测井

合集下载

工程测井的概念

工程测井的概念

工程测井的概念
工程测井是指在工程建设和施工过程中利用测孔或者测井设备对地下岩石层和水文地质条件进行探测和评价的技术方法。

通过工程测井,可以获取地下岩石层的物理性质、水文地质参数、工程岩体的稳定性等重要信息,为工程设计、施工和管理提供科学依据。

工程测井的主要目的是评价地下岩石层的物理性质和结构状态,以及确定地下水动态、地下水位、含水层分布、水文地质参数等信息。

通过工程测井,可以确保工程的安全性、可靠性和经济性,帮助工程设计者和施工人员决策和调整工程参数,降低工程风险,提高工程质量。

工程测井的方法包括地震勘探、电测井、自然电位法、电缆测深、地电阻率法、地热测试、水位测井、地下水取样等。

这些方法可以通过不同的物理量和测量参数来获取地下岩石层和水文地质条件的信息,以满足不同工程需求。

总而言之,工程测井是一种利用测孔和测井设备对地下岩石层和水文地质条件进行评价的技术方法,用于工程设计、施工和管理,以确保工程的安全性、可靠性和经济性。

测井知识简介(入门级)

测井知识简介(入门级)

常规测井的应用
用测井资料划分井剖面的岩性和储集层,评价储集层 的岩性(矿物成分,泥质含量)、储油物性(,K)、含 油性(So,Sw),我们称之为地层评价。
地层评价是测井技术最基本、最重要的应用,也是测 井技术其他应用的基础。在钻井勘探中,它还是在泥浆录 井基础上进一步发现油气层和取得地层物性参数的最主要 手段。它可以有效地解决地质家提出的一些疑难问题。
阵列感应
HDIL
AIT
补偿声波/阵列声波
AC
BHC/AS
多极子、偶极子声波
补偿密度/岩性密度 DEN/ZDEN LDL
补偿中子
CN
CNL
自然电位 SP
COOLC GR/SGR/GRC/GR_CDR/HSGR/GR_STGC CAL/CALS/CALC/CALI/LCAL/HCAL
Schlumberger
分区水泥胶结测井 多极阵列声波 交叉偶极子声波
放射性测井
•是根据岩石及其孔隙流体的某种核物理性质探测井剖面的一类
测井方法。
•优点是:物质的核物理性质不受温度、压力、化学性质等外界
因素的影响。裸眼井、套管井都能正常测井,不受钻井液的限
制。•方法多,十余种:
自然伽马测井、自然伽马能谱测井
密度测井、岩性密度测井
测井知识简介
提纲
• 测井简介 • 随钻测井 • 测井曲线对照表
勘探开发流程
勘探 地震采集、处理
储量、经济评价
目标评价
钻井工程 泥浆、录井、测井、 下套管、固井、试油
海洋、钻完井工程
开发
测井处理流程
地质
钻井 泥浆 录井
资料录取
二次解释、应用
一次解释 固井
试油

