华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

合集下载

华中师范大学硕士研究生考试 数学分析 高等代数 历年真

华中师范大学硕士研究生考试 数学分析 高等代数 历年真

华 中 师 范 大 学2004年研究生入学考试试题(高等代数)1(15)设12,,n a a a …是数域P 上n 个不同的数,解线形方程组12112222221122111111221n n n n n n n n n n n n n n x x x a x a x a x aa x a x a x a a x a x a x a ----+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩2、(15)设P 是数域,n nA P ⨯∈,3()21m x xx =++是A 的最小多项式,求1A -。

3、(20)设P 是数域,12()(,,,)n nij nA a P ααα⨯==∈,nn a 的代数余子式0nn A ≠, 1)证明12,,,n ααα线形无关;2)当|A|=0时,求线形方程组A*x=0的基础解系,其中A*是A 的伴随矩阵地。

4、(30)设P 是数域,12{|'},{|n n n n V A P A A V B P B ⨯⨯=∈==∈是上三角矩阵},1) 证明12,V V 都是n n P ⨯的子空间;2) 证明1212,n n n nP V V P V V ⨯⨯=+≠⊕。

5、(30)设p(x)是数域P 上的不可约多项式,α是 p(x)的复根 1)证明p(x)的常数项不等于零;2)证明对任意正整数m,m(p(x),x )1=; 3)设3p(x)=x 22x -+,求51α6、(20)设n 元实二次型12(,,,)'n f x x x x Ax =经过正交线形替换x Qy =(其中Q 是正交矩阵)化为222212323n y y y ny ++++,证明: 1) A 的特征值是1,2,3,…,n;2) 存在正定矩阵B 使得2A B =。

7、(20)设A 是数域P 上n 维线形空间V 的线形变换,V α∈,1()0,0n n A A α-≠=,证明:1)21,(),(),,()n A A A αααα-是V 的基; 2)设W 是A 的不变子空间,121,,,,0n a a a P a ∈≠并且存在向量21123()()()n n a a A a A a A W βαααα-=++++∈,则W=V 。

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)

华东师范大学《数学分析》与《高等代数》考研真题(1997年-2013年)
x →+∞
续.
19
五、设 f ( x) 在 [a, b] 上二阶可导,且 f ( x) ≥ 0 , f ′′( x) < 0 . 证明: f ( x) ≤
2 b f (t )dt , x ∈ [ a, b] . b − a ∫a
六、设 f ( x , y ) 在 D = [ a, b] × [ c, d ] 上有二阶连续偏导数.
15
六、 ( 15 分)假设 σ 是 n 维欧氏空间 V 的线性变换, τ 是同一空间 V 的变换 . 且对
∀α , β ∈ V , 有 (σα , β ) = (α ,τβ ).
证明: 1) τ 是线性变换, 2) σ 的核等于 τ 的值域的正交补.
七、 (15 分)证明:任意方阵可表为两个对称方阵之积,其中一个是非奇异的。
n →∞ a≤ x≤ b a≤ x≤ b a≤ x≤ b n →∞
八、设 S ⊂ R 2 , P0 ( x0 , y0 ) 为 S 的内点, P 1 ( x1 , y1 ) 为 S 的外点. 证明:直线段 P0 P 1 至少与 S 的边界 ∂S 有一个交点.
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
二、(10 分)证明:方程组
⎧ a11 x1 + a12 x2 + ... + a1n xn = 0 ⎪a x + a x + ... + a x = 0 ⎪ 21 1 22 2 2n n ⋯ (1) ⎨ ............ ⎪ ⎪ ⎩ as1 x1 + as 2 x2 + ... + asn xn = 0

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

华中师范大学《高等代数》《数学分析》考研真题(2009-2017汇总)

