电力系统潮流分析设计

合集下载

电力系统中的动态潮流分析

电力系统中的动态潮流分析

电力系统中的动态潮流分析在当今社会,电力已成为我们生活和生产中不可或缺的能源。

从家庭中的电器设备到工业生产中的大型机器,无一不需要稳定可靠的电力供应。

而电力系统就像是一个庞大而复杂的网络,负责将电能从发电厂输送到各个用户终端。

在这个系统中,动态潮流分析是一项至关重要的任务,它帮助我们更好地理解和掌握电力系统的运行状态,确保其安全、稳定和高效运行。

首先,让我们来了解一下什么是电力系统的潮流。

简单来说,潮流就是电力系统在某一特定运行状态下,电力网络中各节点的电压、电流和功率的分布情况。

通过对潮流的分析,我们可以知道电力从哪里来,到哪里去,以及在传输过程中的损耗和变化。

动态潮流分析与传统的静态潮流分析有所不同。

静态潮流分析通常假设电力系统处于一种稳定的运行状态,不考虑系统中的动态变化因素,如发电机的调速器、负荷的动态特性等。

而动态潮流分析则将这些动态因素纳入考虑范围,能够更真实地反映电力系统的实际运行情况。

那么,为什么要进行动态潮流分析呢?这是因为电力系统在实际运行中会面临各种各样的变化和干扰。

例如,突然增加或减少的负荷、发电机的故障、线路的短路等。

这些变化可能会导致电力系统的电压和频率发生波动,甚至可能引发系统的不稳定和崩溃。

通过动态潮流分析,我们可以提前预测这些变化对系统的影响,从而采取相应的控制措施,保障电力系统的安全稳定运行。

在动态潮流分析中,有几个关键的要素需要我们关注。

首先是发电机的模型。

发电机是电力系统中的重要电源,其输出功率和电压会受到调速器和励磁系统的控制。

因此,建立准确的发电机模型对于动态潮流分析至关重要。

其次是负荷模型。

负荷的特性会随着时间和电压的变化而变化,例如电动机负荷的启动和停止会对系统产生较大的冲击。

此外,电力网络的参数,如线路的电阻、电抗和电容等,也会影响动态潮流的分布。

为了进行动态潮流分析,我们需要使用一些专门的工具和方法。

常见的方法包括数值积分法、时域仿真法和频域分析法等。

电力系统课程设计-牛顿拉夫逊法潮流计算

电力系统课程设计-牛顿拉夫逊法潮流计算

课程设计说明书题目电力系统分析系 ( 部)专业( 班级 )姓名学号指导教师起止日期电力系统分析课程设计任务书系(部): 专业:指导教师:目录一、潮流计算基本原理1.1 潮流方程的基本模型1.2 潮流方程的讨论和节点类型的划分1.3、潮流计算的意义二、牛顿一拉夫逊法2.1 牛顿-拉夫逊法基本原理2.2节点功率方程2.3修正方程2.4 牛顿法潮流计算主要流程三、收敛性分析四、算例分析总结参考文献电力系统分析潮流计算一、潮流计算基本原理1.1潮流方程的基本模型电力系统是由发电机、变压器、输电线路及负荷等组成,其中发电机及负荷是非线性元件,但在进行潮流计算时,一般可以用接在相应节点上的一个电流注入量来代表。

因此潮流计算所用的电力网络系由变压器、输电线路、电容器、电抗器等静止线性元件所构成,并用集中参数表示的串联或并联等值支路来模拟。

结合电力系统的特点,对这样的线性网络进行分析,普通采用的是节点法,节点电压与节点电流之间的关系I=YV (1—1)其展开式为(i=1,2,3, …,n) (1—2)在工程实际中,已经的节点注入量往往不是节点电流而是节点功率,为此必须应用联系节点电流和节点功率的关系式 (i=1,2,3, …,n) (1—3)将 式 ( 1 - 3 ) 代 入 式 ( 1 - 2 ) 得 到 (i=1,2,3, …,n) (1-4)交流电力系统中的复数电压变量可以用两种极坐标来表示V =Vei8. (1-5)或 V=e+jf (1-6)而复数导纳为Y=G+jB (1-7)将式(1-6)、式(1- 7)代入以导纳矩阵为基础的式(1-4),并将实部与虚部分开,可以得到以下两种形式的潮流方程。