测井方法与原理

测井方法与原理

测井方法与原理测井是一种在石油勘探和开发中广泛应用的技术手段,其主要目的是通过测量地下岩石的物理性质,以评估地下地层中的油气储层并确定井孔的产能。

本文将介绍几种常用的测井方法及其原理。

一、电测井方法电测井是通过测量井眼周围地层的电阻率来评估石油储层的方法。

它的原理是通过向井眼中注入电流,然后测量所产生的电位差,从而计算出地层的电阻率。

电测井方法有许多具体的技术实现,如侧向电测井、正向电测井和声波电阻率测井等。

这些方法在实际应用中能够提供丰富的地下岩石信息,帮助确定储层的类型和含油气性质。

二、声波测井方法声波测井是通过测量地下岩石对声波的传播速度和衰减程度来评估石油储层的方法。

它的原理是利用井壁的物理特性和波的传播规律,通过发送声波信号并接收回波信号,从而推断出地层中的可用信息。

声波测井方法常用的技术包括声波传输率测井、声波振幅测井和声波时差测井等。

这些方法能够提供有关地下岩石的密度、孔隙度和饱和度等关键参数,对于油气勘探与开发具有重要意义。

三、核子测井方法核子测井是通过测量地下岩石散射或吸收射线的能量来评估石油储层的方法。

它的原理是使用放射性同位素或射线源,通过测量射线经过地层后的射线强度变化,从而反推出地层的性质和组成。

核子测井方法包括伽马射线测井、中子测井和密度测井等。

这些方法可以提供地下岩石的密度、孔隙度、含水饱和度以及岩石组成的定量信息,对于评估储层的含油气性能十分重要。

四、导电测井方法导电测井是通过测量地下岩石对电磁波的响应来评估石油储层的方法。

它的原理是利用电磁波在地下岩石中传播时的电磁感应效应,通过测量反射波的幅度和相位变化,推导出地层的导电性能。

导电测井方法包括感应测井和电阻率测井等。

这些方法可以提供有关地下岩石的电导率、水饱和度、渗透率和孔隙度等信息,对于确定储层的含油气性质具有重要的意义。

总结:测井方法是石油勘探与开发中不可或缺的技术手段,通过测量地下岩石的物理性质,能够评估地层的含油气性能、类型和产能等关键参数。

测井基础概述(全文)

测井基础概述(全文)

测井概述1、测井的概念:测井,也叫地球物理测井或矿场地球物理,简称测井,是利用岩层的电化学特性、导电特性、声学特性、放射性等地球物理特性,测量地球物理参数的方法,属于应用地球物理方法(包括重、磁、电、震、核)之一。

简而言之,测井就是测量地层岩石的物理参数,就如同用温度计测量温度是同样的道理;石油钻井时,在钻到设计井深深度后都必须进行测井,以获得各种石油地质及工程技术资料,作为完井和开发油田的原始资料。

这种测井习惯上称为裸眼测井。

而在油井下完套管后所进行的二系列测井,习惯上称为生产测井或开发测井。

其发展大体经历了模拟测井、数字测井、数控测井、成像测井四个阶段。

2、测井的原理任何物质组成的基本单位是分子或原子,原子又包括原子核和电子。

岩石可以导电的。

我们可以通过向地层发射电流来测量电阻率,通过向地层发射高能粒子轰击地层的原子来测量中子孔隙度和密度。

地层含有放射性物质,具有放射性(伽马);地层作为一种介质,声波可以在其中传播,测量声波在地层里传播速度的快慢(声波时差)。

地层里的地层水里面含有离子,它们会和井眼中泥浆中的离子发生移动,形成电流,我们可以测量到电位的高低(自然电位)。

3、测井的方法1)电缆测井是用电缆将测井仪器下放至井底,再上提,上提的过程中进行测量记录。

常规的测井曲线有9条;2)随钻测井(LWD-log while drilling)是将测井仪器连接在钻具上,在钻井的过程中进行测井的方式。

边钻边测,为实时测井(realtime),井眼打好之后起钻进行测井为(tipe log);4、测井的参数1.GR-自然伽马GR是测量地层里面的放射性含量,岩石里粘土含放射性物质最多。

通常,泥岩GR高,砂岩GR低。

2.SP-自然电位地层流体中除油气的地层水中的离子和井眼中泥浆的离子的浓度是不一样的,由于浓度差,高浓度的离子会向低浓度的离子发生转移,于是就形成电流。

自然电位就是测量电位的高低,以分辨砂岩还是泥岩。

测井解释基础知识-概述说明以及解释

测井解释基础知识-概述说明以及解释

测井解释基础知识-概述说明以及解释1.引言1.1 概述测井是石油工程中一项重要的技术手段,它通过使用特殊的工具和设备在钻井过程中获取井内的各种数据,以评估地下地层的性质和含油气性能。

