2020年整理概率统计章节作业答案.doc
华南理工2020年线性代数与概率统计随堂练习答案

当前页有8题,你已做8题,已提交8题,其中答对8题。
1.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)%答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C}问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:8.(单选题)·答题: A. B. C. D. (已提交)参考答案:B问题解析:1.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:-2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.(单选题)答题: A. B. C. D. (已提交)>参考答案:D问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:)7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:9.(单选题)答题: A. B. C. D. (已提交)|参考答案:B问题解析:10.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:【2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)、参考答案:A问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:》2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:C[问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)"答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:C;问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)&参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:)5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交){参考答案:B问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:@10.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D-问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题)'答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:C(问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:10.(单选题)&答题: A. B. C. D. (已提交)参考答案:D单选题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A选题)'答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A!问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:6.(单选题).答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)答题: A. B. C. D. (已提交)参考答案:D…问题解析:9.(单选题)答题: A. B. C. D. (已提交)参考答案:C题)答题: A. B. C. D. (已提交)参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)[参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:3.(单选题):答题: A. B. C. D. (已提交)参考答案:B(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:(3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为,乙射中目标的概率是,两人同时射中目标的概率为,则目标被射中的概率为()A.;B.;C.;D..<答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)]参考答案:D问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:A&4.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.; B.; C.; D..答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()"A.; B.; C.; D.答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题)设有甲、乙两批种子,发芽率分别为和,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.; B.; C.; D.…答题: A. B. C. D. (已提交)参考答案:D选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:D?问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)(答题: A. B. C. D. (已提交)参考答案:C选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:·3.(单选题)答题: A. B. C. D. (已提交)参考答案:B单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C…问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题).从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率A ;B ;C ;D答题: A. B. C. D. (已提交)参考答案:B选题)答题: A. B. C. D. (已提交))参考答案:C问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:A问题解析:%4.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:A1.(单选题)答题: A. B. C. D. (已提交)参考答案:B)问题解析:2.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:3.(单选题)答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题)[答题: A. B. C. D. (已提交)参考答案:C问题解析:5.(单选题)答题: A. B. C. D. (已提交)参考答案:C问题解析:1.(单选题) 设随机变量X的分布列为则分别为().A.,;B., ;C., ;D., .答题: A. B. C. D. (已提交)参考答案:D…问题解析:2.(单选题) 一批产品分为一、二、三等品及废品,产值分别为6元、5元、4元、0元,各等品的概率分别为,,,,则平均产值为().A.元;B.元;C.元;D.元.答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 已知随机变量X在服从均匀分布,试求为()A.B.C.D.答题: A. B. C. D. (已提交)参考答案:B问题解析:4.(单选题) 设随机变量X的密度函数,则下列关于说法正确的是()A.=0B.C.D.@答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 设随机变量X的密度函数,则下列关于=?A. ;B. ;C. ;D. .答题: A. B. C. D. (已提交)参考答案:C1.(单选。
概率统计练习参考答案

概率统计练习参考答案概率论与数理统计习题册第一章概率论的基本概念(1)专业_______________班级_______________学号___________________姓名______________一.单选题1、对掷一颗骰子的试验,在概率论中将“出现奇数点”称为( C )(A )不可能事件(B )必然事件(C )随机事件(D )样本事件2、下列事件属于不可能事件的为( D )(A )连续投掷骰子两次,掷得的点数和为4;(B )连续投掷骰子两次,掷得的点数和为8;(C )连续投掷骰子两次,掷得的点数和为12;(D )连续投掷骰子两次,掷得的点数和为16。
3、将一枚硬币连抛两次,则此随机试验的样本空间为(B )(A ){(正,正),(反,反),(正,反)} (B ){(反,正),(正,反),(正,正),(反,反)}(C ){(正,反),(反,正),(反,反)} (D.){(正,反),(反,正)}4、在10件同类产品中,其中8件为正品,2件为次品.从中任意抽出3件的必然事件是( D )(A )3件都是正品;(B )至少有1件是次品;(C )3件都是次品;(D )至少有1件是正品。
5、甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则 AB 表示(C )(A )二人都没射中;(B )二人都射中;(C )二人没有同时射中;(D )至少一个射中。
6、以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为( D )(A )“甲种产品滞销,乙种产品畅销”;(B )“甲、乙两种产品均畅销”;(C )“甲种产品滞销”;(D )“甲种产品滞销或乙种产品畅销。
7、设A 和B 是两事件,A B ?,则A B = ( B )(A ) A ;(B ) B ;(C )AB ;(D )AB 。
8、若AB =Φ,则 ( D ).(A )A,B 为对立事件.;(B )B A =;(C )AB =Φ;(D )P(A -B)=P(A)。
概率统计第一章答案

概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。
(完整word版)概率论与数理统计习题集及答案(word文档良心出品)

《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
2020年全国中考数学试题分类(16)——统计和概率(含答案)

2020年全国中考数学试题分类(16)——统计和概率一.频数(率)分布表(共1小题)1.(2020•赤峰)某校为了解七年级学生的身体素质情况,从七年级各班随机抽取了数量相同的男生和女生,组成一个容量为60的样本,进行各项体育项目的测试.下表是通过整理样本数据,得到的关于每个个体测试成绩的部分统计表:某校60名学生体育测试成绩频数分布表成绩划记频数百分比优秀a30%良好30 b合格9 15%不合格 3 5%合计60 60 100%如果该校七年级共有300名学生,根据以上数据,估计该校七年级学生身体素质良好及以上的人数为人.二.扇形统计图(共2小题)2.(2020•阜新)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:组别成绩x(单位:次)人数A70≤x<90 4B90≤x<110 15C110≤x<130 18D130≤x<150 12E150≤x<170 mF170≤x<190 5(1)本次测试随机抽取的人数是人,m=;(2)求C等级所在扇形的圆心角的度数;(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.3.(2020•盘锦)某校为了解学生课外阅读时间情况,随机抽取了m名学生,根据平均每天课外阅读时间的长短,将他们分为A,B,C,D四个组别,并绘制了如图不完整的频数分布表和扇形统计图.频数分布表组别时间/(小时)频数/人数A0≤t<0.5 2nB0.5≤t<1 20C1≤t<1.5 n+10D t≥1.5 5请根据图表中的信息解答下列问题:(1)求m与n的值,并补全扇形统计图;(2)直接写出所抽取的m名学生平均每天课外阅读时间的中位数落在的组别;(3)该校现有1500名学生,请你估计该校有多少名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题)4.(2020•广州)某校饭堂随机抽取了100名学生,对他们最喜欢的套餐种类进行问卷调查后(每人选一种),绘制了如图的条形统计图,根据图中的信息,学生最喜欢的套餐种类是()A.套餐一B.套餐二C.套餐三D.套餐四5.(2020•贵港)某校对九年级学生进行“综合素质”评价,评价的结果分为A(优秀)、B(良好)、C(合格)、D(不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B(良好)等级人数所占百分比是;(2)在扇形统计图中,C(合格)等级所在扇形的圆心角度数是;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A(优秀)等级或B(良好)等级的学生共有多少名?6.(2020•兰州)为培养学生正确的劳动价值观和良好劳动品质,加强新时代中学生劳动教育,某校八年级(1)班对本班35名学生进行了劳动能力量化评估和近一周家务劳动总时间调查,并对相关数据进行了收集、整理和分析,研究过程中的部分数据如下:信息一:劳动能力量化评估的成绩采用十分制,得分均为整数;信息二:信息三:近一周家务劳动时间分布表时间/小时t≤1 1<t≤2 2<t≤3 3<t≤4 t>4人数/人 5 8 12 7 3信息四:劳动能力量化成绩与近一周家务劳动总时间统计表6 7 8 9 10成绩/分人数时间/小时t≤1 4 1 0 0 01<t≤2 0 6 1 1 02<t≤3 0 0 9 3 03<t≤4 0 1 1 3 2t>4 0 0 0 1 2根据以上信息,解决下列问题:(1)直接从信息二的统计图中“读”出八年级(1)班劳动能力量化成绩的平均分为分;(2)请你判断下列说法合理吗?(请在横线上填写“合理”或“不合理”)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t≤3的时间段:.(3)结合以上信息,你认为普遍情况下参加家务劳动的时间与劳动能力之间具有怎样的关系?7.(2020•朝阳)由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如图两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了名学生;(2)在扇形统计图中,m的值是,D对应的扇形圆心角的度数是;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.8.(2020•锦州)某中学八年级在新学学期开设了四门校本选修课程:A.轮滑;B.书法;C.舞蹈;D.围棋,要求每名学生必须选择且只能选择其中一门课程,学校随机抽查了部分八年级学生,对他们的课程选择情况进行了统计,并绘制了如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)此次共抽查了名学生;(2)请通过计算补全条形统计图;(3)若该校八年级共有900名学生,请估计选择C课程的有多少名学生.四.折线统计图(共4小题)9.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多4510.(2020•广西)如图是A,B两市去年四季平均气温的折线统计图.观察图形,四季平均气温波动较小的城市是.(填“A”或“B”)11.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图.这6次成绩的中位数是.12.(2020•台州)甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为S甲2与S乙2,则S甲2S乙2.(填“>”、“=”、“<”中的一个)五.加权平均数(共2小题)13.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元14.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40% 25% 25% 10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5 B.82.5 C.84 D.86六.中位数(共2小题)15.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数 5 7 8 9 10人数 2 3 3 1 1则这10人投中次数的平均数和中位数分别是()A.3.9,7 B.6.4,7.5 C.7.4,8 D.7.4,7.516.(2020•乐山)某小组七位学生的中考体育测试成绩(满分40分)依次为37,40,39,37,40,38,40.则这组数据的中位数是.七.众数(共6小题)17.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.6 35.9 36.5 36.2 36.1 36.5 36.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3 B.35.9,36.3,36.6C.36.5,36.3,36.3 D.36.5,36.2,36.618.