潮流方程的直角坐标形式为潮流方程的极坐标形式为(1—10)(1-11)以上各式中,j∈i表示乙号后的标号j的节点必须直接和节点i相联,并包括j=i的情况。

这两种形式的潮流方程通常称为节点功率方程,实牛顿一拉夫逊等潮流算法所采用的主要数学模型。

电力系统潮流分析

电力系统潮流分析

电力系统潮流分析潮流分析是电力系统中一种重要的计算方法,用于分析电力系统中各节点电压、功率和电流的分布情况。

通过潮流分析可以评估电力系统的稳定性和可靠性,为电力系统的规划、运行和控制提供参考依据。

本文将介绍电力系统潮流分析的基本原理、计算方法以及应用范围。

一、潮流分析的基本原理在电力系统中,各节点以母线表示,节点之间通过线路连接。

潮流分析基于以下几个基本原理:1. 电压平衡原理:电力系统中的节点电压必须满足节点处功率平衡方程,即节点出注入电流之和为零。

2. 潮流方程:潮流方程描述了电力系统中各节点之间电压、功率和电流之间的关系。

潮流方程是通过母线注入导纳矩阵、支路导纳和节点注入功率来表达。

3. 网络拓扑:电力系统中的节点和线路之间形成了复杂的拓扑结构,潮流分析需要考虑节点之间的相互连接关系。

二、潮流分析的计算方法潮流分析通常采用迭代法来计算各节点的电压、功率和电流。

常用的迭代法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。

1. 高斯-赛德尔迭代法:该方法是最简单的潮流计算方法之一。

它通过假设电力系统中所有节点电压的初始值,逐步迭代更新节点电压,直到满足收敛条件为止。

2. 牛顿-拉夫逊迭代法:该方法通过建立功率不平衡方程的雅可比矩阵,采用牛顿迭代和拉夫逊补偿的方法来求解节点电压。

牛顿-拉夫逊迭代法具有更快的收敛速度和更高的计算精度。

三、潮流分析的应用范围潮流分析在电力系统中有广泛的应用,包括但不限于以下几个方面:1. 系统规划:潮流分析可以用于电力系统的规划和设计,评估系统瓶颈、优化系统结构和参数配置。