这些数据对于油气田的勘探、开发和生产起着至关重要的作用。

测井技术在油气勘探和开发中扮演着关键的角色。

通过测井可以准确地了解油气藏中地层的性质,包括储集层的厚度、孔隙度、渗透率等。

同时,测井数据可以获得地层的物理性质,如密度、声波速度、电阻率等,从而可以计算出地层的含油气饱和度和产能。

测井数据的获取方法包括电测井、声测井、密度测井、核磁共振测井等多种技术手段。

这些测井工具可以通过装备在钻井井筒中的测井仪器进行数据采集。

测井数据的获取主要依靠钻井过程中向井内发送的信号与地层反射或吸收的物理现象产生的信号之间的相互作用。

测井解释是对测井数据进行分析和解释的过程,以得出地层性质和含油气信息,并为油气田的开发提供决策依据。

通过对测井数据的解释,可以确定油气藏的储量、底部流压、裂缝分布等重要参数,为决策者提供合理的勘探和开发方案。

总之,测井是一项通过获取井内数据进行地层评价的重要技术。

它对于优化勘探开发策略,提高油气田的产能和经济效益具有重要意义。

测井解释作为测井技术的核心环节,为油气田的勘探与开发提供科学依据,为石油工程的发展做出了重要贡献。

1.2文章结构1.2 文章结构本文按以下结构进行组织和讨论:(1)引言:首先介绍本文的背景和目的,概述测井解释的基本概念和重要性。

(2)正文:本部分将详细介绍测井的定义和作用,以及获取测井数据的方法。

其中,关于测井的定义和作用部分,将探讨测井在勘探和开发油气田中的重要作用,以及其对油气储层评价和井筒工程的意义。

关于测井数据的获取方法部分,将介绍目前常用的测井工具及其原理,如电测井、声波测井、核子测井等。

(3)结论:在本节中,将强调测井解释的重要性,并讨论其在油气勘探开发、地质研究及工程应用领域的具体应用。

测井原理及方法

测井原理及方法
产生自然电场的主要原因: • 地层水溶液离子浓度与泥浆滤液的离子浓度不同,产生
离子扩散;-扩散电动势 • 岩石颗粒表面对离子有吸附作用;-吸附电动势 • 泥浆滤液向地层中渗透作用。-过滤电动势
自然电位测井
自然电位的测量
自然电位SP的理论计算
自然电流: 测量的自然电位异常幅度值Usp:自然电流流过井内泥浆 柱电阻上的电位降:
1、 常规测井资料原理及应用
1. )电阻率测井电阻率测井 2. )自然电位测井 3. )声波测井 4. )伽马和密度测井 5. )补偿中子测井
电阻率测井
电法测井是地球物理测井中三大测井方法之一,它根据岩层电学性 质的差别,测量地层的电阻率、电导率或介电常数等电学参数,用来研 究地质剖面,判断岩性,划分油气水层,和其它方法一起研究储集层的 含油性、渗透性和孔隙性等性质。
a.主要类型
(2)微侧向(MLL): 微电极测井中泥饼分流作用太大,测RXO不准确,采用聚焦原理,形 成微侧向测井。
(3)微球形聚焦(MSFL): 微侧向MLL探测浅,受泥饼影响大。MSFL方法探测浅,又基本不受泥饼影 响,是目前最好的RXO测量方法。
(4)八侧向(LL8): 以上均为贴井壁测量,LL8是不贴井壁测量Rxo的方法。它是在七侧 向电极系下方附近设屏流回路电极B1,在上方较远处设回路电极B2。
• 厚层可以用“半幅点” 确定地层界面。
地层电阻率的影响
• 含油气饱和度比较高的储集层,其电阻率比它完全含水时rsd明显升 高,SP略有下降。一般油气层的SP幅度略小于相邻的水层。Rt/Rm 增大,曲线幅度减小。
• 围岩电阻率Rs增大,则rsh增大,使自然电位异常幅度减小。
泥浆侵入带、井径的影响
b.电极系分类: 通常供电和测量共4个电极,一个在地面,井下三个组成电极系。 梯度:单电极到相邻成对电极的距离大于成对电极间的距离。 电位:单电极到相邻成对电极的距离小于成对电极间的距离。 梯度电极系进一步分为:底部(正装)梯度、顶部(倒装)梯度。