考试复习重点资料(最新版)资料见第三页封面第1页温馨提示提示:本套资料经过精心编排,前2页是封面和提示部分,后面是资料试题部分。

资料涵盖了考试的重点知识和题型,可以很好的帮助你复习备考。

资料不在多而在精,一套系统的涵盖考试重点的资料,能够帮助你很好的提高成绩,减轻学习负担,再加上自己勤奋练习,肯定能取得理想的成绩。

寄语:无论你是考研、期末考试还是准备其他考试,既然决定了,就要坚持到底,花几个月的时间,精心准备,在加上资料的帮助,必然会得到回报。

1.一份合理科学的学习计划是你备考的领航灯。

要有总体的时间规划,也要有精细到每天的计划,不打无准备的仗。

2.资料需要反复练习,任何一件看似轻而易举的事情,都是经过反复刻意练习的结果。

公众号:第七代师兄,学习也是一样的,手里的资料,一定要反复练习几遍,才能孰能生巧,融汇贯通,考场上才能轻松应对。

3.态度决定一切,不要手稿眼底,从最基础的知识学起,基础扎实了,才能平底起高楼,才能将各类知识点运用自如。

4.坚持到底,无论是考试还是做事情,很多人打败自己的永远是自己。

切记心浮气躁,半途而废。

5.希望这套资料能够很好的帮助你复习备考,祝学习进步,加油。

第2页目录1华中师范大学2009年研究生入学考试试题高等代数4 2华中师范大学2010年研究生入学考试试题高等代数5 3华中师范大学2011年研究生入学考试试题高等代数6 4华中师范大学2012年研究生入学考试试题高等代数7 5华中师范大学2013年研究生入学考试试题高等代数9 6华中师范大学2014年研究生入学考试试题高等代数11 7华中师范大学2015年研究生入学考试试题高等代数12 8华中师范大学2016年研究生入学考试试题高等代数13 9华中师范大学2017年研究生入学考试试题高等代数15 10华中师范大学2009年研究生入学考试试题数学分析17 11华中师范大学2010年研究生入学考试试题数学分析19 12华中师范大学2011年研究生入学考试试题数学分析21 13华中师范大学2012年研究生入学考试试题数学分析23 14华中师范大学2013年研究生入学考试试题数学分析25 15华中师范大学2014年研究生入学考试试题数学分析27 16华中师范大学2015年研究生入学考试试题数学分析29 17华中师范大学2016年研究生入学考试试题数学分析31 18华中师范大学2017年研究生入学考试试题数学分析331.(20分)设a1,¨¨¨,a n是n个复数,x是复变元.求解:x取哪些复数值时下述等式(等式左边是n`1阶行列式)成立:ˇˇˇˇˇˇˇˇˇˇˇˇˇ111¨¨¨1x a1a2¨¨¨a nx2a21a22¨¨¨a2n............x n a n1a n2¨¨¨a n nˇˇˇˇˇˇˇˇˇˇˇˇˇ“0.2.(20分)设f p x q是n次实系数多项式,ną1.设f1p x q是f p x q的导数多项式.证明:(1)如果r是f p x q的m重根,mą0,则r是f1p x q的m´1重根(若r是f p x q的零重根则表示r不是f1p x q的根).(2)如果f p x q的根都是实数,则f1p x q的根也都是实数.3.(20分)设A是秩为r的mˆn阶矩阵,B是非零的mˆ1阶矩阵.考虑线性方程组AX“B,其中X是变元x1,¨¨¨,x n的列向量.证明:(1)线性方程组AX“B的任意有限个解向量X1,¨¨¨,X k的向量组的秩ďn´r`1.(2)若线性方程组AX“B有解,则它有n´r`1个解向量是线性无关的.4.(30分)设A,B,C都是n阶方阵,令˜A BC0¸是分块构成的2n阶方阵,其中右下块0表示n阶零方阵.(1)证明:rank ˜A BC0¸ěrank p B q`rank p C q.这里rank p B q表示矩阵B的秩.(2)举例说明:p1q中的等号和不等号都可能成立.5.(30分)设V是有限维向量空间,设U,W是V的两个子空间.(1)什么是U与W的和子空间U`W?请叙述关于U`W的维数公式.(2)证明关于和子空间的维数公式.6.(30分)设A为n阶实矩阵,λi“r`si是A的特征根,其中r,s是实数,i是虚数单位.(1)证明:12p A`A1q的特征根都是实数,令µ1﨨¨ďµn是12p A`A1q的全部特征根.(2)证明:µ1ďrďµn.(3)你有类似的估计s的办法吗?1.(20分)设F是任意数域,p p x q P F r x s.证明:p p x q是不可约多项式当且仅当p p x q是素多项式.2.(20分)(1)设A是n阶方阵,E是单位矩阵,k‰0.证明:A2“kA当且仅当rank p A q`rank p A´kE q“n.(2)证明:任意方阵可以表示为满秩矩阵和幂等矩阵的乘积.3.(20分)设R表示实数域,V“M3p R q表示所有3ˆ3实矩阵构成的向量空间.对给定的A P M3p R q,定义V上的线性变换A:VÑV为A pB q“AB´BA,对任意的B P M3p R q.设A“¨˚˝000010002˛‹‚.求A的特征值和相应的特征子空间;并求此时A的极小多项式.4.(30分)设有三元实二次型f p x,y,z q“x2`3y2`z2`4xz.并设x,y,z满足x2`y2`z2“1.试求f的最大值和最小值,并求当x,y,z取什么值时,f分别达到最大值和最小值.5.(30分)设R是实数域,V“C1r0,1s是闭区间r0,1s上的实连续可微函数的集合.V在函数的加法和数乘函数的运算下是一个向量空间.(1)证明函数f p x q“cos x,g p x q“2x,h p x q“e x在V中线性无关.(2)任意给定ną0,在V中找出n`1个线性无关的元素,并证明你的结论.(3)对某个m,是否有V和R m同构,如果是,给出证明;如果不是,说明理由.6.(30分)(1)设A和B均为n阶复方阵,证明:A与B相似当且仅当作为λ´矩阵,有λE´A等价于λE´B.(2)设A,B都是3阶幂零矩阵,证明:A相似于B当且仅当A与B有相同的极小多项式.(3)试说明上述结论p2q对4阶幂零矩阵是否成立,为什么?。