(2020•朝阳)某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300 B.300,200,200C.600,300,200 D.300,300,30019.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25 26 27 28天数 1 1 2 3则这组数据的中位数和众数分别是()A.26.5和28 B.27和28 C.1.5和3 D.2和320.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,8821.(2020•毕节市)某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:投中次数 3 5 6 7 8 9人数 1 3 2 2 1 1则这10名队员投中次数组成的一组数据中,众数和中位数分别为()A.5,6 B.2,6 C.5,5 D.6,522.(2020•包头)两组数据:3,a,b,5与a,4,2b的平均数都是3.若将这两组数据合并为一组新数据,则这组新数据的众数为()A.2 B.3 C.4 D.5八.极差(共1小题)23.(2020•巴中)某地区一周内每天的平均气温如下:25℃,27.3℃,21℃,21.4℃,28℃,33.6℃,30℃.这组数据的极差为()A.8.6 B.9 C.12.2 D.12.6九.方差(共4小题)24.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁25.(2020•赤峰)学校朗诵比赛,共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉一个最高分、一个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数据特征是()A.平均数B.中位数C.众数D.方差26.(2020•永州)已知一组数据1,2,8,6,8,对这组数据描述正确的是()A.众数是8 B.平均数是6 C.中位数是8 D.方差是927.(2020•玉林)在对一组样本数据进行分析时,小华列出了方差的计算公式:s2= (2−x)2+(3−x)2+(3−x)2+(4−x)2x,由公式提供的信息,则下列说法错误的是()A.样本的容量是4 B.样本的中位数是3C.样本的众数是3 D.样本的平均数是3.5一十.统计量的选择(共1小题)28.(2020•大庆)在一次青年歌手比赛中,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0(单位:分).若去掉一个最高分和一个最低分.则去掉前与去掉后没有改变的一个统计量是()A.平均分B.方差C.中位数D.极差一十一.随机事件(共1小题)29.(2020•呼伦贝尔)下列事件是必然事件的是()A.任意一个五边形的外角和为540°B.抛掷一枚均匀的硬币100次,正面朝上的次数为50次C .13个人参加一个集会,他们中至少有两个人的出生月份是相同的D .太阳从西方升起一十二.概率公式(共4小题) 30.(2020•阜新)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是( ) A .1B .25C .35D .1231.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是( ) A .14B .13C .37D .4732.(2020•葫芦岛)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是( ) A .16B .13C .12D .2333.(2020•鄂尔多斯)下列说法正确的是( ) ①√5−12的值大于12; ②正六边形的内角和是720°,它的边长等于半径; ③从一副扑克牌中随机抽取一张,它是黑桃的概率是14;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s 2甲=1.3,s 2乙=1.1,则乙的射击成绩比甲稳定. A .①②③④ B .①②④ C .①④ D .②③ 一十三.列表法与树状图法(共13小题) 34.(2020•广西)九(1)班从小华、小琪、小明、小伟四人中随机抽出2人参加学校举行的乒乓球双打比赛,每人被抽到的可能性相等,则恰好抽到小华和小明的概率是( ) A .14B .15C .16D .11235.(2020•临沂)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是( ) A .112B .18C .16D .1236.(2020•广西)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是( )A .16B .14C .13D .1237.(2020•杭州)一个仅装有球的不透明布袋里共有4个球(只有编号不同),编号分别为1,2,3,5.从中任意摸出一个球,记下编号后放回,搅匀,再任意摸出一个球,则两次摸出的球的编号之和为偶数的概率是 . 38.(2020•西宁)随着手机APP 技术的迅猛发展,人们的沟通方式更便捷、多样.某校数学兴趣小组为了解某社区20~60岁居民最喜欢的沟通方式,针对给出的四种APP (A 微信、BQQ 、C 钉钉、D 其他)的使用情况,对社区内该年龄段的部分居民展开了随机问卷调查(每人必选且只能选择其中一项).根据调查结果绘制了如图不完整的统计图,请你根据图中信息解答下列问题:(1)参与问卷调查的总人数是;(2)补全条形统计图;(3)若小强和他爸爸要在各自的手机里安装A,B,C三种APP中的一种,求他俩选择同一种APP的概率,并列出所有等可能的结果.39.(2020•广安)2020年6月26日是第33个国际禁毒日,为了解同学们对禁毒知识的掌握情况,从广安市某校800名学生中随机抽取部分学生进行调查,调查分为“不了解”“了解较少”“比较了解”“非常了解”四类,并根据调查结果绘制出如图所示的两幅不完整的统计图.请根据统计图回答下列问题:(1)本次抽取调查的学生共有人,估计该校800名学生中“比较了解”的学生有人.(2)请补全条形统计图.(3)“不了解”的4人中有3名男生A1,A2,A3,1名女生B,为了提高学生对禁毒知识的了解,对这4人进行了培训,然后随机抽取2人对禁毒知识的掌握情况进行检测,请用画树状图或列表的方法,求恰好抽到2名男生的概率.40.(2020•兰州)某学校组织了以“纪念革命先烈,激发爱国热情”为主题的爱国主义教育研学活动,参加活动的学生可从学校提供的四个研学地点中任选一个,地点如下:A:陇南市宕昌县哈达铺红军长征纪念馆;B:陇南市两当兵变纪念馆;C:甘南州迭部县腊子口战役纪念馆;D:张掖市高台县中国工农红军西路军纪念馆.小宁和小丽决定通过抽签的方式确定本次研学活动目的地,请你用树状图或列表的方法求出小宁和小丽抽到同一地点的概率.41.(2020•日照)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是;众数是;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.42.(2020•锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.(1)从A盒里抽取一张卡、抽到的卡片上标有数字为奇数的概率是;(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.43.(2020•朝阳)某校准备组建“校园安全宣传队”,每班有两个队员名额,七年2班有甲、乙、丙、丁四位同学报名,这四位同学综合素质都很好,王老师决定采取抽签的方式确定人选.具体做法是:将甲、乙、丙、丁四名同学分别编号为1、2、3、4号,将号码分别写在4个大小、质地、形状、颜色均无差别的小球上,然后把小球放入不透明的袋子中,充分搅拌均匀后,王老师从袋中随机摸出两个小球,根据小球上的编号确定本班“校园安全宣传员”人选.(1)用画树状图或列表法,写出“王老师从袋中随机摸出两个小球”可能出现的所有结果.(2)求甲同学被选中的概率.44.(2020•盘锦)有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外无其他差别,现将它们背面朝上洗匀.(1)随机抽取一张卡片,卡片上的数字是奇数的概率为.(2)随机抽取一张卡片,然后放回洗匀,再随机抽取一张卡片,请用列表或画树状图的方法,求两次抽取的卡片上的数字和等于6的概率.45.(2020•葫芦岛)某校计划组建航模、摄影、乐器、舞蹈四个课外活动小组,要求每名同学必须参加,并且只能选择其中一个小组.为了解学生对四个课外活动小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把此次调查结果整理并绘制成如图两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次被调查的学生有人;(2)请补全条形统计图,并求出扇形统计图中“航模”所对应的圆心角的度数;(3)通过了解,喜爱“航模”的学生中有2名男生和2名女生曾在市航模比赛中获奖,现从这4个人中随机选取2人参加省青少年航模比赛,请用列表或画树状图的方法求出所选的2人恰好是1名男生和1名女生的概率.46.(2020•鞍山)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有两个种类的奶制品:A.纯牛奶,B.核桃奶;伊利品牌有三个种类的奶制品:C.纯牛奶,D.酸奶,E.核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请利用画树状图或列表的方法求出两人选购到同一种类奶制品的概率.一十四.利用频率估计概率(共4小题)47.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m248.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160 160≤x<170 170≤x<180 x≥180人数60 260 550 130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32 B.0.55 C.0.68 D.0.8749.(2020•鞍山)在一个不透明的袋子中装有6个红球和若干个白球,这些球除颜色外都相同,将球搅匀后随机摸出一个球,记下颜色后放回,不断重复这一过程,共摸球100次,发现有20次摸到红球,估计袋子中白球的个数约为.50.(2020•呼和浩特)公司以3元/kg的成本价购进10000kg柑橘,并希望出售这些柑橘能够获得12000元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,如表是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为(精确到0.1);从而可大约估计每千克柑橘的实际售价为元时(精确到0.1),可获得12000元利润.柑橘总质量n/kg损坏柑橘质量m/kg柑橘损坏的频率xx(精确到0.001)………250 24.75 0.099 300 30.93 0.103 350 35.12 0.100 450 44.54 0.099 500 50.62 0.1012020年全国中考数学试题分类(16)——统计和概率参考答案与试题解析一.频数(率)分布表(共1小题) 1.【解答】解:根据频数分布表可知: 9÷15%=60,∴a =60×30%=18,b =1﹣30%﹣15%﹣5%=50%, ∴300×(30%+50%)=240(人).答:估计该校七年级学生身体素质良好及以上的人数为240人. 故答案为:240.二.扇形统计图(共2小题) 2.【解答】解:(1)15÷25%=60(人), m =60﹣4﹣15﹣18﹣12﹣5=6;答:本次测试随机抽取的人数是60人, 故答案为60,6; (2)C 等级所在扇形的圆心角的度数=360°×1860=108°,(3)该校七年级学生能够达到优秀的人数为 300×12+6+560=115(人). 故答案为:60,6. 3.【解答】解:(1)m =20÷40%=50, 2n +(n +10)=50﹣20﹣5, 解得,n =5,A 组所占的百分比为:2×5÷50×100%=20%, C 组所占的百分比为:(5+10)÷50×100%=30%, 补全的扇形统计图如右图所示; (2)∵A 组有2×5=10(人),B 组有20人,抽查的学生一共有50人, ∴所抽取的m 名学生平均每天课外阅读时间的中位数落在B 组; (3)1500×5+10+550=600(名), 答:该校有600名学生平均每天课外阅读时间不少于1小时.三.条形统计图(共5小题) 4.【解答】解:根据条形统计图可知:学生最喜欢的套餐种类是套餐一, 故选:A . 5.【解答】解:(1)∵被调查的人数为4÷10%=40(人), ∴B 等级人数为40﹣(18+8+4)=10(人), 则B (良好)等级人数所占百分比是1040×100%=25%,故答案为:25%;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:72°;(3)补全条形统计图如下:(4)估计评价结果为A (优秀)等级或B (良好)等级的学生共有1000×18+1040=700(人). 6.【解答】解:(1)平均成绩=4×6+8×7+11×8+8×9+4×1035=8(分),故答案为8.(2)①规定劳动能力量化成绩8分及以上为合格,八年级(1)班超过半数的学生达到了合格要求:合理.②班主任对近一周家务劳动总时间在4小时以上,且劳动能力量化成绩取得10分的学生进行表彰奖励,恰有3人获奖:不合理.③小颖推断劳动能力量化成绩为8分的同学近一周家务劳动总时间主要分布在2<t ≤3的时间段:合理. 故答案为合理,不合理,合理.(3)参加家务劳动的时间越长,劳动能力的成绩得分越大. 7.【解答】解:(1)20÷40%=50(名); 故答案为:50; (2)15÷50×100%=30%,即m =30;1050×360°=72°;故答案为:30,72°;(3)50﹣20﹣15﹣10=5(名);(4)2000×1050=400(名).答:该校最喜欢方式D 的学生约有400名.8.【解答】解:(1)这次学校抽查的学生人数是40÷80360=180(名), 故答案为:180名;(2)C 项目的人数为180﹣46﹣34﹣40=60(名) 条形统计图补充为:(3)估计全校选择C课程的学生有900×60180=300(名).四.折线统计图(共4小题)9.【解答】解:因为58出现了两次,其他数据都出现了一次,所以每月阅读课外书本数的众数是58,故选项A错误;每月阅读课外书本数从小到大的顺序为:28、33、45、58、58、72、78,最中间的数字为58,所以该组数据的中位数为58,故选项B正确;从折线图可以看出,从2月到4月阅读课外书的本数下降,4月到5月阅读课外书的本数上升,故选项C 错误;从1到7月份每月阅读课外书本数的最大值78比最小值多28多50,故选项D错误.故选:B.10.【解答】解:由折线图可知,A城市的年平均气温=14(15+26+23+12)=19℃,B城市的年平均气温=14(6+20+9+2)=9.25℃,所以A城市的方差为:S A2=14×[(15﹣19)2+(26﹣19)2+(23﹣19)2+(12﹣19)2]=32.5,B城市的方差为:S B2=14×[(6﹣9.25)2+(20﹣9.25)2+(9﹣9.25)2+(2﹣9.25)2]≈44.7,所以S A2<S B2,所以四季平均气温波动较小的城市是A.故答案为:A.11.【解答】解:由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.7+9.82=9.75.故答案为:9.75. 12.【解答】解:由折线统计图得乙同学的成绩波动较大, 所以S 甲2<S 乙2. 故答案为:<.五.加权平均数(共2小题) 13.【解答】解:这天销售的四种商品的平均单价是: 50×10%+30×15%+20×55%+10×20%=22.5(元), 故选:C . 14.【解答】解:80×40%+90×25%+84×25%+70×10%=82.5(分), 即八年级2班四项综合得分(满分100)为82.5分, 故选:B .六.中位数(共2小题)15.【解答】解:这10人投中次数的平均数为5×2+7×3+8×3+9+1010=7.4,中位数为7+82=7.5,故选:D . 16.【解答】解:把这组数据从小到大排序后为37,37,38,39,40,40,40, 其中第四个数据为39,所以这组数据的中位数为39. 故答案为39.七.众数(共6小题) 17.【解答】解:这组数据中36.5出现了2次,次数最多,所以众数是36.5;将数据按照从小到大(或从大到小)的顺序排列为35.9,36.1,36.2,36.3,36.5,36.5,36.6,处于中间的数据是36.3,所以中位数是36.3; 平均数是x =17×(36.6+35.9+36.5+36.2+36.1+36.5+36.3)=36.3.故选:C . 18.【解答】解:众数:一组数据中出现次数最多的数据为这组数据的众数,这组数据中300出现了3次,次数最多,所以众数是300;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数,6个数据按顺序排列之后,处于中间的数据是300,300,所以中位数是300+3002=300;平均数是x =16(200+200+300+300+300+500)=300,故选:D . 19.【解答】解:共7天,中位数应该是排序后的第4天, 则中位数为:27, 28℃的有3天,最多, 所以众数为:28. 故选:B . 20.【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88, 故选:B . 21.【解答】解:由表可知,这10个数据中数据5出现次数最多,所以众数为5, ∵上从小到大排序后中位数为第5、6个数据的平均数,且第5、6个数据均为6, ∴这组数据的中位数为6+62=6,故选:A .。
概率论与数理统计答案(汇总版)

2 ⋅ 28! 1 = 435 。 两个“王姓”学生正好一头一尾的概率为 30!