测井知识点总结

测井知识点总结

测井知识点总结一、测井的概念测井是指利用测井仪器和设备,通过测量井底岩层岩石和流体的性质,为油气勘探和开发提供地层信息的一种技术。

测井是一种地球物理和地质学的交叉学科,是油气勘探开发中的重要技术手段。

二、测井的作用1.评价储层性质:通过测井可以了解地层的岩石类型、孔隙度、渗透率等参数,帮助确定储层的物性特征,为油气储集层的评价提供数据支持。

2.确定油藏参数:通过测井可以确定油藏的含油饱和度、油层厚度、垂向展布和孔隙结构,为油田的储量估算和开发方案提供依据。

3.指导井位设计:测井可以确定地层的性质和构造,为井位的设计和钻井方案的制定提供依据。

4.优化井筒完井设计:通过测井可以了解井下岩性的变化和油层的特征,指导井筒完井设计,选择合适的生产层位和工程措施,提高油井的生产效率。

5.监测油气层动态:测井可以监测井底岩层的性质和变化,及时了解油气层的动态变化情况,指导油气开发策略。

6.保证油井安全:通过对井下岩层进行测量,可以了解地质构造、地应力状态、孔隙稳定性等情况,确保钻井安全。

三、常见的测井工具和方法1.自然伽马测井:自然伽马测井是利用地下岩石放射性元素自然辐射的特性,通过测量自然伽马射线的能量和强度,了解岩石的密度和成分,判断岩石类型和含油气性质。

2.电测井:电测井是利用钻井井筒和地层的电性差异,通过测量井底岩层对电流的导电、电阻、介电等特性参数,推断地层的电性特征、含水饱和度和孔隙度等信息。

3.声波测井:声波测井是利用声波在地层中的传播特性,通过测量声波波速和波幅的变化,推断地层的孔隙度、渗透率、孔隙结构和成岩环境等信息。

4.核磁共振测井:核磁共振测井是利用核磁共振技术,通过测量原子核在地层中的共振信号,获得储层的渗透率、孔隙度、岩石类型等参数。

5.测井解释方法:根据测井资料的性质、特点和目标,采用各种物理、地质和数学方法,对测井资料进行综合解释和处理,得出地层的物性参数和岩性解释结果。

6.测井井筒完整性检测方法:针对井筒完整性的要求,包括封隔壁、封堵操作、水泥防漏、井下环序装置,钻进模式,测井系统等方面,研究井筒完整性检查方法、工具及其应用。

测井解释之孔隙度测井

测井解释之孔隙度测井
井值不仅与岩石骨架有关,还和孔隙度和孔隙流体 有关。划分致密地层的岩性特别有用,此时孔隙度 和孔隙流体对密度值的影响可忽略。
判断气层:在密度测井探测范围内存在天然 气时,由于天然气密度小,且与水或油的密度有显 著的差异,因此,在密度曲线上气层显示为较低的 密度值。
二、补偿密度测井
3、密度测井资料的应用
• 康普顿吸收系数简化为:
k • b
k
ቤተ መጻሕፍቲ ባይዱ
e
N
A
Z A
为常数。
一、伽马射线与物质的作用
3、光电效应
低能量的伽马光子与原子核外的电子相互作用 时,把全部能量传给电子,使电子脱离电子壳层成 为自由电子(光电子),伽马光子本身消失(被吸 收),这种效应称为光电效应。
二、补偿密度测井
1、岩石的体积密度
每立方厘米(单位体积)体积岩石的质量, 叫做岩石的体积密度;单位:g/cm3 。
类似于物质的密度:
岩石质量 铜8.9
b 岩石体积 铁7.8
铝2.7
金钢石3.5
二、补偿密度测井
1、岩石的体积密度
密度是物质的基本物理属性之一。 不同岩石的体积密度不同,可以根据体积密度的变
化来识别岩性。
石英:2.65;方解石:2.71;白云石:2.87
通过岩石体积密度的变化来求取孔隙度。岩石体积 密度与孔隙度的关系:
测井解释之
孔隙度测井
一、伽马射线与物质的作用 二、补偿密度测井 三、岩性密度测井
密度测井
根据伽马射线与地层介质的康普顿效 应测定地层密度的测井方法称密度测井, 利用伽马射线的光电效应和康普顿效应测 量地层的岩性和密度的测井方法称岩性密 度测井。
密度测井属于孔隙度测井系列。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:1.分析自然电位的成因,写出扩散电动势、扩散吸附电动势、总电动势表达式。

