九年级下数学圆知识点总结
冀教版九年级圆的知识点总结归纳

冀教版九年级圆的知识点总结归纳圆是几何中的重要概念之一,它广泛应用于几何、物理等领域。
在冀教版九年级数学教材中,关于圆的知识点和性质进行了详细的介绍和探究。
本文将对冀教版九年级数学教材中关于圆的知识点进行总结和归纳,以帮助同学们更好地掌握和理解圆的概念和性质。
一、圆的定义与相关概念在学习圆之前,我们首先要了解圆的定义和相关概念。
1. 圆的定义:圆是平面上到一定点距离相等的点的集合。
2. 圆的元素:圆心、半径、弧、弦、直径等。
3. 相关概念:直径、半径、弧长、弦长、圆心角、圆周角等。
二、圆的性质及相关定理1. 圆的性质:(1) 圆上任意两点与圆心连线的长度相等;(2) 圆的半径相等;(3) 圆上的任意弧都小于或等于半圆;(4) 圆上的任意弧所对的圆心角相等;(5) 圆上的任意弧所对的弧长与圆心角大小成正比。
2. 相关定理:(1) 弧长定理:圆的弧长与圆心角的大小成正比;(2) 弧度制与角度制的转换关系:1弧度= 180° / π ;(3) 圆心角定理:位于同一个圆上的两个弧所对的圆心角相等;(4) 弦切定理:切线与弦的关系。
三、圆的应用1. 圆的面积计算:圆的面积公式为:S = πr²,其中S为圆的面积,r为圆的半径。
2. 相关应用题:(1) 已知圆的半径,如何求圆的周长和面积;(2) 如何判断一个点在圆内或外;(3) 如何判断两个圆的位置关系。
四、圆的构造1. 构造圆的方法:(1) 已知圆心和半径,可以利用圆规和直尺来画出一个圆;(2) 已知圆上的三个点,可以通过连线构造出圆。
2. 相关构造题:(1) 如何通过点和直线构造圆;(2) 如何通过两个不同的点构造圆。
五、圆的证明题在九年级数学教材中,我们还会遇到一些关于圆的定理的证明题,如三角形内切圆和外接圆的性质证明等。
对于这类题目,我们需要灵活运用所学知识,利用图形特点和定理推理,进行证明。
综上所述,圆是数学中一个重要且广泛应用的几何概念,掌握圆的相关知识点和性质对于我们理解几何学和应用数学非常重要。
九年级数学圆知识点总结

九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。
圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。
接下来,本文将对九年级数学中的圆知识点进行总结。
一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。
这个给定点称为圆心,到圆心的距离称为半径。
2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。
- 圆的半径相等,且平行于任意切线。
- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。
- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。
二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。
弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。
- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。
一个完整的圆周对应的弧度数为2π。
2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。
三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。
- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。
2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。
- 割线:与圆相交于两点的直线称为割线。
四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。
2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。
3. 弧度制与角度制的转换关系:一周的弧度数为360°。
4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。
5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。
九年级数学下册圆的知识点整理

九年级数学下册圆的知识点整理圆的应用在数学领域中非常的广泛且常见,下面是小编给大家带来的九年级数学下册《圆》知识点整理,希望能够帮助到大家!九年级数学下册《圆》知识点整理第十章圆★重点★①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
☆内容提要☆一、圆的基本性质1.圆的定义(两种)2.有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。
3.三点定圆定理4.垂径定理及其推论5.等对等定理及其推论5. 与圆有关的角:⑴圆心角定义(等对等定理)⑵圆周角定义(圆周角定理,与圆心角的关系)⑶弦切角定义(弦切角定理)二、直线和圆的位置关系1.三种位置及判定与性质:初中数学复习提纲2.切线的性质(重点)3.切线的判定定理(重点)。
圆的切线的判定有⑴⑵4.切线长定理三、圆换圆的位置关系初中数学复习提纲1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:⑴定义⑵性质四、与圆有关的比例线段初中数学复习提纲1.相交弦定理2.切割线定理五、与和正多边形1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算中心角:初中数学复习提纲内角的一半:初中数学复习提纲(右图)(解Rt△OAM可求出相关元素, 初中数学复习提纲、初中数学复习提纲等)六、一组计算公式1.圆周长公式2.圆面积公式3.扇形面积公式初中数学复习提纲4.弧长公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、点的轨迹六条基本轨迹八、有关作图1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、基本图形十、重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦。
九年级数学--圆知识点和典例训练