8、解 (1)设 A = {“1 红 1 黑 1 白”},则
1 1 1 C2 C3C2 12 = ; 3 C7 35
P( A) =
(2)设 B = {“全是黑球”},则
排列,故(1)
p( Ai ) =
8! 9! 。
(2)1 号车配对,9 号车不配对指 9 号车选 2~8 号任一个车位,其余 7 辆车任意排列,共有
7 ⋅ 7!个样本点。故
(3)
p A1 A9 =
(
)
7 ⋅ 7! 7 = 9! 72 .
p A1 A2 L A8 A9 = p A2 L A8 A1 A9 p ( A1 A9 )
P(C ) =
所要求的概率是:
P(C | D) =
P(CD) 2825 = ≈ 0.3944 。 P( D) 7163
17 解: (1)第三天与今天持平包括三种情况:第 2 天平,第 3 天平;第 2 天涨,第 3 天跌; 第 2 天跌,第 3 天涨。则
p1 = α 3γ 3 + α1α 2 + α 2 β1
(1 ) P ( A | A
= U B)
P( AI ( AU B)) P( AU B)
=
P( A) 7 = ; P( AU B) 9
(2) P ( AB ) = P ( B ) − P ( AB ) = 0.4 − 0.2 = 0.2
P( AU B) = P( A ) +P( B) − P( AB) = 0.5
= 0.86
12、解 设 A = {该职工为女职工}, B = {该职工在管理岗位},由题意知,
概率统计课后答案

概率统计课后答案第一章思考题1.事件的和或者差的运算的等式两端能“移项”吗?为什么?2.医生在检查完病人的时候摇摇头“你的病很重,在十个得这种病的人中只有一个能救活. ”当病人被这个消息吓得够呛时,医生继续说“但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病,所以你不会死” ,医生的说法对吗?为什么?3.圆周率ΛΛ1415926.3=π是一个无限不循环小数, 我国数学家祖冲之第一次把它计算到小数点后七位, 这个记录保持了1000多年! 以后有人不断把它算得更精确. 1873年, 英国学者克士公布了一个π的数值, 它的数目在小数点后一共有707位之多! 但几十年后, 曼彻斯特的费林生对它产生了怀疑. 他统计了π的608位小数, 得到了下表:675844625664686762609876543210出现次数数字你能说出他产生怀疑的理由吗?答:因为π是一个无限不循环小数,所以,理论上每个数字出现的次数应近似相等,或它们出现的频率应都接近于0.1,但7出现的频率过小.这就是费林产生怀疑的理由. 4.你能用概率证明“三个臭皮匠胜过一个诸葛亮”吗?5.两事件A 、B 相互独立与A 、B 互不相容这两个概念有何关系?对立事件与互不相容事件又有何区别和联系?6.条件概率是否是概率?为什么?习题一1.写出下列试验下的样本空间:(1)将一枚硬币抛掷两次答:样本空间由如下4个样本点组成{(,)(,)(,)(,)}Ω=正正,正反,反正,反反(2)将两枚骰子抛掷一次答:样本空间由如下36个样本点组成{(,),1,2,3,4,5,6}i j i j Ω== (3)调查城市居民(以户为单位)烟、酒的年支出答:结果可以用(x ,y )表示,x ,y 分别是烟、酒年支出的元数.这时,样本空间由坐标平面第一象限一切点构成 .{(,)0,0}x y x y Ω=≥≥2.甲,乙,丙三人各射一次靶,记-A “甲中靶” -B “乙中靶” -C “丙中靶” 则可用上述三个事件的运算来分别表示下列各事件:(1) “甲未中靶”:;A (2) “甲中靶而乙未中靶”:;B A (3) “三人中只有丙未中靶”: ;C AB(4) “三人中恰好有一人中靶”:;C B A C B A C B A Y Y (5)“ 三人中至少有一人中靶”:;C B A Y Y (6)“三人中至少有一人未中靶”: ;C B A Y Y 或;ABC (7)“三人中恰有两人中靶”: ;BC A C B A C AB Y Y (8)“三人中至少两人中靶”:;BC AC AB Y Y (9)“三人均未中靶”: ;C B A(10)“三人中至多一人中靶”: ;C B A C B A C B A C B A Y Y Y(11)“三人中至多两人中靶”: ;ABC 或;C B A Y Y 3 .设,A B 是两随机事件,化简事件(1)()()A B A B U U (2) ()()A B A B U U 解:(1)()()A B A B AB AB BB ==U U U U ,(2) ()()A B A B U U ()A B A B B A A B B ==Ω=U U U U .4.某城市的由5个数字组成,每个数字可能是从0-9这十个数字中的任一个,求由五个不同数字组成的概率.解:51050.302410P P ==.5.n 奖券中含有m 有奖的,k 个人购买,每人一,求其中至少有一人中奖的概率.解法一:试验可模拟为m 个红球,n m -个白球,编上号,从中任取k 个构成一组,则总数为k nC ,而全为白球的取法有k mn C-种,故所求概率为k nk m n C C --1.解法二:令i A —第i 人中奖,,.,2,1k i Λ=B —无一人中奖,则k A A A B Λ21=,注意到 k A ,,A ,A Λ21不独立也不互斥:由乘法公式)()()()()(11213121-=k kA A A P A A A P A A P A PB P ΛΛ(1)(2)(1)121n m n m n m n m k n n n n k -------+=??---+L !,1k k n m n m k k n nC C k C C ---同除故所求概率为.6.从5双不同的鞋子中任取4只,这4只鞋子中“至少有两只配成一双”(事件A )的概率是多少?解:122585410()C C C P A C -= 7.在[]1,1-上任取一点X ,求该点到原点的距离不超过15的概率. 解:此为几何概率问题:]11[,-=Ω,所求事件占有区间 ]5151[,-,从而所求概率为121525P ?==. 8.在长度为a 的线段任取两点,将其分成三段,求它们可以构成一个三角形的概率.解:设一段长为x ,另一段长为y ,样本空间:0,0,0x a y a x y a Ω<<<<<+<,所求事件满足: 0202()a x a y x y a x y ?<<+>--从而所求概率=14CDE OAB S S =V V . 9.从区间(0,1)任取两个数,求这两个数的乘积小于14的概率. 解:设所取两数为,,X Y 样本空间占有区域Ω,两数之积小于14:14XY <,故所求概率 ()()1()()1S S D S D P S Ω--==Ω, 而11411()(1)1(1ln 4)44S D dx x =-=-+?,故所求概率为1(1ln4)4+. 10.设A 、B 为两个事件,()0.9P A =,()0.36P AB =,求()P AB . 解:()()()0.90.360.54P A B P A P AB =-=-=;11.设A 、B 为两个事件,()0.7P B =,()0.3P AB =,求()P A B U .解:()()1()1[()()]1[0.70.3]0.6P A B P AB P AB P B P AB ==-=--=--=U . 12.假设()0.4P A =,()0.7P A B =U ,若A 、B 互不相容,求()P B ;若A 、B 相互独立,求()P B .解:若A 、B 互不相容,()()()0.70.40.3P B P A B P A =-=-=U ;若A 、B 相互独立,则由()()()()()P A B P A P B P A P B +=+-可得()P B =0.5. 13.飞机投弹炸敌方三个弹药仓库,已知投一弹命中1,2,3号仓库的概率分别为0.01,0.02,0.03,求飞机投一弹没有命中仓库的概率.解:设=A {命中仓库},则=A {没有命中仓库},又设=i A {命中第i 仓库})3,2,1(=i 则03.0)(,02.0)(,01.0)(321===A P A P A P ,根据题意321A A A A Y Y =(其中321,A A A 两两互不相容)故123()()()()P A P A P A P A =++=0.01+0.02+0.03=0.06 所以94.006.01)(1)(=-=-=A P A P 即飞机投一弹没有命中仓库的概率为0.9414.某市有50%住户订日报,有65%的住户订晚报,有85%的住户至少订这两种报纸中的一种,求同时订这两种报纸的住户的百分比解:设=A {用户订有日报},B ={用户订有晚报},则=B A Y {用户至少订有日报和晚报一种},=AB {用户既订日报又订晚报},已知85.0)(,65.0)(,5.0)(===B A P B P A P Y ,所以3.085.065.05.0)()()()(=-+=-+=B A P B P A P AB P Y即同时订这两种报纸的住户的百分比为30%15.一批零件共100个,次品率为10%,接连两次从这批零件中任取一个零件,第一次取出的零件不再放回,求第二次才取得正品的概率. 解:设=A {第一次取得次品},=B {第二次取得正品},则=AB {第二次才取得正品},又因为9990)(,10010)(==A B P A P ,则 0909.0999010010)()()(===A BP A P AB P16.设随机变量A 、B 、C 两两独立,A 与B 互不相容. 已知0)(2)(>=C P B P且5()8P B C =U ,求()P A B U .解:依题意0)(=AB P 且)()()(B P A P AB P =,因此有0)(=A P . 又因 25()()()()()3()2[()]8P B C P B P C P B P C P C P C +=+-=-=,解方程085)(3)]([22=+-C P C P 151()[()]()442P C P C P B ==?=舍去,,()()()()()0.5.P A B P A P B P AB P B =+-==U17.设A 是小概率事件,即()P A ε=是给定的无论怎么小的正数.试证明:当试验不断地独立重复进行下去,事件A 迟早总会发生(以概率1发生). 解:设事件i A —第i 次试验中A 出现(1,2,,)i n =L ,∵(),()1i i P A P A εε==-,(1,2,,)i n =L ,∴n 次试验中,至少出现A 一次的概率为1212()1()n n P A A A P A A A =-U UL U U UL U 121()n P A A A =-L121()()()n P A P A P A =-L (独立性)1(1)n ε=--∴12lim ()1n nP A A A →∞=U UL U ,证毕. 18.三个人独立地破译一密码,他们能单独译出的概率分别是15,13,14,求此密码被译出的概率.解:设A ,B ,C 分别表示{第一、二、三人译出密码},D 表示{密码被译出},则()()()1 P D P A B C P A B C ==-U U U U1()1()()() P ABC P A P B P C =-=-42331..5345=-=.19.求下列系统(如图所示)的可靠度,假设元件i 的可靠度为i p ,各元件正常工作或失效相互独立解:(1)系统由三个子系统并联而成,每个子系统可靠度为123p p p ,从而所求概率为31231(1)p p p --;(2)同理得2312[1(1)]p p --. 20.三台机器相互独立运转,设第一,第二,第三台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率. 