成因:1)地层水含盐浓度和泥浆含盐浓度不同,引起离子的扩散作用和岩石颗粒对离子的吸附作用;2)地层压力与泥浆柱压力不同时,在地层孔隙中产生过滤作用。

扩散电动势:w mf d mf wd d R R K C C K E lg lg ≈≈ 扩散吸附电动势:w mfa mf w a a R R K C C K E lglg ≈≈ 总电动势:2112lglg lg C C K C C K C C K E a mf a mf d s -+=mf a d s C C K K E 2lg )(+=mf s C C K E 2lg =若砂岩的地层水矿化度为C 2,泥岩的地层水矿化度为C 1,泥浆滤夜的矿化度为C mf ,C 1 ≥ C 2 ≥ C mf2、不同Cw 、Cmf情况下自然电位测井曲线有哪些特征? 在井中电流从泥岩流向砂岩,电位值沿电流方向降低,界面处全部电流都在井中,电流线最密,电位变化最大。

在砂岩处,自然电位曲线的异常幅度ΔU sp 小于静自然电位曲线的异常幅度SSP 。

3、影响自然电位测井的因素有哪些?1)岩性的影响 K 与泥质的类型、泥质含量及分布形式有关。

不同的岩性,电阻R 不同。

2)地层水和泥浆滤液中的含盐浓度及盐的类型 矿化度不同时,C w /C mf 不同;盐的类型不同时,K 值不同。

3)温度的影响 温度的变化引起K 值的变化,温度对电阻率的影响明显。

4)地层厚度的影响5)井径和侵入影响4.自然电位测井曲线在油田勘探开发中应用于哪些方面?划分渗透层并确定层界面的位置;求取地层水电阻率R w ;求取泥质含量Vsh ;求取阳离子交换容量Q v5.自然电位曲线的泥岩基线是:(2)(1)测量自然电位的零线;(2)衡量自然电位异常的零线;(3)没有意义;(4)其值大小没有实际意义。

6.偏向低电位一方的自然电位异常称为(负异常),其数值是:(3)(1)负的;(2)正的;(3)无正负之分。

7.明显的自然电位正异常说明:(2)(1)Cw> Cmf;(2)Cw<Cmf;(3)Cw=Cmf.8.注入水水淹的储集层产生SP 基线偏移的原因是:(3)(1)储集层上部与下部泥质含量不同;(2)注入水时产生过滤电位;(3)注入水含盐量与原生水含盐量有明显差别9.用SP 计算泥质含量的有利条件是:(4)(1)地层含油气;(2)薄层;(3)侵入深的地层;(4)完全含水、厚度较大和侵入较浅的水层。

10、梯度电极系视电阻率曲线特征(1)曲线与地层中点不对称,对着高阻层,底部梯度电极曲线在地层底界面出现极大值,顶界面出现极小值;顶部梯度电极曲线在高阻层顶界面出现极大值,底界面出现极小值,而且两者的曲线形状正好倒转。