全国名校高等代数考研真题汇编(含部分答案)

全国名校高等代数考研真题汇编(含部分答案)

考生注意: 1.本 试 卷 满 分 为 150 分,共计10道题,每题满分15 分,考试时间总计180 分钟;
2.答案必须写在答题纸上,写在试题纸上或草稿纸 上均无效。
一、设 是 阶单位矩阵, ,证明 的行列式等于 .
,矩阵 满足
二、设 是 阶幕零矩阵满足

.证明所有的 都相似于一个对角矩阵,
的特征值之和等于矩阵 的秩.
3.南开大学高等代数考研真题 2012年南开大学804高等代数考研真题 2011年南开大学802高等代数考研真题
4.厦 门 大 学 825高等代数考研真题 2014年厦门大学825高等代数考研真题 2013年厦门大学825高等代数考研真题 2012年厦门大学825高等代数考研真题 2011年厦门大学825高等代数考研真题

证明:
(1)
.
(2) 是 的不变子空间,则 也是的 不变子空间.
10.四川大学高等代数考研真题及 详解
2013年四川大学931高等代数考研真 题及详解
2011年四川大学高等代数考研真题
11.浙江大学高等代数考研真题
2012年浙江大学601高等代数考研真题
浙江大学2012年攻读硕士学位研究生入学试题 考试科目:高等代数(601)
5.中 山 大 学 877高等代数考研真题
2015年中山大学877高等代数考研真题 2014年中山大学874高等代数考研真题 2013年中山大学869高等代数考研真题 2012年中山大学869高等代数考研真题 2011年中山大学875高等代数考研真题 6.中南大学高等代数考研真题 2011年中南大学883高等代数考研真题 7.湖南大学高等代数考研真题 2013年湖南大学813高等代数考研真题 8.华 东 师 范 大 学 817高等代数考研真题 2013年华东师范大学817高等代数考研真题 2012年华东师范大学817高等代数考研真题 2011年华东师范大学817高等代数考研真题 9.华中科技大学高等代数考研真题及详解 2013年华中科技大学高等代数考研真题 2012年华中科技大学高等代数考研真题及详解 2011年华中科技大学高等代数考研真题 10.四川大学高等代数考研真题及详解 2013年四川大学931高等代数考研真题及详解 2011年四川大学高等代数考研真题 11.浙江大学高等代数考研真题 2012年浙江大学601高等代数考研真题

