边AC 于点D .(1)求证:∠BAC =2∠ABD ;(2)当△BCD 是等腰三角形时,求∠BCD 的大小;(3)当AD =2,CD =3时,求边BC的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号公众号:公众公众号:奥孚升学公众号:奥孚升学公:奥孚升学公众号:奥孚升公众号:孚升学孚升学公众公众公众号:奥孚升学号:奥孚升公众号:奥孚升学202125.如图,在梯形ABCD 中,//,90,,AD BC ABC AD CD O ∠=︒=是对角线AC 的中点,联结BO 并延长交边CD 或边AD 于E .(1)当点E 在边CD 上时,①求证:DAC OBC ∽;②若BE CD ⊥,求ADBC的值;(2)若2,3DE OE ==,求CD 的长.公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升学公众号:奥孚升公众号:奥孚升学公众号:奥孚升学公众号公众号:学孚升号:奥孚升学公众号:奥孚升学:公众号:奥孚升学公众号:公众号:奥孚孚升学公公众号公众奥孚升学学号:奥孚升孚升学公众号公众号:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②解:设 AP=x,则 DP=5-x,由△ABP∽△DPC,得 AB PD ,即 2 5 x , AP DC x 2
解得 x1=1,x2=4,则 AP 的长为 1 或 4. (2)①解:类似(1)①,易得△ABP∽△DPQ,∴ AB AP .即 2 x ,
PD DQ 5 x 2 y
得 y 1 x2 5 x 2 ,1<x<4. 22
……………………(1 分)
解法二 此时∠CPQ= 1 ∠PCN=22.5°,∠APB=90°-22.5°=67.5°, 2
∠ABP=180°-(45°+67.5°)=67.5°,得∠APB=∠ABP,
海量资源,欢迎共阅
∴ AP=AB=1,∴ x=1.
……………………(1 分)
上海市 2003 年初中毕业高中招生统一考试
解法二
作 PT⊥BC,T 为垂足(如图 2),那么四边形 PTCN 为正方形.
∴ PT=CB=PN.
又∠PNQ=∠PTB=90°,PB=PQ,∴△PBT≌△PQN.
S S = 四边形 PBCQ △四边形 PBT+S 四边形 PTCQ=S 四边形 PTCQ+S△PQN=S 正方形 PTCN
…(2 分)
并写出函数的定义域;
②当 CE=1 时,写出 AP 的长(不必写出解题过程).
27.(1)①证明:
∵∠ABP=180°-∠A-∠APB,∠DPC=180°-∠BPC-∠APB,∠BPC=∠A, ∴∠ABP=∠DPC.∵在梯形 ABCD 中,AD∥BC,AB=CD,∴∠A=∠D.∴△ABP ∽△DPC.
②AP=2 或 AP=3- 5 .
(题 27 是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断 与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即 灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联 系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题 的途径.)
上海市 2002 年中等学校高中阶段招生文化考试
海量资源,欢迎共阅
27.操作:将一把三角尺放在边长为 1 的正方形 ABCD 上,并使它的直角顶点 P 在对角
线 AC 上滑动,直角的一边始终经过点 B,另一边与射线 DC 相交于点 Q.
图5
图6
图7
探究:设 A、P 两点间的距离为 x.
(1)当点 Q 在边 CD 上时,线段 PQ 与线段 PB 之间有怎样的大小关系?试证明你观
和四边形 BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图 1).
∴ NP=NC=MB.
……………………(1 分)
∵ ∠BPQ=90°,∴ ∠QPN+∠BPM=90°.
而∠BPM+∠PBM=90°,∴ ∠QPN=∠PBM.
……………………(1 分)
又∵ ∠QNP=∠PMB=90°,∴ △QNP≌△PMB. ……………………(1 分)
27.如图,在正方形 ABCD 中,AB=1 ,弧 AC 是点 B 为圆心,AB 长为半径的圆的一段弧。
点 E 是边 AD 上的任意一点(点 E 与点 A、D 不重合),过 E 作弧 AC 所在圆的切线,交边 DC
=CN2=(1- 2 x )2= 1 x2- 2x +1
2
2
∴ y= 1 x2- 2x +1(0≤x< 2 ).
2
2
……………………(1 分)
(3)△PCQ 可能成为等腰三角形
①当点 P 与点 A 重合,点 Q 与点 D 重合,这时 PQ=QC,△PCQ 是等腰三角形,
此时 x=0
……………………(1 分)
2
2
2 x. 4
………………(1 分)
S△PCQ=
1 2
CQ·PN=
1 2
×(1-
2x )(1- 2 x )= 1 - 3 2 x + 1 x2
2
24
2
S
四边形 PBCQ=S△PBC+S△PCQ=
1 2
x2-
2x +1.
(1 分)
即 y= 1 x2- 2x +1(0≤x< 2 ).
2
2
……………………(1 分,1 分)
海量资源,欢迎共阅
上海历年中考数学压轴题复习
2001 年上海市数学中考
27.已知在梯形 ABCD 中,AD∥BC,AD<BC,且 AD=5,AB=DC=2. (1)如图 8,P 为 AD 上的一点,满足∠BPC=∠A.
图8
①求证;△ABP∽△DPC ②求 AP 的长. (2)如果点 P 在 AD 边上移动(点 P 与点 A、D 不重合),且满足∠BPE=∠A,PE 交 直线 BC 于点 E,同时交直线 DC 于点 Q,那么 ①当点 Q 在线段 DC 的延长线上时,设 AP=x,CQ=y,求 y 关于 x 的函数解析式,
察得到结论;
(2)当点 Q 在边 CD 上时,设四边形 PBCQ 的面积为 y,求 y 与 x 之间的函数解析式,
并写出函数的定义域;
(3)当点 P 在线段 AC 上滑动时,△PCQ 是否可能成为等腰三角形?如果可能,指出
所有能使△PCQ 成为等腰三角形的点 Q 的位置,并求出相应的 x 的值;如果不可能,试说
②当点 Q 在边 DC 的延长线上,且 CP=CQ 时,△PCQ 是等腰三角形(如图 3)
……………………(1 分)
解法一 此时,QN=PM= 2 x ,CP= 2 -x,CN= 2 CP=1- 2 x .
2
2
2
∴CQ=QN-CN= 2 x -(1- 2 x )= 2x -1.
2
2
当 2 -x= 2x -1 时,得 x=1.
明理由.
(图 5、图 6、图 7 的形状大小相同,图 5 供操作、实验用,图 6 和图 7 备用)
五、(本大题只有 1 题,满分 12 分,(1)、(2)、(3)题均为 4 分)
27.
图1图2图3
(1)解:PQ=PB
……………………(1 分)
证明如下:过点 P 作 MN∥BC,分别交 AB 于点 M,交 CD 于点 N,那么四边形 AMND
∴ PQ=PB.
(2)解法一
由(1)△QNP≌△PMB.得 NQ=MP.
∵ AP=x,∴ AM=MP=NQ=DN= 2 x ,BM=PN=CN=1- 2 x ,
2
2

∴ CQ=CD-DQ=1-2· 2 x =1- 2x . 2
海量资源,欢迎共阅

S△PBC=
1 2
BC·BM=
1 2
×1×(1-
2 x )= 1 -
相关文档
最新文档