(2)地层厚度很大时,在地层中点附近,有一段视电阻率曲线和深度轴平行的直线,其值等于地层的真电阻率曲线(用来确定地层的真电阻率)。

(3)对于h>L 的中厚度岩层,其视电阻率曲线与厚地层的视电阻率曲线形状相似,但随着厚度的减小,地层中部视电阻率曲线的平直段变小直到消失。

(4)当用底部梯度电极系时,在薄的高阻层下方出现一个假极大值,它距高阻层底界面为一个电极距。

第二章:一节例:已知一含油气纯砂岩地层Rt=40(欧姆·米),Rw=0.4(欧姆·米), ,a=b=1,m=n=2,求Sw 、Sh 。

解:根据阿尔奇公式 t n n o w o R b b I R S S ===- , 得:则: S h =1-S w =0.6二节1.何谓电位电极系?何谓梯度电极系?电位电极系:不成对电极到靠近它的那个成对电极之间的距离小于成对电极间距离的电极系 梯度电极系:不成对电极到靠近它的那个成对电极之间的距离大于成对电极间距离的电极系2.电极系的探测深度及其主要决定于什么?通常以探测半径r 来表示,在均匀介质中,以供电电极为中心,以某一半径划一假想球面,若假想球面内包含的介质对电极系测量结果的贡献占整个测量结果的50%,则此半径r 就是该电极系的探测深度或探测半径。

一般梯度电极系的探测范围是1.4倍电极距L ,而电位电极系的r=2L 。

由此可知,L 越大探测深度也越大。

3.写出N0.8M3.4A 表示的电极系种类、电极距。

4.何谓含水饱和度、含油饱和度、含气饱和度?含水饱和度Sw :含水孔隙体积占有效孔隙体积的百分数。

含油饱和度So:含油孔隙体积占有效孔隙体积的百分数。

含气饱和度Sg:含气孔隙体积占有效孔隙体积的百分数。

5、微电极系包括那两种电极系?它们分别测量什么电阻率?微梯度的探测深度约为40mm,泥饼电阻率微电位的探测深度约为100mm,冲洗带电阻率第三章:1.对比微电极、微侧向、邻近侧向、微球形聚焦测井在探测深度上的主要区别。

微电极:100mm-400mm;微侧向——聚焦弱,探测深度浅,受泥饼影响大,80mm;邻近侧向——聚焦强,探测深度深,受原状地层影响大,150mm~250mm;微球形聚焦测井——探测深度合理,主要反映冲洗带电阻率,测量结果受泥饼影响较小,且不受Rt影响,使用范围较宽。

2.什么是微电极测井曲线的幅度差(正、负)?其影响因素包括哪些幅度差:微电位与微梯度测井值的差异正幅度差——微电位>幅度微梯度负幅度差——微电位<幅度微梯度幅度差大小取决于Rmc/Rxo及泥饼厚度储层:一般有幅度差(常为正幅度差)砂泥岩剖面上,储层渗透性(幅度差)随泥质含量的变化而变化。

非储层:一般无幅度差(或不规则差异)3.哪种微电阻率测井对确定Rxo最好?为什么?由于主电流以很细的电流束穿过泥饼进入地层,受泥饼影响小,对地层的电阻率变化十分敏感,在岩性不同的界面处有明显的变化,纵向分辨能力强。

①当hmc<=19.1mm,RMSFL /RMC≤20时,RMSFL=Rxo;②当hmc>19.1mm, RMSFL /RMC>20时,需要进行泥饼校正.4.深浅侧向视电导率曲线重叠显示时,若说“油层有正幅度差,水层有负幅度差”,你认为这是普遍规律呢,还是在一定条件下才可能有的现象?为什么?Rmf>Rw时:水层——增阻侵入 Rxo> Rt—负幅度差油层——减阻侵入 Rxo< Rt —正幅度差Rmf<Rw时:水层、油层(油水同层)——减阻侵入,都出现正幅度差,但Rt油层>Rt水层。

第四章:1、试述单元环及单元环几何因子概念?单元环几何因子:指截面积为一个单位的圆环内涡流所产生的有用信号dVR占总有用信号VR的百分比。

单元环:假设在地层中切出一个半径为r,截面积为dA(drdz)的元环,井轴通过元环中心并且垂直于元环所形成的平面,这样的元环称为单元环2、试述感应测井的横向微分、积分几何因子和纵向微分、积分几何因子物理意义。