2. 运行控制:潮流分析可以用于电力系统的运行控制,评估节点电压的合理范围、分析负荷变化对系统的影响。

3. 网络优化:潮流分析可以用于电力系统的网络优化,寻找最优输电线路和改善电力系统的供电可靠性。

4. 风电并网:潮流分析可以用于风电并网系统的规划和运行,评估并网系统的可靠性和电力系统与风电场的相互影响。

电力系统潮流计算方法分析

电力系统潮流计算方法分析

电力系统潮流计算方法分析电力系统潮流计算是电力系统运行中的基础性分析方法之一,它用于求解电力系统中各个节点的电压、相角以及线路的功率、电流等变量。

潮流计算是电力系统规划、运行和控制等方面的重要工具。

本文将对电力系统潮流计算方法进行分析。

电力系统潮流计算方法主要有两种,即直接法和迭代法。

直接法又分为解析法和数值法,迭代法包括高斯赛德尔迭代法、牛顿-拉夫逊迭代法等。

解析法是通过电力系统各个节点之间的网络拓扑关系和节点电压平衡条件的方程式,直接求解节点电压和线路功率等参数。

解析法的优点是计算速度快,但其适用范围较窄,主要适用于小型简单电力系统,对于大型复杂电力系统的潮流计算会出现计算量庞大的问题。

数值法是通过将连续变量离散化,将微分方程转化为差分方程,并利用数值解法求解离散的方程组来得到电力系统潮流计算结果。

数值法的优点是适用范围广,能够处理大型复杂电力系统的潮流计算,但其缺点是计算速度相对较慢。

在迭代法中,高斯赛德尔迭代法是一种经典的迭代法,它通过先假设节点电压的初值,然后利用节点注入功率与节点电压之间的关系不断迭代计算,最终达到收敛条件为止。

高斯赛德尔迭代法的优点是收敛速度快,计算精度高,但其缺点是收敛性有时不易保证,并且计算速度会随着系统规模的增大而变慢。

牛顿-拉夫逊迭代法是一种基于牛顿迭代法的改进方法,它引入雅可比矩阵,通过牛顿迭代法的迭代过程来求解节点电压和线路功率等参数。

牛顿-拉夫逊迭代法的优点是收敛性好,计算速度快,但其缺点是在实际应用中需要预先计算雅可比矩阵,会增加计算的复杂度。

综上所述,电力系统潮流计算方法有直接法和迭代法两种,其中直接法包括解析法和数值法,迭代法包括高斯赛德尔迭代法和牛顿-拉夫逊迭代法。

在实际应用中,根据电力系统的规模和复杂程度选择合适的方法进行潮流计算,以得到准确可靠的计算结果。

此外,随着计算机技术的不断发展,还可以利用并行计算和分布式计算等方法来提高潮流计算的效率。

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。

最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。

随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。

这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。

经过几十年的时间,电力系统潮流排序已经发展得十分明朗。

潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。

电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。

在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。

电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。

两种计算的原理在本质上是相同的。

实际电力系统的潮流技术主要使用pq水解法。

1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。

本设计就是使用pq水解法排序电力系统潮流的。

关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。

电力系统潮流计算是计算系统动态稳定和静态稳定的基础。

在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。

简单电力系统分析潮流计算

简单电力系统分析潮流计算

简单电力系统分析潮流计算电力系统潮流计算是电力系统分析中的一项重要任务。

其目的是通过计算各个节点的电压、电流、有功功率、无功功率等参数,来确定系统中各个元件的运行状态和互相之间的相互影响。

本文将介绍电力系统潮流计算的基本原理、计算方法以及应用。

潮流计算的基本原理是基于电力系统的节点电压和支路功率之间的网络方程。

通过对节点电压进行迭代计算,直到满足所有支路功率平衡方程为止,得到系统的运行状态。

潮流计算的基本问题可以表示为以下方程组:P_i = V_i * (G_i * cos(θ_i - θ_j ) + B_i * sin(θ_i -θ_j )) - V_j * (G_i * cos(θ_i - θ_j ) - B_i * sin(θ_i -θ_j )) (1)Q_i = V_i * (G_i * sin(θ_i - θ_j ) - B_i * cos(θ_i -θ_j )) - V_j * (G_i * sin(θ_i - θ_j ) + B_i * cos(θ_i -θ_j )) (2)其中,P_i为节点i的有功功率注入;Q_i为节点i的无功功率注入;V_i和θ_i分别为节点i的电压幅值和相角;V_j和θ_j分别为节点j的电压幅值和相角;G_i和B_i分别为支路i的导纳的实部和虚部。

对于一个电力系统,如果知道了节点注入功率和线路的导纳,就可以通过潮流计算求解出各节点的电压和功率。

这是一种不断迭代的过程,直到系统达到平衡状态。

潮流计算的方法有多种,常见的有高斯-赛德尔迭代法、牛顿-拉夫逊迭代法等。

其中,高斯-赛德尔迭代法是最常用的一种方法。

高斯-赛德尔迭代法的思想是从已知节点开始,逐步更新其他节点的电压值,直到所有节点的电压值收敛为止。

具体步骤如下:1.初始化所有节点电压的初始值;2.根据已知节点的注入功率和节点电压,计算其他节点的电压值;3.判断节点电压是否收敛,如果收敛则结束计算,否则继续迭代;4.更新未收敛节点的电压值,返回步骤2高斯-赛德尔迭代法的优点是简单有效,但其收敛速度较慢。