华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000至2009年数学分析,高等代数试题

华东师范大学2000年攻读硕士学位研究生入学试题考试科目:数学分析一.(24分)计算题: (1)011lim();ln(1)x x x→-+(2)32cos sin ;1cos x xdx x⨯+⎰ (3)设(,)z z x y =是由方程222(,)0F xyz x y z ++=,所确定的可微隐函数,试求grad Z.二.(14分)二、设 n n ne )11(+=,*N n ∈;1)11(++=n n nE ,*N n ∈;证明: (1)}{n e 是严格递增的;(2)}{n E 是严格递减的; (3)用对数函数x ln 的严格递增性质证明:111ln 11n n n⎛⎫<+< ⎪+⎝⎭,对一切n ∈N *成立. 三.(12分)设f 在[],a b 中任意两点之间都具有介值性,而且f在(),a b 内可导,'|()|f x K ≤(正常数), (,).x a b ∈证明f 在点a 右连续(同理在点b 左连续). 四.(14分)设12(1).nn I x dx =-⎰证明:(1)1221n n nI I n -=+,n=2,3…;(2)2,3n I n≥n=1,2,3….五(12分)设S 为一旋转曲面,由平面光滑曲线{(),[,](()0)z y f x x a b f x ==∈≥饶x 轴旋转而成。

试用二重积分计算曲面面积的方法,导出S 的面积公式为'22()1()baA f x fx dx π=+⎰(提示:据空间解几知道S 的方程为222()y z f x +=)六(24分)级数问题:(1)设sin ,0()1,0xx f x x x ⎧≠⎪=⎨⎪=⎩,求()(0)k f。

(2)设1nn n a =∑收敛,lim 0n n na →∞=证明:111()nnn n n n n n a a a +==-=∑∑。

(3)设{()}n f x 为[],a b 上的连续函数序列,且()(),[,]n f x f x x a b ⇒∈证明:若()f x 在[],a b 上无零点。

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学《数学分析》历年考研真题(1997年-2010年)

华东师范大学数学分析历年考研真题(1997年-2010年)华东师范大学1997年攻读硕士学位研究生入学试题一(一(1212分)设f(x)f(x)是区间是区间I 上的连续函数。

证明:若f(x)f(x)为一一映射,则为一一映射,则f(x)在区间I 上严格单调。

二(二(1212分)设1,()0x D x x ì=íî为有理数,为无理数证明:若f(x), D(x)f(x) f(x), D(x)f(x) 在点在点x=0处都可导,且f(0)=0,f(0)=0,则则'(0)0f =三(三(1616分)考察函数f(x)=xlnx f(x)=xlnx 的凸性,并由此证明不等式:的凸性,并由此证明不等式:2()(0,0)a b a ba b ab a b +³>>四(四(1616分)设级数1nn an ¥=å收敛,试就1n n d ¥=å为正项级数和一般项级数两种情况分别证明1nn an n¥=+å也收敛。

五(五(2020分)设方程(,)0F x y =满足隐函数定理条件,并由此确定了隐函数y=f(x)y=f(x)。

又设。

又设(,)Fx y 具有连续的二阶偏导数。

(1) 求''()f x(2)若0000(,)0,()F x y y f x ==为f(x)f(x)的一个极值,试证明:的一个极值,试证明:当00(,)y F x y 与00(,)xx F x y 同号时,0()f x 为极大值; 当00(,)y F x y 与00(,)xx F x y 异号时,0()f x 为极小值。