横向微分几何因子gr的物理意义是:厚度为1 ,半径为r 的无限长圆筒状介质对视电导率的相对贡献。

横向积分几何因子Gr的物理意义是:半径不同的无限长圆柱状介质对测量结果的相对贡献。

纵向微分几何因子gz 的物理意义是:厚度为1个单位,z值一定的无限延伸的薄板状介质对视电导率的相对贡献。

纵向积分几何因子物理意义:当双线圈系中点与地层中点重合时,表示厚度为h,无限延伸的水平层状介质对测量结果的贡献。

3、感应测井如何减少无用信号?1) 采用复合线圈系,有意识地压制无用信号。

2) 利用VX 与VR间90°的相位差,可在线路中加入相敏检波器来进一步压制。

4、感应测井横向探测深度和纵向分辨率是如何定义的?定义横向积分几何因子等于0.5时的侵入半径为横向探测深度。

定义纵向积分几何因子等于0.5时对应的层厚为纵向分辨率。

5.某油田的一口淡水泥浆井中,某一固结压实纯砂岩地层的声波时差∆t为291.5μs/m,电阻率Rt为68Ω·m,假定∆t ma=182μs/m,∆t f=620μs/m,R W=0.08Ω·m。

(1) 计算该储集层孔隙度Φ;(2) 计算该储集层含水饱和度;(3) 确定该储集层流体性质。

第六章:1.声波测井时,声波可以沿哪几种途径传播到达接收探头?如何保证初至波是滑行波?并证明之。

经泥浆直达接收器,称为直达波;经井壁反射进入接收器,称为反射波;经井壁滑行产生折射而进入接收器,成为滑行波。

当源距L增大到使直达波与滑行波所穿行的路径相近时,由于Vt>Vm则滑行波首先到达接收器,其次为直达波。

由于反射波到达接收器的路径总是大于直达波,所以反射波是最后到达接收器的,所以滑行波为初至波。

直达波和反射波为续至波。

2.“周波跳跃”产生的原因是什么?“周波跳跃”现象的应用有哪些?原因:由于在滑行首波到达接收探头的路径中遇到吸收系数很大的介质,首波能触发R1但不能触发R2,R2被幅度较高的后续波触发,因此,时差增大.应用:3.由声波时差确定地层孔隙度的方法有哪些?用体积模型法推导出由声波时差计算泥质砂岩地层孔隙度的公式。

方法:1)通过模拟实验研究2)根据体积模型理论分析ma f mama f maf t t t t t t t V V V ∆-∆∆-∆=∆-+∆=∆-+=φφφφφ)(1114.为什么说利用固井声幅测井和声波变密度测井可以准确地评价固井质量?如何评价?固井声幅测井及变密度测井,属于水泥胶结测井。

前者用来检查套管与水泥的胶结情况,后者能反映套管与水泥、水泥与岩层的胶结质量。

1)管外无水泥胶结,为自由套管2)仅套管与水泥胶结,水泥与地层无胶结3)套管与水泥、水泥与地层部分胶结4)套管与水泥、水泥与地层胶结良好第七章:1、伽马射线与地层发生的作用有哪些?与伽马光子的能量有什么样的关系?①电子对效应②康普顿效应3光电效应Ⅰ 光子的能量较低(mev E r 1.0<)时,γ射线与物质的作用以光电效应为主,吸收系数 。

Ⅱ 光子的能量为中等(mev E r 5~1.0=)时,γ射线与物质的作用以康普顿效应为主。

Ⅲ 光子的能量较高(mev E r 5>)时,伽马射线与物质的作用以电子对效应为主。

Ⅳ γ射线穿过物质时,同时发生三种作用而减弱,其吸收系数为λστμ++=2、如何利用密度测井资料确定地层的孔隙度 ?方法一:岩心刻度测井法方法二:用体积模型法进行推导3.地层的减速特性及俘获特性主要取决于什么?为什么中子测井输出的是视石灰岩孔隙度?中子测井值在什么样的条件下就是地层的真孔隙度?地层对快中子减速能力主要取决于地层中的含氢量。

含氢量越多,则对快中子的减速能力越强。

地层对热中子的俘获能力一般主要取决于氯元素的含量。

氯元的含量越多, 热中子的寿命越短。

测井刻度一般是在石灰岩中进行的,所以超热中子测井输出的是视石灰岩孔隙度。

相关文档
最新文档