1圆的对称性主要内容:(一)圆的定义及相关概念1. 圆是到一定点的距离等于定长的所有点组成的图形。
这个定点叫做圆心,定长叫做半径。
圆也可以看作是一个动点绕一个定点旋转一周所形成的图形。
同一圆的半径相等,直径相等,直径等于半径的2倍。
2. 圆的基本元素:(1)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫直径。
(如图)(2)弧:圆上任意两点间的部分叫做弧。
简称弧,弧用符号表示。
(3)半圆、劣弧、优弧圆的任意一条直径的两个端点分圆成两条弧。
每一条弧都叫做半圆。
小于半圆的弧叫做劣弧。
CD* EC.大于半圆的弧叫做优孤-用三个字母表示:嬴(4)圆心角顶点在圆心的角,叫做圆心角。
/ COD(5)同心圆、等圆、等弧同心圆:圆心相同,半径不相等的两个圆叫做同心圆。
等圆:能够重合的两个圆叫等圆。
半径相等的两个圆也叫等圆。
等弧:在同圆与等圆中,能够互相重合的弧叫等弧。
3. 圆是轴对称图形,也是中心对称图形。
经过圆心的直线是对称轴。
圆心是它的对称中心。
4. 圆心角、弧、弦之间的关系定理:在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。
推论:在同一个圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。
(2)T金=后二N盘0B = ZA'OB'5 AB=A'B l如图,用几何语言表示如下:O O 中,(1)vZ AOB =Z A'OB'(3)v AB = A'B'/. ZAOB= ZA'OB1, 恳=品例3.在O O 中,弦AB = 12cm ,点O 到AB 的距离等于 圆的半径。
分析:根据O 到AB 的距离,可利用垂径定理解决。
解:过O 点作OE 丄AB 于E •/ AB = 12丄直 B = -xl2 = 62 2由垂径定理知:虹二 BE 二丄AB 二 625.直径垂直于弦的性质(垂径定理)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
数学九年级下册圆的知识点

数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
九年级数学知识点整理

九年级数学知识点整理初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
数学知识点九年级圆的必考知识点(1)圆在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。
圆有无数条对称轴。
九年级数学圆的方程知识点

九年级数学圆的方程知识点圆的方程是数学中的一个重要知识点,它在几何学和代数学中都有广泛的应用。
本文将围绕九年级数学课程中的圆的方程知识点展开论述,从基础概念开始,逐步深入探讨。
一、圆的基础概念首先,我们需要了解圆的基础概念。
圆是平面上一组到中心点距离相等的点的集合。
这个中心点通常用字母O表示,我们称之为圆心。
而到圆心距离相等的这些点,就被称为圆上的点。
这些点的距离我们称之为圆的半径,用字母r表示。
二、圆的方程定义在代数学中,我们可以使用方程来表示圆。
圆的方程通常有两种形式:一种是标准方程,另一种是一般方程。
标准方程是指以坐标系的原点为圆心的圆方程,其形式为x² + y² = r²。
而一般方程则可以是(x-a)² + (y-b)² = r²的形式,其中(a,b)表示圆心的坐标。
三、确定圆的方程在实际问题中,我们常常需要确定一个圆的方程。
这时,可以利用已知条件与圆的方程相结合进行求解。
例如,已知圆心为(2,3),半径为5的圆,我们可以得到一般方程(x-2)² + (y-3)² = 25。
四、圆的相关性质在研究圆的方程时,了解其相关性质也是非常有意义的。
首先,圆的直径是通过圆心的一条线段,它的长度是半径的两倍。
其次,我们还可以通过圆的方程求解出圆与坐标轴的交点,这些交点称为圆的截距点。
五、圆的图象我们可以通过绘制圆的图象来直观地理解圆的性质。
绘制圆的图象可以先确定圆心的位置,然后根据半径的长度在平面上画出一个闭合的曲线。
这个曲线就是圆的图象。
在数学课堂上,老师通常会通过黑板上的绘图来演示,让学生深入了解圆的形态。
六、圆的方程与实际问题圆的方程在实际问题中有着广泛的应用。
例如,在建筑领域中,钢筋混凝土顶板的厚度可以用圆的方程来表达。
在工程计算中,圆的方程可以用于计算液体的体积、计算管道的长度等。
因此,学好圆的方程对于今后的学习和实践是非常重要的。
北师大版九年级下册数学第12讲《圆的有关概念及圆的确定》知识点梳理