(3) 对方程2227xxy y ++=,在隐函数形式下(不解出y )求y=f(x)的极值,并用(的极值,并用(22)的结论判别极大或极小。

六(六(1212分)改变累次积分4204842(4)x x xI dxy dy --=-òò的积分次序,并求其值。

数学分析参考书目

数学分析参考书目

数学分析参考书目:1.邓东皋、尹小玲,数学分析简明教程,高等教育出版社/20022.华东师范大学数学系,数学分析(第3版),高等教育出版社/2003基本要求:数列极限、函数极限、函数的连续性、一元函数微分学(导数与微分、微分学基本定理及其应用)、多元函数微分学(偏导数与全微分、隐函数定理与多元微分的应用)、一元函数积分学(不定积分、定积分、广义积分、定积分的应用)、多元函数积分学(重积分与含参量积分、曲线积分与曲面积分)、级数(数项级数、函数项级数、幂级数、Fourier级数).高等代数与空间解析几何参考书目:1.《高等代数》(第3版)北京大学数学系高等教育出版社/20032.《解析几何》(第3版)吕林根、许子道高等教育出版社/2001基本要求:多项式:多项式的整除性,带余除法;多项式的因式分解,最大公因式和重因式;不可约多项式的判定和性质;多项式函数和多项式的根;实数域、复数域和有理数域上的多项式。