解:设1A —第一第三台机器发生故障,2A —第一第三台机器发生故障,3A —第一第三台机器发生故障,D —三台机器中至少有一台发生故障,则123()0.1,()0.2,()0.3P A P A P A ===,故 ()()()1 P D P A B C P A B C ==-U U U U1()1()()()10.90.80.70.496 P A BC P A P B P C =-=-=-??=21.设A 、B 为两事件,()0.7P A =,()0.6P B =,()0.4B P A =,求()P A B U .解:由()0.4B P A=得()0.4,()0.12,()()()0.48()P AB P AB P AB P B P AB P A ==∴=-=, ()()()()0.82P A B P A P B P AB =+-=U .22.设某种动物由出生算起活到20年以上的概率为0.8, 活到25年以上的概率为0.4. 问现年20岁的这种动物, 它能活到25岁以上的概率是多少?解:设A —某种动物由出生算起活到20年以上,()0.8P A =,B —某种动物由出生算起活到25年以上,()0.4P B =,则所求的概率为()()0.4()()0.5()()0.8P AB P B BBP P A AP A P A =====23.某地区历史上从某年后30年发生特大洪水的概率为80%,40年发生特大洪水的概率为85%,求已过去了30年的地区在未来10年发生特大洪水的概率.解:设A —某地区后30年发生特大洪灾,()0.8P A =,B —某地区后40年发生特大洪灾,()0.85P B =,则所求的概率为()()0.15()1()1110.250.2()()P BA P B B B P P A A P A P A =-=-=-=-=.24.设甲、乙两袋,甲袋中有2只白球,4只红球;乙袋中有3只白球,2只红球.今从甲袋中任意取一球放入乙袋中,再从乙袋中任意取一球. 1)问取到白球的概率是多少?2)假设取到白球,问该球来自甲袋的概率是多少?解:设A :取到白球,B :从甲球袋取白球24431) ()(/)()(/)()5/9 6666P A P A B P B P A B P B =+?+?=(/)()2/92) (/)()/()2/5()5/9P A B P B P B A P AB P A P A ====25.一批产品共有10个正品和2个次品,任取两次,每次取一个,抽出后不再放回,求第二次抽出的是次品的概率.解:设i B 表示第i 次抽出次品,(1,2)i =,由全概率公式2221111()()()()()B B P B P B P P B P B B =+=211021*********+?=. 26.一批晶体管元件,其中一等品占95%,二等品占4%,三等品占1%,它们能工作500h 的概率分别为90%,80%,70%,求任取一个元件能工作500h 以上的概率. 解:设=i B {取到元件为i 等品}(i =1,2,3) ,=A {取到元件能工作500小时以上} 则%1)(%,4)(%,95)(321===B P B P B P%70)(%,80)(%,90)(321===B AP B AP B AP所以)()()()()()()(332211B AP B P B AP B P B AP B P A P ++==?+?+?=%70%1%80%4%90%950.89427.某药厂用从甲、乙、丙三地收购而来的药材加工生产出一种中成药,三地的供货量分别占40%,35%和25%,且用这三地的药材能生产出优等品的概率分别为0.65,0.70和0.85,求从该厂产品中任意取出一件成品是优等品的概率.如果一件产品是优质品,求它的材料来自甲地的概率解:以B i分别表示抽到的产品的原材来自甲、乙、丙三地,A={抽到优等品},则有:123()0.35,()0.25,P B P B ==P(B )=0.4, 1()0.65,AP B =32()0.7,()0.85AAP P B B ==所求概率为().P A 由全概率公式得:123123()()()()()()()AAAP A P B P P B P P B P B B B =++0.650.40.70.350.850.250.7175.=?+?+?=1111()()(|)0.26()0.3624()()0.7175P B A P B P A B B P A P A P A ====28.用某种检验方法检查癌症,根据临床纪录,患者施行此项检查,结果是阳性的概率为0.95;无癌症者施行此项检查,结果是阴性的概率为0.90.如果根据以往的统计,某地区癌症的发病率为0.0005.试求用此法检查结果为阳性者而实患癌症的概率.解:设A={检查结果为阳性},B={癌症患者}.据题意有()0.95,()0.90,AAP P BB==()0.0005,P B =所求概率为().BP A()0.10,()0.9995.AP P B B==由Bayes 公式得()()()()()()()AP B P BBP AAAP B P P B P B B=+0.00050.950.00470.47%0.00050.950.99950.10===?+? 29.3个射手向一敌机射击,射中的概率分别是0.4,0.6和0.7.如果一人射中,敌机被击落的概率为0.2;二人射中,被击落的概率为0.6;三人射中则必被击落.(1)求敌机被击落的概率;(2)已知敌机被击落,求该机是三人击中的概率. 解:设A={敌机被击落},B i ={i 个射手击中},i=1,2,3. 则B 1,B 2,B 3互不相容.由题意知:132()0.2,()0.6,()1AAAP P P B B B ===,由于3个射手射击是互相独立的,所以1()0.40.40.30.60.60.30.60.40.70.324P B =??+??+??=2()0.40.60.30.40.70.40.60.70.60.436P B =??+??+??=3()0.40.60.70.168P B =??=因为事件A 能且只能与互不相容事件B 1,B 2,B 3之一同时发生.于是(1)由全概率公式得31()()(|)0.3240.20.4360.60.16810.4944i i i P A P B P A B ===?+?+?=∑(2)由Bayes 公式得33331()(|)0.168(|)0.340.4944()(|)iii P B P A B P B A P B P A B ====∑.30.某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1)该厂产品能出厂的概率;(2)任取一出厂产品未经调试的概率. 解:A ——需经调试 A ——不需调试 B ——出厂则%30)(=A P ,%70)(=A P ,%80)|(=A B P ,1)|(=A B P (1)由全概率公式:)()()()()(ABP A P ABP A P B P ?+?=%941%70%80%30=?+?=.(2)由贝叶斯公式:9470%94)()()()()(=?==A B P A P B P B A P B A P .31.进行一系列独立试验,假设每次试验的成功率都是p ,求在试验成功2次之前已经失败了3次的概率. 解:所求的概率为234(1)p p -.32.10个球中有一个红球,有放回地抽取,每次取一球,求直到第n 次才取k 次()k n ≤红球的概率解:所求的概率为11191010k n kk n C---???? ? ?????33.灯泡使用寿命在1000h 以上的概率为0.2,求3个灯泡在使用1000h 后,最多只有一个坏了的概率.解:由二项概率公式所求概率为312333(0)(1)0.2(0.2)0.80.104P P C +=+?=34.(Banach 问题)某人有两盒火柴,每盒各有n 根,吸烟时任取一盒,并从中任取一根,当他发现有一盒已经用完时,试求:另一盒还有r 根的概率. 解:设试验E —从二盒火柴中任取一盒,A —取到先用完的哪盒,1()2P A =,则所求概率为将E 重复独立作2n r -次A 发生n 次的概率,故所求的概率为222211()()()222nn n n r n r n r n r n rC P n C -----==.第二章思考题1. 随机变量的引入的意义是什么?答:随机变量的引入,使得随机试验中的各种事件可通过随机变量的关系式表达出来,其目的是将事件数量化,从而随机事件这个概念实际上是包容在随机变量这个更广的概念.引入随机变量后,对随机现象统计规律的研究,就由对事件及事件概率的研究转化为随机变量及其取值规律的研究,使人们可利用数学分析的方法对随机试验的结果进行广泛而深入的研究.随机变量概念的产生是概率论发展史上的重大事件,随机事件是从静态的观点来研究随机现象,而随机变量的引入则变为可以用动态的观点来研究.2.随机变量与分布函数的区别是什么?为什么要引入分布函数?答:随机变量与分布函数取值都是实数,但随机变量的自变量是样本点,不是普通实数,故随机变量不是普通函数,不能用高等数学的方法进行研究,而分布函数一方面是高等数学中的普通函数,另一方面它决定概率分布,故它是沟通概率论和高等数学的桥梁,利用它可以将高度数学的方法得以引入.3. 除离散型随机变量和连续型随机变量,还有第三种随机变量吗?答:有,称为混合型. 例:设随机变量[]2,0~U X ,令≤≤<≤=.21,1;10,)(x x x x g 则随机变量)(X g Y =既非离散型又非连续型.事实上,由)(X g Y =的定义可知Y 只在[]1,0上取值,于是当0<="">1≥y 时,1)(=y F Y ;当10<≤y 时,()2))(()(yy X P y X g P y F Y =≤=≤= 于是≥<≤<=.1,1;10,2;0,0)(y y y y y F Y首先Y 取单点{1}的概率021)01()1()1(≠=--==Y Y F F Y P ,故Y 不是连续型随机变量.其次其分布函数不是阶梯形函数,故Y 也不是离散型随机变量.4.通常所说“X 的概率分布”的确切含义是什么?答:对离散型随机变量而言指的是分布函数或分布律,对连续型随机变量而言指的是分布函数或概率密度函数.5.对概率密度()f x 的不连续点,如何由分布函数()F x 求出()f x ?答:对概率密度()f x 的连续点,()()f x F x '=,对概率密度()f x 的有限个不连续点处,可令()f x c =(c 为常数)不会影响分布函数的取值.6.连续型随机变量的分布函数是可导的,“概率密度函数是连续的”这个说法对吗?为什么?答:连续型随机变量密度函数不一定是连续的,当密度函数连续时其分布函数是可导的,否则不一定可导.习题1.在测试灯泡寿命的试验中,试写出样本空间并在其上定义一个随机变量.解:每一个灯泡的实际使用寿命可能是),0[+∞中任何一个实数, 样本空间为}0|{≥=Ωt t ,若用X 表示灯泡的寿命(小时),则X 是定义在样本空间}0|{≥=Ωt t 上的函数,即t t X X ==)(是随机变量.2.一报童卖报, 每份0.15元,其成本为0.10元. 报馆每天给报童1000份报, 并规定他不得把卖不出的报纸退回. 设X 为报童每天卖出的报纸份数, 试将报童赔钱这一事件用随机变量的表达式表示.解:{报童赔钱}?{卖出的报纸钱不够成本},而当0.15 X <1000× 0.1时,报童赔钱,故{报童赔钱} ?{X ≤666}3.若2{}1P X x β<=-,1{}1P X x α≥=-,其中12x x <,求12{}P x X x ≤<. 解:1221{}{}{}P x X x P X x P X x ≤<=<-< 21{}[1{}]1P X x P X x αβ=<--≥=--.4.设随机变量X 的分布函数为??≥<≤<=1,110,0,0)(2x x x x x F试求(1)≤21X P (2)≤<-431X P (3)>21X P解:41)21(21)1(==≤F X P ;(2)1690169)1()43(431=-=--=≤<-F F X P ;(3)43)21(121121=-=≤-=>F X P X P .5.5个乒乓球中有2个新的,3个旧的,如果从中任取3个,其中新的乒乓球的个数是一个随机变量,求这个随机变量的概率分布律和分布函数,并画出分布函数的图形.