电力系统潮流计算与分析

电力系统潮流计算与分析

电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。

而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。

本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。

一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。

它是电力系统规划、设计和运行中必不可少的工具。

潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。

通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。

二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。

直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。

它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。

交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。

在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。

高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。

牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。

快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。

三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。

首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。

通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。

其次,潮流计算可以用于电力系统的故障分析和稳定性评估。

通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。

此外,潮流计算还可以用于电力系统的输电能力评估和优化。

电力系统潮流分析与计算设计

电力系统潮流分析与计算设计

电力系统潮流分析与计算设计电力系统潮流分析是电力系统运行和规划的重要工具之一,用于计算和分析电力系统中各个节点的电压幅值和相角。

潮流分析可以帮助我们了解电力系统中电流、功率等重要变量的分布和流动情况,进而指导电力系统的运行和调度,提高电力系统的稳定性和经济性。

在潮流分析中,我们常常使用P-Q分解法来计算电力系统中各个节点的电压幅值和相角。

P-Q分解法是一种迭代的方法,可以逐步计算出节点的电压幅值和相角,并满足节点的功率平衡条件。

首先,我们需要列出发电机节点和负荷节点的功率平衡方程。

对于发电机节点,功率平衡方程可以表示为:P_g-P_d-P_l=0其中,P_g表示发电机的有功出力,P_d表示发电机的有功损耗,P_l 表示节点的有功负荷。

对于负荷节点,功率平衡方程可以表示为:-P_l+P_g-2BVL=0其中,B表示节点的导纳,V表示节点的电压幅值,L表示节点的电流幅值。

然后,我们需要列出节点的电压-相角方程。

对于每个节点,电压-相角方程可以表示为:V_i ∠θi = Vj ∠θj - (Rij + Xij)Iij其中,V_i和θ_i表示节点i的电压幅值和相角,V_j和θ_j表示节点j的电压幅值和相角,R_ij和X_ij表示节点i和节点j之间的电阻和电抗,I_i_j表示节点i到节点j的电流。

在实际计算中,我们通常从平衡节点开始,逐步计算各个节点的电压幅值和相角,直到所有节点的电压幅值和相角满足要求。

在进行计算前,我们需要先给定节点的电压幅值和相角的初值。

对于平衡节点,我们可以直接给定其电压幅值和相角的固定值,而对于其他节点,我们可以先给定其电压幅值的初值,然后通过P-Q分解法来计算其相角。

在每一步计算中,我们首先根据电压-相角方程计算出节点之间的电流,然后再根据功率平衡方程计算出节点的有功出力和有功负荷,最后根据节点的有功出力和有功负荷来更新节点的电压幅值和相角。

通过多次迭代计算,直到节点的电压幅值和相角满足要求,我们就可以得到电力系统的潮流分析结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙学院
课程设计说明书
题目牛顿拉夫逊法潮流计算
系(部) 电子信息与电气工程系
专业(班级) 电气工程及其自动化
姓名王超洋
学号2012042101
指导教师冯婉张文娟饶瑜
起止日期2014.12.22-2014.12.27
1
电力系统分析课程设计任务书
系(部):电子信息与电气工程系专业:电气工程及其自动化指导教师:冯婉
2
长沙学院课程设计鉴定表
3
设计说明书目录
第一章:概述 (5)
1.Matlab介绍 (5)
2.Matlab的使用优势 (5)
3.Matlab的主要特点 (6)
第二章:牛顿-拉夫逊法 (7)
1.牛顿-拉夫逊法理论介绍 (7)
2.用牛顿-拉夫逊法解方程 (7)
第三章:程序介绍 (8)
第四章:设计课题 (8)
第五章:实验程序图及结论 (9)
致谢 (18)
参考文献 (19)
4
第一章:概述
1.Matlab介绍:
本次实验使用matlab软件进行设计,MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