北师大版九年级下册数学第 12 讲《圆的有关概念及圆的确定》知识点梳理【学习目标】1.知识目标:理解圆的描述概念和圆的集合概念;理解半径、直径、弧、弦、弦心距、圆心角、同心圆、等圆、等弧的概念;经历探索点与圆的位置关系的过程,会运用点到圆心的距离与圆的半径之间的数量关系判断点与圆的位置关系;了解不在同一直线上的三点确定一个圆,了解三角形的外接圆、三角形的外心、圆的外接三角形的概念.2.能力目标:能应用圆半径、直径、弧、弦、弦心距的关系,进行计算或证明;会过不在同一直线上的三点作圆.3.情感目标:在确定点和圆的三种位置关系的过程中体会用数量关系来确定位置关系的方法,逐步学会用变化的观点及思想去解决问题,养成学生之间发现问题、探讨问题、解决问题的习惯.【要点梳理】要点一、圆的定义1.圆的描述概念如图,在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径. 以点O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的集合概念圆心为O,半径为r 的圆是平面内到定点O 的距离等于定长r 的点的集合.平面上的一个圆,把平面上的点分成三类:圆上的点,圆内的点和圆外的点.圆的内部可以看作是到圆心的距离小于半径的的点的集合;圆的外部可以看成是到圆心的距离大于半径的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.P rPrPr要点二、点与圆的位置关系点和圆的位置关系有三种:点在圆内,点在圆上,点在圆外.若⊙O 的半径为r,点P 到圆心O 的距离为d,那么:点P 在圆内⇔d <r ;点P 在圆上⇔d=r;点P 在圆外⇔d >r.“⇔”读作“等价于”,它表示从左端可以推出右端,从右端也可以推出左端.要点诠释:点在圆上是指点在圆周上,而不是点在圆面上;要点三、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号)∴直径AB 是⊙O 中最长的弦.2.弧弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B 为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.4.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.要点诠释:同圆或等圆的半径相等.5.圆心角顶点在圆心的角叫做圆心角.要点诠释:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,反之也成立.要点四、确定圆的条件(1)经过一个已知点能作无数个圆;(2)经过两个已知点A、B 能作无数个圆,这些圆的圆心在线段AB 的垂直平分线上;(3)不在同一直线上的三个点确定一个圆.(4)经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.如图:⊙O 是△ABC 的外接圆,△ABC 是⊙O 的内接三角形,点O 是△ABC 的外心.外心的性质:外心是△ABC 三条边的垂直平分线的交点,它到三角形的三个顶点的距离相等.要点诠释:(1)不在同一直线上的三个点确定一个圆.“确定”的含义是“存在性和唯一性”.(2)只有确定了圆心和圆的半径,这个圆的位置和大小才唯一确定.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】平行四边形的四个顶点在同一圆上,则该平行四边形一定是()A.正方形B.菱形C.矩形D.等腰梯形【答案】C.2.爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m 以外的安全区域.这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m 是否安全?【思路点拨】计算在导火索燃烧完的时间内人跑的距离与120m比较.【答案与解析】∵导火索燃烧的时间为18=2(0s)0.9相同时间内,人跑的路程为20×6.5=130(m)∴人跑的路程为130m>120m,∴点导火索的人安全.【总结升华】爆破时的安全区域是以爆破点为圆心,以120m为半径的圆的外部,如图所示.类型二、圆的有关计算3.已知,点P 是半径为5 的⊙O 内一点,且OP=3,在过点P 的所有的⊙O 的弦中,弦长为整数的弦的条数为( )A.2B.3C.4D.5【思路点拨】在一个圆中,过一点的最长弦是经过这一点的直径,最短的弦是经过这一点与直径垂直的弦.【答案】C.【解析】作图,过点P 作直径AB,过点P 作弦,连接OC则OC=5,CD=2PC,由勾股定理,得,∴CD=2PC=8,又∵AB=10,∴过点P 的弦长的取值范围是,弦长的整数解为8,9,10,根据圆的对称性,弦长为9 的弦有两条,所以弦长为整数的弦共4 条.故选C.【总结升华】利用垂径定理来确定过点P 的弦长的取值范围.根据圆的对称性,弦长为9 的弦有两条,容易漏解. 举一反三:【变式】平面上的一个点到圆的最小距离是4cm,最大距离是9cm,则圆的半径是().A.2.5cmB.6.5cmC. 2.5cm 或6.5cmD. 5cm 或13cm【答案】C.