解:设X 表示任取的3个乒乓球中新的乒乓球的个数,由题目条件可知,X 的所有可能取值为0,1,2,∵33351{0}10C P X C ===,1223356{1}10C C P X C ===,2133353{2}10C C P X C ===∴随机变量X 的概率分布律如下表所示:由()k kx xF x P≤=∑可求得()F x 如下:0 ,0{0} ,01(){0}{1} ,12{0}{1}{2} x P X x F x P X P X x P X P X P X <=≤<==+=≤<=+=+= ,2x≥?0 ,00.1 ,010.7 ,121 ,2x x x x一直射击到用完5发子弹,求所用子弹数X 的概率分布解:7 .一批零件中有9个合格品与3个废品,安装机器时,从这批零件中任取一个,如果每次取出的废品不再放回,求在取出合格品之前已取出的废品数的分布律.解:设{}i i A =第次取得废品,{}i A i =第次取得合格品,由题意知,废品数X 的可能值为0,1,2,3,事件{0}X =即为第一次取得合格品,事件{1}X =即为第一次取出的零件为废品,而第二次取出的零件为合格品,于是有19{0}()0.7512P X P A ====, 21211399{1}()0.2045121144A P X P A A P A P A =====≈()(), 3212311123299{2}()0.0409121110220A A P X P A A A P A P P A A A ===??=≈()()()=32412341112123{3}()321910.00451211109220A A A P X P A A A A P A PPPA A A A A A =====≈()()()()所以X X0 1 2 3 P0.750.20450.04090.00458.从101-中任取一个数字,若取到数字)101(Λ=i i 的概率与i 成正比,即X1 2 3 4 5 P 0.9 0.09 0.009 0.0009 0.00011,2,,10P X i ki i ===L (),(),求k . 解:由条件 1,2,,10P X i ki i ===L (),(),由分布律的性质1011ii p==∑,应有1011i ki ==∑,155k =. 9 .已知随机变量X 服从参数1=λ的泊松分布,试满足条件{}01.0=>N X P 的自然数N . 解:因为{}{}{}99.0101.0),1(~=>-=≤=>N X P N X P Y X P P X 所以从而{}99.0!0==≤∑=-Nk k e N X P λ查附表得4=N10.某公路一天发生交通事故的次数X 服从泊松分布,且一天发生一次交通事故的概率与发生两次交通事故的概率相等,求一周没有交通事故发生的概率.解:设~()X P λ,由题意:)1(=X P =)2(=X P ,2!2!1λλλλ--=e e ,解得2=λ,所求的概率即为2022!0)0(--===e e X P .11 . 一台仪器在10000个工作时平均发生10次故障,试求在100个工作时故障不多于两次的概率.解:设X 表示该仪器在100个工作时故障发生的次数,1~(100,)1000X B ,所求的概率即为)0(=X P ,)1(=X P ,)2(=X P 三者之和.而100个工作时故障平均次数为=μ1.010001100=?,根据Poisson 分布的概率分布近似计算如下:99984.000452.009048.090484.0!2!1!0)2(21=++=++≈≤---μμμμμμe eX P故该仪器在100个工作时故障不多于两次的概率为0.99984.12.设[]~2,5X U ,现对X 进行三次独立观察,试求至少有两次观察值大于3的概率. 解:()1,2530 ,x f x ?≤≤?=其余,令()3A X =>,则()23p P A ==,令Y 表示三次重复独立观察中A 出现次数,则2~3,3Y B ??,故所求概率为()21323332121202333327P Y C C ≥=+=. 13.设某种传染病进入一羊群,已知此种传染病的发病率为2/3,求在50头已感染的羊群中发病头数的概率分布律.解:把观察一头羊是否发病作为一次试验,发病率3/2=p ,不发病率3/1=q ,由于对50头感染羊来说是否发病,可以近似看作相互独立,所以将它作为50次重复独立试验,设50头羊群中发病的头数为X ,则X (50,2/3)X B :,X 的分布律为{})50,,2,1,0(31325050Λ=??==-k C k X P kkk14.设随机变量X 的密度函数为2, 01()0 , x x p x <其它,用Y 表示对X 的3次独立重复观察中事件1X ≤出现的次数,求{2}P Y =.解:(3,)Y p B :,1211{}224p P X xdx =≤==?,由二项概率公式223139{2}()()4464P Y C ===. 15.已知X 的概率密度为2,()0,x ax e x f x x λ-?>=?≤?,试求:(1)、未知系数a ;(2)、X 的分布函数()F x ;(3)、X 在区间1(0,)λ取值的概率.解:(1)由?+∞-=021dx eax xλ,解得.22λ=a(2) ()()()F x P X x f x dx +∞-∞=≤=?,∴当x ≤0时0)(=x F ,当x >0时,222()1(22)2x xxe F x ax edx x x λλλλ--==-++?,∴2211(22),0()20, 0x x x F x x λλ?-++>?=??≤? .(3)511(0)()(0)12P X F F eλλ<<=-=-.16.设X 在(1,6)服从均匀分布,求方程210x Xx ++=有实根的概率. 解: “方程210x Xx ++=有实根”即{2}X >,故所求的概率为{2}P X >=45. 17.知随机变量X 服从正态分布2(,)N a a ,且Y aX b =+服从标准正态分布(0,1)N ,求,a b .解:由题意222(0)1a b a a a ?+=>??=?解得:1,1a b ==-18.已知随机变量X 服从参数为λ的指数分布,且X 落入区间(1,2)的概率达到最大,求λ. 解:2(12)(1)(2)()P X P X P X e eg λλλ--<<=>->=-=令,令()0g λ'=,即022=---λλe e ,即021=--λe ,∴.2ln =λ19.设随机变量(1,4)X N :,求(0 1.6)P X ≤<,(1)P X <.解:01 1.61(0 1.6)()22P X P X --≤<=≤< 1.6101()()0.309422--=Φ-Φ=11(1)()(0)0.52P X -<==Φ=Φ=.20.设电源电压()2~220,25X N ,在200,200240,240X X X ≤<≤>电压三种情形下,电子元件损坏的概率分别为0.1,0.001,0.2,求:(1)该电子元件损坏的概率α;(2)该电子元件损坏时,电压在200~240伏的概率β.解:设()()()123200,200240,240A X A X A X =≤=<≤=>, D —电子元件损坏,则(1)123,,A A A Q 完备,由全概率公式()()()()123123D D D P D P A P P A P P A P A A A α==++ ? ? ??,今()()()12002200.810.80.21225P A -??=Φ=Φ-=-Φ=,同理()()()()20.80.820.810.576P A =Φ-Φ-=Φ-=,()310.2120.5760.212P A =--=,从而()0.062P D α==.(2)由贝叶斯公式()222D P A P A A P D P D β?? ?????== ???0.5760.0010.0090.062?==. 21.随机变求2Y X =的分布律解:. 22.变量X 服从参数为0.7的0-1分布,求2X 及22X X -的概率分布.解.X 的分布为易见,2X 的可能值为0和1;而22X X -的可能值为1-和0,由于2{}P X u =={P X }u =(0,1)u =,可见2X 的概率分布为:由于2{21}{1}0.7P X X P X -=-===,2{20}{0}0.3P X X P X -====,可得22X X -的概率分布为23.X 概率密度函数为21()(1)X f x x π=+,求2Y X =的概率密度函数()Y f y . 解:2y x =的反函数为2 yx =,代入公式得22()()()22(4)Y X y y f y f y π'==+. 24.设随机变量[]~0,2X U ,求随机变量2Y X =在()0,4概率密度()Y f y .解法一(分布函数法)当0y <时,()0,4Y F y y =>时()1Y F y =,当04y ≤≤时, ()(Y XF y P X F ==从而 ()40 ,X Y f y f y ?=≤≤?=其余解法二(公式法)2y x =在()0,2 单增,由于反函数x =在()0,4 可导,'y x =,从而由公式得()40 ,XY f y f y ?=≤≤?=其余25. ,0)0 ,0x X e x f x x -?≥=?解法一(分布函数法)因为0X ≥,故1Y >,当1y >时,()()()ln ln Y X F y P X y F y =≤=,()()ln 2111ln ,10 ,1y XY f y e y y y y f y y -?==>?∴=??≤?.解法二(公式法)x y e =的值域()1,+∞,反函数ln x y =,故()()[]21ln ln ' ,10 ,1XY f y y y y f y y ?=>?=??≤?.26.设随机变量X 服从(0,1)上的均匀分布,分别求随机变量X Y e =和ln Z X =的概率密度()Y f y 和()Z f z . 解:X 的密度为1, 01 () x f x ?<0,若其它,(1)函数x y e =有唯一反函数,ln x y =,且1Y e <<,故(ln )(ln ), 1() X f y y y e f y '?<y ?<0,其它. (2)在区间(0,1)上,函数ln ln z x x ==-,它有唯一反函数z x e -=,且0Z >,从而()(), () z z X Z f e e f z -->?'?=?z 00,其它 0, zz e ->??=0,其它. 27. 设()X f x 为X 的密度函数,且为偶函数,求证X -与X 有相同的分布. 证:即证Y X =-与X 的密度函数相同,即()()Y X f y f y =.证法一(分布函数法)()()()()()11Y X F y P X y P X y P X y F y =-≤=≥-=-≤-=--,()()()()1Y X X p y p y p y ∴=--?-=,得证.证法二(公式法)由于y x =-为单调函数,∴()()()()()'Y X X X p y p y y p y p y =--=-=.。
2020高考数学(理)专项复习《概率统计》含答案解析