MATLAB是matrix&laboratory两个词的组合,意为矩阵工厂(矩阵实验室)。

是由美国mathworks公司发布的主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。

它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式,代表了当今国际科学计算软件的先进水平。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。

2.Matlab的使用优势
使用matlab进行潮流分析的优势是明显的,其中包括:
1 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;
2 具有完备的图形处理功能,实现计算结果和编程的可视化;
3 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;
5
4 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

同时,对于新手而言,matlab的简单易用是其它软件无法做到的,它是一个
高级的矩阵/阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。

用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。

新版本的MATLAB 语言是基于最为流行的C++语言基础上的,因此语法特征与C++语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。

使之更利于非计算机专业的科技人员使用。

而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。

3.Matlab的主要特点
Matlab最大的特点就在于它自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。

高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。

可用于科学计算和工程绘图。

新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。

同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。

另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。

6
第二章:牛顿-拉夫逊法
1:牛顿-拉夫逊法理论介绍
牛顿-拉夫逊法在数学上是求解非线性代数方程组的有效方法。

其要点是把非线性方程求解过程变成反复地对相应的线性方程进行求解的过程。

牛顿迭代法(Newton's method)又称为牛顿-拉夫逊方法(Newton-Raphson method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。

多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。

方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。

牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根。

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。

重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

2.用牛顿-拉夫逊法解方程
解非线性方程f(x)=0的牛顿法是把非线性方程线性化的一种近似方法。

把f(x)在x0点附近展开成泰勒级数f(x) = f(x0)+(x-x0)f'(x0)+(x-x0)^2*f''(x0)/2! +…取其线性部分,作为非线性方程f(x) = 0的近似方程,即泰勒展开的前两项,则有f(x0)+f'(x0)(x-x0)=f(x)=0 设f'(x0)≠0则其解为x1=x0-f(x0)/f'(x0) 这样,得到牛顿法的一个迭代序列:x(n+1)=x(n)-f(x(n))/f'(x(n))。

7
第三章.程序介绍
本次程序参照教材进行编写,部分程序需要微调,执行标准以结果为准。

第四章.设计课题
8
T17.1程序:
运行过程及运行结果:
运行结果图:
图形分析:
从图中可以看出,由于定精度为0.00001,所以在2次迭代以后就已满足精度需求,迭代后的结果也趋于平稳。

T17.2
由于本题的潮流计算程序和上一题是一致的,只是根据题目所给数据修改倒纳矩阵数值和输入电压及功率,所以以下只提供运行结果和结果图
运行结果及过程:
运行结果图:
致谢
历时将近一周的时间终于将这篇论文写完,在论文的写作过程中遇到了无数的困难和障碍,都在同学和老师的帮助下度过了。

尤其要强烈感谢我的论文指导老师—冯婉老师,她对我进行了无私的指导和帮助,不厌其烦的帮助进行论文的修改和改进。

另外,在校图书馆查找资料的时候,图书馆的老师也给我提供了很多方面的支持与帮助。

在此向帮助和指导过我的各位老师表示最中心的感谢!
感谢这篇论文所涉及到的各位学者。

本文引用了数位学者的研究文献,如果没有各位学者的研究成果的帮助和启发,我将很难完成本篇论文的写作。

感谢我的同学和朋友,在我写论文的过程中给予我了很多你问素材,还在论文的撰写和排版灯过程中提供热情的帮助。

由于我的学术水平有限,所写论文难免有不足之处,恳请各位老师和学友批评和指正!
18
参考文献
[1] 孟祥萍,高嬿. 电力系统分析. 第二版. 北京:高等教育出版社,2013.
[2] Matlab程序内置说明书.
[3] 华智明,张瑞林. 电力系统. 重庆:重庆大学出版社,1997.
[4] 王沫然. MATLAB6.0 与科学计算. 北京:电子工业出版社,2001
[5] 刘振亚等. 特高压电网. 北京:中国经济出版社,2005
19。

相关文档
最新文档