类型三、确定圆的条件的有关作图与计算4.已知:不在同一直线上的三点A、B、C,求作:⊙O 使它经过点A、B、C.【思路点拨】作圆的关键是找圆心得位置及半径的大小,经过两点的圆的圆心一定在连接这两点的线段的垂直平分线上,进而可以作出经过不在同一直线上的三点的圆.【解析】作法:1、连结AB,作线段AB 的垂直平分线MN;2、连接AC,作线段AC 的垂直平分线EF,交MN 于点O;3、以O 为圆心,OB 为半径作圆.所以⊙O 就是所求作的圆.【总结升华】通过这个例题的作图可以作出锐角三角形的外心(图一),直角三角形的外心(图二),钝角三角形的外心(图三).探究各自外心的位置.52 - 42【变式】(2015•江干区二模)给定下列图形可以确定一个圆的是( )A .已知圆心B .已知半径C .已知直径D .不在同一直线上的三个点【答案】D.提示:A 、已知圆心只能确定圆的位置不能确定圆的大小,故错误;B 、C 、已知圆的半径和直径只能确定圆的大小并不能确定圆的位置,故错误;D 、不在同一直线上的三点确定一个圆,故正确,故选 D .5. 如图,⊙O 的直径为 10,弦 AB=8,P 是弦 AB 上的一个动点,那么 OP 的长的取值范围是 .【思路点拨】求出符合条件的 OP 的最大值与最小值.【答案】3≤OP ≤5.【解析】OP 最长边应是半径长,为 5;根据垂线段最短,可得到当 OP ⊥AB 时,OP 最短.∵直径为 10,弦 AB=8∴∠OPA=90°,OA=5,由圆的对称性得 AP=4,由勾股定理的 OP= = 3 ,∴OP 最短为 3.∴OP 的长的取值范围是 3≤OP ≤5.【总结升华】关键是知道 OP 何时最长与最短.举一反三:【变式】已知⊙O 的半径为 13,弦 AB=24,P 是弦 AB 上的一个动点,则 OP 的取值范围是.【答案】 OP 最大为半径,最小为 O 到 AB 的距离.所以 5≤OP ≤13.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级下数学圆知识点总结在九年级下学期的数学课程中,圆是一个重要的几何形状。
学习圆的相关知识对于理解几何学和进一步解决问题至关重要。
在本文中,将对九年级下数学课程的圆相关知识点进行总结。
一、圆的定义和基本性质
1. 圆的定义:圆是由平面上离定点距离相等的所有点组成的集合。
2. 圆的要素:圆心、半径和直径是圆的基本要素。
- 圆心:圆的中心点,通常用字母O表示。
- 半径:圆心到圆上任意一点的距离,通常用字母r表示。
- 直径:通过圆心的一条线段,它的两个端点在圆上,通常用字母d表示。
3. 圆的性质:
- 圆上任意两点的距离等于半径的长度。
- 圆的直径是半径的两倍。
- 圆的周长等于直径乘以π(圆周率),即C = πd。
- 圆的面积等于半径平方乘以π,即A = πr²。
二、圆的位置关系和判定方法
1. 圆的位置关系:
- 同心圆:具有相同圆心但半径不同的圆。
- 内切圆:两个圆相交,且较小的圆完全位于较大的圆内部,二者只有一个公共点。
- 外切圆:两个圆相交,且较小的圆完全位于较大的圆外部,二者只有一个公共点。
- 相交圆:两个圆有两个不重叠的公共点。
- 相离圆:两个圆没有公共点。
2. 判定圆的方法:
- 已知圆心和半径:根据圆的定义,可以通过圆心和半径确定一个圆。
- 已知圆上的三个点:三点确定一个圆,可以根据圆的性质绘制出圆来。
- 已知直径两端的点:通过两点绘制直径,以直径中点为圆心,直径的一半为半径即可确定圆。
三、圆的相关角度
1. 弧度制和角度制:
- 弧度制:用圆的弧长与半径的比值表示,一周为2π弧度。
- 角度制:以直角为90度,一周为360度。
2. 弧度和角度之间的转换:
- 角度制转弧度制公式:弧度= (π/180) × 角度
- 弧度制转角度制公式:角度= (180/π) × 弧度
3. 圆心角和弧度:
- 圆心角:以圆心为顶点的角。
- 弧度的定义:弧度是圆心角所对应的弧长与半径的比值。
四、圆与直线的位置关系
1. 相切关系:
- 切线:与圆只有一个交点的直线。
- 切点:切线与圆的交点。
2. 相交关系:
- 弦:连接圆上两个不同点的线段。
- 弦的性质:等长的弦所对应的圆心角相等,且等长的弦在圆上所对应的弧相等。
五、圆的应用
1. 圆的度量单位:
- 弧长:沿圆周的一段弧的长度。
- 扇形:由圆心角和两个半径所确定的区域。
- 圆心角所对应的弧长为1的扇形称为单位圆扇形。
2. 圆的应用:
- 钟表运动:通过测量圆周的弧长来表示时间。
- 圆的移动:通过圆的半径和圆心的位置改变形状和位置。
- 圆的有关计算:如计算圆的周长、面积以及弧长等。
六、习题解析
通过做习题来巩固和应用所学的圆知识是提高数学能力和理解能力的有效方法。
理解并解答相关习题,可以帮助学生巩固圆的定义、性质和应用。
综上所述,九年级下数学课程的圆知识点包括圆的定义、圆的基本性质、圆的位置关系和判定方法、圆的相关角度、圆与直线的位置关系、圆的应用以及习题解析等。
通过系统学习和灵活运用这些知识点,可以更好地理解几何学和解决实际问题。
希望同学们在学习中能够善于思考、勤于练习,不断提高数学运算和应用的能力。