概率统计统计是研究如何合理收集、整理、分析数据的学科,为人们制定决策提供依据.概率是研究随机现象规律的学科,为人们认识客观世界提供重要的思维模式和解决问题的方法. 统计一章介绍随机抽样、样本估计总体、线性回归的基本方法,通过对典型案例的讨论,了解和使用一些常用的统计方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用.概率一章介绍随机现象与概率的意义、古典概型及几何概型,学习某些离散型随机变量分布列及其期望、方差等内容,初步学会利用离散型随机变量思想描述和分析某些随机现象的方法,并能用所学知识解决一些简单的实际问题,进一步体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识.§11-1 概率(一)【知识要点】1.事件与基本事件空间:随机事件:当我们在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果在每次试验中一定会发生,它称为必然事件;在试验中可能发生也可能不发生的结果称为随机事件,随机事件简称为事件.基本事件与基本事件空间:在一次试验中我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描述,这样的事件称为基本事件.所有基本事件构成的集合叫做基本事件空间,常用 表示.2.频率与概率频率:在相同的条件S 下,重复n 次试验,观察某个事件A 是否出现,称n 次试验中事件A 的出现次数m 为事件A 出现的频数,称事件A 出现的比例nm 为事件A 出现的频率. 概率:一般的,在n 次重复进行的试验中,事件A 发生的频率nm ,当n 很大时总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记做P (A ).显然有0≤P (A )≤1.不可能事件的概率为0,必然事件的概率为1,随机事件的概率在(0,1)之间.3.互斥事件的概率加法公式事件的并:由事件A 或B 至少有一个发生构成的事件C 称为事件A 与B 的并,记做C =A ∪B .互斥事件:不可能同时发生的两个事件称为互斥事件.互斥事件加法公式:如果事件A 、B 互斥,则事件A ∪B 发生的概率等于这两个事件分别发生的概率和,即P (A ∪B )=P (A )+P (B ).如果A 1,A 2,…,A n 两两互斥,那么事件A 1∪A 2∪…∪A n 发生的概率,等于这n 个事件分别发生的概率和,即P (A 1∪A 2∪…∪A n )=P (A 1)+P (A 2)+…+P (A n ).对立事件:不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A ,满足P (A )=1-P (A ).概率的一般加法公式(选学):事件A 和B 同时发生构成的事件D ,称为事件A 与B 的交(积),记作D =A ∩B .在古典概型中,P (A ∪B )=P (A )+P (B )-P (A ∩B ).4.古典概型古典概型:一次试验有下面两个特征:(1)有限性,在一次试验中可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等可能性,每个基本事件发生的可能性是均等的,则称这个试验为古典概型.古典概型的性质:对于古典概型,如果试验的n 个基本事件为A 1,A 2,…,A n ,则有P (A 1∪A 2∪…∪A n )=1且⋅=nA P i 1)( 概率的古典定义:在古典概型中,如果试验的基本事件总数为n (Ω ),随机事件A 包含的基本事件数为n (A),则p (A)=试验的基本事件总数包含的基本事件数事件A ,即⋅=)()()(Ωn A n A P 5.几何概型几何概型:一次试验具有这样的特征:事件A 理解为区域Ω的一个子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,这样的试验称为几何概型.几何概型的特点:(1)无限性:一次试验中可能出现的结果有无穷多个;(2)等可能性,每个基本事件发生的可能性相等.几何概型中事件A 的概率定义:ΩA A P μμ=)(,其中μ Ω 表示区域Ω 的几何度量,μ A 表示子区域A 的几何度量.随机数:就是在一定范围内随机产生的数,并且得到这个范围内的每一个数的机会均等.计算机随机模拟法(蒙特卡罗方法)是利用模型来研究某种现象的性质的一种有效方法,可以节约大量的人力物力.6.条件概率与事件的独立性条件概率:一般的,设A 、B 为两个事件,且P (A )>0,称P (B |A )=)()(A P B A P I 为在事件A 发生的条件下,事件B 发生的概率.一般把P (B |A )读作“A 发生的条件下B 发生的概率”.在古典概型中,用n (A )表示事件A 中基本事件的个数,则有P (B |A )=)()(A n B A n I .事件的独立性:设A 、B 为两个事件,如果P (B |A )=P (B ),则称事件A 与事件B 相互独立,并称事件A 、B 为相互独立事件.若A 、B 为两个相互独立事件,则A 与A 、A 与B 、A 与B 也都相互独立.若事件A 与事件B 相互独立,则P (A ∩B )=P (A )·P (B ).【复习要求】1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式,会计算一些随机事件所含的基本事件数及事件发生的概率.4.了解随机数的意义,了解几何概型的意义.5.在具体情境中,了解条件概率,了解两个事件相互独立的概念及独立事件的概率乘法公式,并能解决一些简单的实际问题.【例题分析】例1(1)射中9环或10环的概率;(2)至少命中8环的概率;(3)命中不足8环的概率.【分析】射击运动员一次射击只能命中1个环数,命中不同的环数是互斥事件,射中9环或10环的概率等于射中9环与射中10环的概率和.命中不足8环所包含的事件较多,而其对立事件为“至少命中8环”,可先求其对立事件的概率,再通过P (A )=1-P (A )求解.解:设事件“射击一次,命中k 环”为事件A k (k ∈N ,k ≤10),则事件A k 彼此互斥.(1)记“射击一次,射中9环或10环”为事件A ,则P (A )=P (A 10)+P (A 9)=0.60.(2)记“射击一次,至少命中8环”为事件B ,则P (B )=P (A 10)+P (A 9)+P (A 8)=0.78.(3)“射击一次,命中不足8环”为事件B 的对立事件,则P (B )=1-P (B )=0.22.【评析】解决概率问题时,要先分清所求事件由哪些事件组成,分析是否是互斥事件,再决定用哪个公式.当用互斥事件的概率加法公式解题时,要学会不重不漏的将事件拆为几个互斥事件,要善于用对立事件解题.例2 现有8名奥运会志愿者,其中志愿者A 1,A 2,A 3通晓日语,B 1,B 2,B 3通晓俄语,C 1,C 2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.(Ⅰ)求A 1被选中的概率;(Ⅱ)求B 1和C 1不全被选中的概率.【分析】本题是一个古典概型的问题,可以直接用概率公式)()()(Ωn A n A P =求解. 解:(Ⅰ)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)} 由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的.用M 表示“A 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而⋅==31186)(M P(Ⅱ)用N 表示“B 1,C 1不全被选中”这一事件,则其对立事件N 表示“B 1,C 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 由3个基本事件组成, 所以61183)(==N P ,由对立事件的概率公式得⋅=-=-=65611)(1)(N P N P 【评析】古典概型解决概率问题时,选定基本事件空间并计算其所含基本事件的个数是重要的一步.本题中选定“从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果”为基本事件空间,计算时采用列举法,也可以利用乘法计数原理计算3×3×2=18.本题第一问还可以选定“从通晓日语的3人中选出1人的可能结果”为基本事件空间,共有3个基本事件,选出A 1只有一种可能,故所求概率为⋅31例3 一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;(2)连续摸球2次,在第一次摸到黑球的条件下,求第二次摸到白球的概率;(3)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.【分析】本题是一个古典概型问题,因为基本事件空间中所含基本事件的个数较多,宜用排列组合公式计算,当然也可利用两个计数原理计数.本题第二问是条件概率问题.做第三问时,要分为三个事件:“第一次摸到红球”,“第一次摸到不是红球,第二次摸到红球”,“前两次摸到不是红球,第三次摸到红球”,显然三个事件是互斥事件.解:(1)从袋中依次摸出2个球共有29A 种结果,第一次摸出黑球、第二次摸出白球有3×4=12种结果,则所求概率6112291==A P (或6184931=⨯=P ). (2)设“第一次摸到黑球”为事件A ,“第二次摸到白球”为事件B ,则“第一次摸到黑球,且第二次摸到白球”为事件A ∩B ,又31)(=A P ,P (A ∩B )61=,所以或⋅==213161)|(A B P (或2184)|(==A B P ). (3)第一次摸出红球的概率为1912A A ,第二次摸出红球的概率为291217A A A ,第三次摸出红球的概率为391227A A A ,则摸球次数不超过3次的概率为⋅=++=12739122729121719122A A A A A A A A P 【评析】利用古典概型求解时,求基本事件的个数和事件发生的总数时求法要一致,若无序则都无序,若有序则都有序,分子和分母的标准要相同.在求事件个数时常用列举法(画树状图、列表、坐标系法),有时也与排列组合联系紧密,计算时灵活多变,但要注意分类讨论,做到不重不漏.要正确识别条件概率问题,理解P (A),P (A ∩B ),P (B |A )的含义.例4 (1)两根相距6米的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2米的概率是______.(2)甲乙两人约定在6点到7点之间在某处会面,并约好先到者等候另一人一刻钟,过时即可离去.则两人能会面的概率是______.(3)正方体内有一个内切球,则在正方体内任取一点,这个点在球内的概率为______.【分析】这三个题都可转化为几何概率问题求解.分别转化为线段长度、图形面积、几何体体积问题求解.解:(1)本题可转化为:“在长为6m 的线段上随机取点,恰好落在2m 到4m 间的概率为多少?” 易求得⋅=31P (2)本题可转化为面积问题:即“阴影部分面积占总面积的多少?”, 解得⋅=167)(A P (3)本题可转化为体积问题:即“内切球的体积与正方体体积之比是多少?”.解得⋅=6πP 【评析】几何概型也是一种概率模型,它具有等可能性和无限性两个特点.解题的关键是要建立模型,将实际问题转化为几何概率问题.基本步骤是:把基本事件空间转化为与之对应的区域Ω;把随机事件A 转化为与之对应的区域A ;利用概率公式)()()(ΩA A P μμ=计算.常用的几何度量包括:长度、面积、体积.例5 设有关于x 的一元二次方程x 2+2ax +b 2=0.(Ⅰ)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(Ⅱ)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.【分析】本题第一问是古典概型问题,第二问由于a 、b 在实数区间选取,可以转化为几何概型问题求解.解:设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .(Ⅰ)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为⋅==43129)(A P (Ⅱ)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}.构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为⋅=⨯⨯-⨯=3223221232 【评析】几何概型与古典概型的每个基本事件发生的可能性是均等的,只是几何概型的基本事件有无限个,而古典概型的基本事件有有限个.在具体问题中,不能因为古典概型的基本事件的个数多而误认为是几何概型.例6 如图,用A 、B 、C 三类不同的元件连结成两个系统N 1、N 2,当元件A 、B 、C 都正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,已知元件A 、B 、C 正常工作的概率为0.80、0.90、0.90,分别求系统N 1、N 2正常工作的概率.【分析】三个元件能否正常工作相互独立.当元件A 、B 、C 同时正常工作时,系统N 1正常工作;当元件A 正常工作且元件B 、C 至少有一个正常工作时,系统N 2正常工作,而B 、C 至少有一个正常工作的概率可通过其对立事件计算.解:设元件A 、B 、C 正常工作为事件A 、B 、C ,则P (A )=0.8,P (B)=0.9,P (C)=0.9,且事件A 、B 、C 相互独立.(1)系统N 1正常工作的概率为p 1=P (A ·B ·C )=P (A )·P (B )·P (C )=0.80×0.90×0.90=0.648.(2)元件B 、C 至少有一个正常工作的概率为1-P (B ·C )=1-P (B )·P (C )=1-0.1×0.1=0.99,所以系统N 2正常工作的概率为p 2=P (A )·(1-P (B ·C ))=0.80×0.99=0.792.【评析】本题以串、并联为背景,重点在正确理解题意.在计算几个事件同时发生的概率时,要先判断各个事件之间是否相互独立.独立事件、互斥事件、对立事件的概率各有要求,要依据题目特点,巧妙地选用相关方法.例7 每次抛掷一枚质地均匀的骰子(六个面上分别标以数字1,2,3,4,5,6).(1)连续抛掷3次,求向上的点数之和为3的倍数的概率;(2)连续抛掷6次,求向上的点数为奇数且恰好出现4次的概率.【分析】向上点数之和为3的倍数共有6种情况,计数时要不重不漏;向上点数为奇数的概率为21,连续抛掷6次是独立重复试验. 解:(1)向上的点数之和为3的结果有1种情况,为6的结果共10种情况,为9的结果共25种情况,为12的结果共25种情况,为15的结果共10种情况,为18的结果共1种情况.所以⋅=⨯⨯+++++=3166611025251012P(2)因为每次抛掷骰子,向上的点数为奇数的概率为P =21, 根据独立重复试验概率公式有⋅==⋅⋅6415)21()21(24463C P 【评析】独立重复试验是一类重要的概率问题,要善于分析模型的特点,正确合理的解题.例8 某学校进行交通安全教育,设计了如下游戏,如图,一辆车模要直行通过十字路口,此时前方交通灯为红灯,且该车模前面已有4辆车模依次在同一车道上排队等候(该车道只可以直行或左转行驶).已知每辆车模直行的概率是53,左转行驶的概率是52,该路口红绿灯转换间隔时间均为1分钟.假设该车道上一辆直行去东向的车模驶出停车线需要10秒钟,一辆左转去北向的车模驶出停车线需要20秒钟,求:(1)前4辆车模中恰有2辆车左转行驶的概率;(2)该车模在第一次绿灯亮起时的1分钟内通过该路口的概率(汽车驶出停车线就算通过路口).【分析】该车模1分钟内通过路口包含2种情况:4辆车都直行,3辆车直行1辆车左转.解:(1)设前4辆车模中恰有2辆左转行驶为事件A ,则⋅=⨯=625216)52()53()(2224C A P (2)设该车在第一次绿灯亮起时的1分钟内通过该路口为事件B ,其中4辆车模均 直行通过路口为事件B 1,3辆直行1辆左转为事件B 2,则事件B 1、B 2互斥.=+=+=)()()()(2121B B P B B P B P ⋅=⨯+62529752)53()53(334444C C 【评析】善于从复杂的背景中发现线索,体会其实质.善于转化问题的叙述,恰当的分类.练习11-1一、选择题1.下列随机事件的频率和概率的关系中哪个是正确的( )A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.从装有2个黑球2个白球的口袋中任取2个球,那么互斥而不对立的两个事件是( )A .至少有一个白球,都是白球B .至少有一个白球,至少有一个红球C .恰有一个白球,恰有两个白球D .至少有一个白球,都是红球3.独立工作的两套报警系统遇危险报警的概率均为0.4,则遇危险时至少有一套报警系统报警的概率是( )A .0.16B .0.36C .0.48D .0.644.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )A .751B .752C .753D .754 二、填空题5.甲、乙二人掷同一枚骰子各一次.如果谁掷的点数大谁就取胜,则甲取胜的概率为______.6.设每门高射炮命中飞机的概率都是0.6.今有一敌机来犯,要有99%的把握击中敌机,至少需要______门高射炮.7.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中概率为______.8.一个口袋中有4个白球,2个黑球.有放回的取出3个球,如果第一次取出的是白球,则第三次取出的是黑球的概率为______;不放回的取出3个球,在第一次取出的是白球的条件下,第二次取出的是黑球的概率为______.三、解答题9.已知集合A ={-4.-2,0,1,3,5},在平面直角坐标系中点M (x ,y )的坐标满足x ∈A ,y ∈A .计算:(1)点M 恰在第二象限的概率;(2)点M 不在x 轴上的概率;(3)点M 恰好落在区域⎪⎩⎪⎨⎧>>>-+0008y x y x 上的概率.10.某个高中研究性学习小组共有9名学生,其中有3名男生和6名女生.在研究学习过程中,要进行两次汇报活动(即开题汇报和结题汇报),每次汇报都从这9名学生中随机选1人作为代表发言.设每人每次被选中与否均互不影响;(1)求两次汇报活动都是由小组成员甲发言的概率;(2)求男生发言次数不少于女生发言次数的概率.11.3名志愿者在10月1日至10月5日期间参加社区服务工作,若每名志愿者在这5天中任选两天参加社区服务工作,且各名志愿者的选择互不影响.求(1)这3名志愿者中在10月1日都参加社区服务工作的概率;(2)这3名志愿者中在10月1日至多有1人参加社区服务工作的概率.§11-2 概率(二)【知识要点】1.离散型随机变量及其分布列随机变量:如果随机试验的可能结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,我们把这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量.离散型随机变量的分布列:设离散型随机变量X 的可能取值为x 1,x 2,…,x n ,X 取到i i ii 12+…+p n =1.离散型随机变量在某个范围取值的概率等于它取这个范围内各个值的概率和.其中0<p <1,q =1-,则称离散型随机变量服从参数为p 的二点分布.二项分布:一般的,在相同条件下重复地做n 次试验,各次试验的结果相互独立,称为n 次独立重复试验.在n 次独立重复试验中,事件A 恰好发生k 次的概率为==)(k X P k n k k n q p C -(其中p 为在一次试验中事件A 发生的概率,q =1-p ,k =0,1,…,n ).若将n次独立重复试验中事件A 发生的次数设为X ,则X 的分布列为超几何分布:一般的,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件(n ≤N ),这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为m C C C m X P n Nm n M N m M ≤==--0()(≤l ,其中l 为n 和M中较小的一个).我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N 、M 、n 的超几何分布.2.随机变量的数字特征及正态分布1122i i n n 了离散型随机变量的平均取值水平.称i i n i p X E xX D ⋅-=∑=21))(()(为随机变量X 的方差,它反映了离散型随机变量X 相对于期望的平均波动大小(或说离散程度),其算数平方根)(X D 为随机变量X 的标准差,记作σ (X ),方差(或标准差)越小表明X 的取值相对于期望越集中,否则越分散.均值与方差的性质:①E (aX +b )=aE (X )+b ②D (aX +b )=a 2D (X )若X 服从两点分布,则E (X )=p ,D (X )=pq ;若X ~B (n ,p ),则E (X )=np ,D (X )=npq . 正态曲线:函数),((21)(222)(+∞∝-∈=--x e x x σμσπϕ,其中μ ∈R ,σ >0)的图象为正态分布密度曲线,简称正态曲线.其特点有:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,关于x =μ 对称;③曲线在x =μ 处达到峰值σ2π1;④曲线与x 轴之间的面积为1;⑤当σ 一定时,曲线随着μ 的变化而沿x 轴平移;⑥当μ 一定时,曲线的形状由σ 决定.σ 越小,曲线越“瘦高”,表示总体的分布越集中;σ 越大,曲线越“矮胖”,表示总体的分布越分散.正态分布:如果对于任意实数a <b ,随机变量X 满足=≤<)(b X a P dx x ba )(ϕ⎰,则称X 的分布为正态分布;随机变量X 服从参数μ 、σ 的正态分布,记作N ~(μ ,σ 2).正态分布的三个常用数据:①P (μ -σ <X <μ +σ )=68.3%;②P (μ -2σ <X <μ +2σ )=95.4%;③P (μ -3σ <X <μ +3σ )=99.7%.【复习要求】①在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.②通过实例,理解超几何分布及其导出过程,并能进行简单的应用.③通过实例,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题. ④通过实例,理解取有限值的离散型随机变量期望、方差的概念,能计算简单离散型随机变量的期望、方差,并能解决一些实际问题.⑤通过实际问题,认识正态分布曲线的特点及曲线所表示的意义.【例题分析】例1 一袋中装有编号为1、2、3、4、5、6的6个大小相同的小球,现从中随机取出3个球,以X 表示取出球的最大号码,(1)求X 的分布列;(2)求X >4的概率;(3)求E (X ).【分析】随机变量X 可能取的值为3、4、5、6,应用古典概型求得X 取每一个值的概率,就可以写出分布列.解:(1)随机变量X 可能取的值为3、4、5、6,且,203)4(,2011)3(362336======C C X P C X P 3624)5(C C X P ==103206==,212010)6(3625====C C X P ,所求X 的分布列为(2)==+==>)6()5()4(X P X P X P ⋅54 (3).25.5216103520342013)(=⨯+⨯+⨯+⨯=X E 【评析】离散型随机变量的分布列反映了一次试验的所有可能结果(X 的所有可能取值),以及取得每个结果(X 的每一个值)的概率.书写分布列首先要根据具体情况正确分析X 可取的所有值,然后利用排列组合及概率的有关知识求得每个x i 所对应的概率p i ,最后列成表格.要注意不同的X 值所对应的事件之间是互斥的,求离散型随机变量在某一范围的概率等于它取这个范围内各个值的概率和.例2 袋中装有大小相同的5个红球、5个白球,现从中任取4个球,其中所含红球的个数为X ,写出X 的分布列,并求X 的期望.【分析】袋中共有10个球,从中任取4个,所含红球的个数为0、1、2、3、4,每个事件的概率可以利用古典概型求解.解:随机变量X 可取的值有0、1、2、3、4,)0(=X P =,42121054104505==⋅C C C )1(=X P =215210504103515==⋅C C C ,)2(=X P 21102101004102525===⋅C C C ,===⋅4101535)3(C C C X P 21050 215=,4212105)4(4100545==⋅==C C C X P , 分布列为2424213212211420)(=⨯+⨯-+⨯+⨯+⨯=X E 【评析】本题的随机变量X 服从参数为N ,M ,n 的超几何分布,其中N =10,M =5,n =4.例3 某人练习射击,每次击中目标的概率为31. (1)用X 表示击中目标的次数.①若射击1次,求X 的分布列和期望;②若射击6次,求X 的分布列和期望;(2)若他连续射击6次,设ξ为他第一次击中目标前没有击中目标的次数,求ξ的分布列;(3)他一共只有6发子弹,若击中目标,则不再射击,否则子弹打完为止,求他射击次数η 的分布列.【分析】射击问题常被看做是独立重复试验.ξ的取值为0到6,η 的取值为1到6. 解:(1)①X 服从二点分布⋅=31)(X E ②X 服从二项分布)6,,1,0()2()1()(),1,6(~66Λ===-k C k X P B k k k ,分布列为.236)(=⨯=X E (2)ξ的取值为0到6,ξ=k (k =0,1,…,5)表示第k +1次击中目标,前k 次都没击中目标,则P (ξ=k )=)5,,1,0(31)32(.Λ=k k ,ξ=6表示射击6次都未击中目标,==)6(ξP6)2(.ξ的分布列为(3)η 的取值为1到6.η =k (k =1,2,…,5)表示第k 次时第一次击中目标,==)(k P η 6;1)2(.1=-ηk 表示前5次都没有击中目标,5)2()6(==ξP .η 的分布列为“X =k ”.在计算满足二点分布和二项分布的随机变量的期望和方差时,可直接应用公式计算.例4 甲乙两名射手在一次射击中的得分为两个相互独立的随机变量X 和Y ,且X 和Y 的分布列为计算X 和Y 【分析】先由分布列所提供的数据用期望和方差公式计算,再根据实际意义作出分析. 解:E (X )=8.85,D (X )=2.2275;E (Y )=5.6,D (Y )=10.24.由于E (X )>E (Y ),说明甲射击的平均水平比乙高;由于D (X )<D (Y ),说明甲射击的环数比较集中,发挥比较稳定,乙射击的环数比较分散,技术波动较大,不稳定,由此可以看出甲比乙的技术好.【评析】正确记忆期望和方差的公式,在分布列中,期望是每个变量乘以它所对应的概率再相加,求方差要先求期望,再作差、平方、乘以相应概率再相加.科学对待计算结果,正确分析数据所表达的实际意义.例5 设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x 2+bx +c =0实根的个数(重根按一个计).(1)求方程x 2+bx +c =0有实根的概率;(2)求在先后两次出现的点数中有5的条件下,方程x 2+bx +c =0有实根的概率;(3)若η =2ξ+1,求ξ、η 的数学期望和方差;【分析】本题概率问题是古典概型,要分别求出事件中所含元素的个数,第一问事件“二次方程有实根”等价于“∆=b 2-4c ≥0”,b 、c 的值都取自{1,2,3,4,5,6};第二问是条件概率问题;第三问先求ξ的期望和方差,再由公式求η 的期望和方差.解:(1)由题意知:设基本事件空间为Ω,记“方程x 2+bx +c =0没有实根”为事件A ,“方程x 2+bx +c =0有且仅有一个实根”为事件B ,“方程x 2+bx +c =0有两个相异实数”为事件C ,Ω中基本事件总数为36个,A 中的基本事件总数为17个,B 中的基本事件总数为2个,C 中的基本事件总数为17个.又因为B ,C 是互斥事件,故所求概率⋅=+=+=36193617362)()(C B B P P (2)记“先后两次出现的点数中有5”为事件D ,“方程x 2+bx +c =0有实数”为事件E ,由上面分析得D P D P (,3611)(=∩367)=E ,∴⋅==117)()()|(D P E D P D E P I (Ⅱ)由题意ξ的可能取值为0,1,2,则,3617}2{,181}1{,3617}0{======&ξξξP P P 故ξ的分布列为:所以.18173617·)12(181·)11(3617·(0-0-,136172181136170222=-+-+==⨯+⨯+⨯=ξξD E 9342)12(,312)12(2==+==+=+=ξξξξηηD D D E E E 【评析】本题是一道概率的综合题,由07山东卷改编而得.在古典概型中解决条件概率问题时,概率公式是=)|(A B P )()()()(A n B A n A P B A P I I =.具有线性关系的两个随机变量的期望和方差之间的关系是b X aE b aX E +=+)()(,)()(2X D a b aX D =+.例6 (1)设两个正态分布N (μ 1,21σ)(σ 1>0)和N (μ 2,22σ)(σ 2>0)的密度函数图象如图所示.则有( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25.某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为(D).
A.p2B. (1-p)2C. 1-2pD.p(1-p)
二、填空题
1.一个盒子中有6颗黑棋子、9颗白棋子,从中任取两颗,则这两颗棋子是不同色的概率为18/35.
2.甲乙两人,每人扔两枚均匀硬币,则两人所扔硬币均未出现正面的概率为
15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为(A).
A. B.0.4 C. 0.25 D.
16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是(B).
A. 0.48B.0.75C. 0.6 D. 0.8
A. 0 B.0.4 C. 0.8 D. 1
10.设A与B为两事件,则 = (B).
A. B. C. D.
11.设事件 ,P(A)=0.2,P(B)=0.3,则 (A).
A. 0.3B.0.2 C. 0.5 D. 0.44
12.设事件A与B互不相容,P(A)=0.4,P(B)=0.2,则P(A|B)= (D).
14.设 ,则 =1/3.
15.一批产品的废品率为4%,而正品中的一等品率为60%,从这批产品中任取一件是一等品的概率为0.576.
16.甲、乙两门高射炮彼此独立地向一架飞机各发一炮,甲、乙击中飞机的概率分别为0.4,0.5,则飞机至少被击中一炮的概率为0.7.
三、计算题
1.设P(A)=0.4,P(B)=0.2, ,求P(AB)以及P(A|B).
A. 0.2B.0.4 C. 0.6 D. 0.8
7.已知事件A与B互不相容,P(A)>0,P(B)>0,则(C).
A. B.
C. D.
8.设P(A)=0,B为任一事件,则(C).
A. B. C.A与B相互独立D.A与B互不相容
9.已知P(A)=0.4,P(B)=0.5,且 ,则P(A|B)= (C).
6.甲袋中装有两白一黑共3个球,乙袋中装有一白两黑共3个球,从甲袋中任取一球放入乙袋中,再从乙袋中任取一球,则取到白球的概率为5/12.
7.设事件A与B互不相容,P(A)=0.2,P(B)=0.3,则 =0.5.
8.设事件A与B相互独立,且P(A+B)=0.6,P(A)=0.2,则P(B)=0.5.
A. 0.08B.0.4 C. 0.2 D. 0
13.设A,B为随机事件,P(B)>0,P(A|B)=1,则必有(A).
A. B.
C.P(A)=P(B) D.P(AB)=P(A)
14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为(A).
A. 0.4B.0.2C. 0.25 D. 0.75
19.设有10个产品,其中7个正品,3个次品,现从中任取4个产品,则这4个都是正品的概率为(C).
A. B. C. D.
20.设有10个产品,其中8个正品,2个次品,现从中抽取3次,每次任取1个,取后放回,则取到的3个产品都是正品的概率为(C).
A. B. C. D.
21.某人打靶的命中率为0.4,现独立地射击5次,则5次中恰有2次命中的概率为(C).
A. B. C. D.
4.某人向一目标射击3次,设Ai表示“第i次射击命中目标”(i=1,2,3),则3次都没有命中目标表示为(A).
A. B. C. D.
5.设A与B为互为对立事件,且 ,则下列各式中错误的是
(A).
A. B. C. D.
6.设事件A与B相互独立,P(A)=0.2,P(B)=0.4,则 = (D).
9.设 ,则P(AB)=0.42.
10.设 ,则P(A+B+C)=
5/12.
11.已知P(A)=0.7,P(A-B)=0.3,则 =0.6.
12.某射手对一目标独立射击4次,每次射击的命中率为0.5,则4次射击中恰好命中3次的概率为0.25.
13.已知P(A)=0.4,P(B)=0.8,P(B|A)=0.25,则P(A|B)=0.125.
17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为
(A).
A. 0.125 B.0.25 C. 0.5 D. 0.4
18.一批产品的合格品率为96%,而合格品中有75%是优质品,从该批产品中任取一件恰好是优质品的概率为(A).
A. 0.72 B.0.75 C. 0.96 D. 0.78
A. B. C. D.
22.随机地抛掷质地匀称的6枚骰子,则至少有一枚骰子出现6点的概率为
(D).
A. B. C. D.
23.把3个不同的球分别放在3个不同的盒子中,则出现2个空盒的概率为(A).
A. B. C. D.
24.从1,2,3,4,5,6六个数字中,等可能地、有放回地连续抽取4个数字,则取到的4个数字完全不同的概率为(A).
解:由 得: 即 ,
解得:P(AB)=0.02.从而, .
2.已知 求:(1) ;(2)P(AB);(3) ;(4) ;(5)P(B-A).
(1)由概率的性,知 ;
(2)因为 ,所以 ,P(AB)=P(A)=0.2;
(3) =P(A-AB)=P(A)-P(AB)=P(A)-P(A)=0;
(4)因为 ,所以 , =P(B)=0.3;
1/16.
3.设袋中有5个红球、3个白球和2个黑球,从袋中任取3个球,则恰好取到1个红球、1个白球和1个黑球的概率为0.25.
4.从数字1,2,…,10中有放回地任取4个数字,则数字10恰好出现两次的概率为0.0486.
5.甲乙丙三人各自独立地向一目标射击一次,三人的命中率分别是0.5,0.6,0.7,则目标被击中的概率为0.94.
或者, =P(A)+P(B)-P(AB)=0.2+0.3-0.2=0.3;
第一章随机事件与概率
一、单项选择题
1.掷一枚骰子,设A={出现奇数点},B={出现1或3点},则下列选项正确的是(B).
A.AB={出现奇数点} B. ={出现5点}
C. ={出现5点} D.
2.设A、B为任意两个随机事件,则下列选项中错误的是(A).
A. B.
C. D.
3.将一枚匀称的硬币投掷两次,令Ai={第i次正面向上}(i=1,2),则“至少有一次正面向上”可表示为(D).