行列式:行列式的性质和计算;范德蒙行列式、常用计算技巧;行列式按行按列展开、拉普拉斯展开;克莱姆法则。

矩阵:矩阵运算;初等矩阵与初等变换;可逆矩阵;分块矩阵;矩阵的秩;矩阵的等价,合同,相似。

线性方程组:线性方程组的求解和讨论;线性方程组有解判别定理;线性方程组的解结构及其解空间的讨论。

二次型:二次型的标准形与合同变换;复数域和实数域上二次型的标准形,规范型;正定二次型及其讨论。

线性空间:线性空间的定义和性质;向量的线性相关性讨论、极大线性无关组;基,维数和坐标;基变换和坐标变换;线性子空间及相关理论。

线性变换:线性变换的概念和性质,运算;线性变换的矩阵,值域和核;线性变换(矩阵)的特征多项式,特征值与特征向量;不变子空间。

欧氏空间:向量内积;标准正交基(组)和度量矩阵;正交变换和正交矩阵,对称变换。

向量代数与方程,直线:矢量的数性积、矢量积、混合积和运算规律,空间曲线、曲面方程的各种不同形式,球面、柱面参数方程,平面与空间直线的各种形式的方程。

一些专业数学考研绝好网

一些专业数学考研绝好网

一些专业数学考研绝好网/thread-84637-1-1.html(数学分析)华东师范大学精品课程/thread-5299-1-1.html数学实验课件/thread-468963-1-1.html数学分析与高等代数考试大纲/thread-159660-1-1.html陕西师范大学超多精品视频教学/thread-1509-1-1.html数学与应用数学本科及其它类视频/thread-7099-1-1.html再发一个,看不看由你(网站)/thread-6739-1-1.html人大99-00数学分析,线性代数试题/thread-2913-1-1.html复旦大学考研试题/thread-468347-1-1.html北大2001年数学分析试题/thread-468345-1-1.html转载自共享天下考研论坛原始地址: /viewthread.php?tid=469545&fromuid=0浙江大学数学系考研试题汇编/thread-432696-1-1.html2008年各学校高代数分试题(不断更新中)/thread-410824-1-1.html浙江大学二〇〇四年攻读硕士研究生入学考试数学分析、高等代数/thread-866-1-1.html浙江大学2005,2006年数学分析答案/thread-152345-1-1.html浙江大学数学分析[03 04]/thread-460470-1-1.html《数值分析》教学参考书/thread-468577-1-2.html数学系考研资料以及一些其他的东东/thread-468574-1-3.html组合数学习题答案/thread-466800-1-3.html图论讲义/thread-466799-1-3.html北大张恭庆泛函分析答案/thread-466795-1-3.html北师大高等代数视频下载/thread-5629-1-4.html毕业论文--矩阵特征值_特征向量/thread-413272-1-4.html封装大全/thread-433240-1-4.htmlMatlab讲稿/thread-156993-1-4.htmlλ-矩阵和Jordan标准型/thread-99280-1-4.html北师大数学分析,高等代数视频(助人为乐)/thread-391868-1-4.html 高等代数教案/thread-147532-1-4.html数学模型(第三版)习题解答/thread-233932-1-4.html2005北大高等代数与解析几何/thread-280169-1-4.html中科院考研试题(很全建议置顶)/thread-336026-1-5.html中科院08年高等数学甲考试大纲/thread-224371-1-5.html[ 本帖最后由niuyn 于2008-7-13 22:18 编辑]UID955713 精华2 积分20515 贡献值0 存款70000 金元宝0 两阅读权限180 性别女来自河南查看详细资料TOP 获取VIP免币高速下载帐号xhety4级-小学三年级帖子41 好评26 共享币1040 在线时间10 小时注册时间2008-7-15 最后登录2009-3-17 个人空间发短消息加为好友当前离线12# 宣传本贴大中小发表于2008-7-15 22:32 只看该作者很多人还是不会下载,请大家认真看此帖,正确使用迅雷下载本站附件的必要设置-楼猪真强大,好人啊UID1193599 精华0 积分475 贡献值0 存款0 金元宝0 两阅读权限40 查看详细资料TOP 设置电话号码,如果您忘记了您的帐号或密码,可以用填写的电话发短信或打电话找回用户名和重设密码。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、 (12 分)设 f ( x) 是区间 I 上的连续函数. 证明:若 f ( x) 为一一映射,则 f ( x) 在 区间 I 上严格单调.
二、 (12 分)设
⎧1, x为有理数 D ( x) = ⎨ ⎩0, x为无理数
证明:若 f ( x) , D ( x) f ( x) 在点 x = 0 处都可导,且 f (0) = 0 ,则 f '(0) = 0.
n =1
n =1
n

2) 证明: ∑ 2n sin
n =1
1 在 (0, +∞) 上处处收敛,而不一致收敛. 3n x
11
四、 ( 12 分)设 D : x 2 + y 2 + z 2 ≤ t2 , F (t ) = ∫∫∫ f ( x 2 + y 2 + z 2 )dxdydz ,其中 f 为连
八、 (15 分)设 n 阶实数方阵 A 的特征值全是实数且 A 的所有 1阶主子式之和为 0 ,
2 阶主子式之和也为 0 .求证: An = 0.
九、 (15 分)设 A , B 均是正定矩阵,证明: 1 ) 方程 λ A − B = 0 的根均大于 0 ; 2 ) 方程 λ A − B = 0 所有根等于 1 ⇔ A = B.
七、 (15 分)设 V 是有限维欧氏空间 .内积记为 (α , β ) .又A设是 V 的一个正交变换。 记 V1 = {α | A α = α ,α ∈V } , V2 = {α − A α | α ∈V } . 求证:1) V1 , V2 是 v 的子空间; 2) V = V1 ⊕ V2 .
8
n =1
2
五、 (20 分) 设方程 F ( x, y ) = 0 满足隐函数定理条件, 并由此确定了隐函数 y = f ( x) , 又设 F ( x, y ) 具有连续的二阶偏导数. 1) 求 f ′′( x ) ; 2) 若 F ( x0 , y0 ) = 0, y0 = f ( x0 ) 为 f ( x) 的一个极值. 试证明:i)当 Fy ( x0 , y0 ) 与 Fxx ( x0 , y0 ) 同号时, f ( x0 ) 为极大值; ii)当 Fy ( x0 , y0 ) 与 Fxx ( x0 , y0 ) 异号时, f ( x0 ) 为极小值. 3) 对方程 x 2 + xy + y 2 = 27 ,在隐函数形式下(不解出 y )求 y = f ( x) 的极值,并用 2)的结论判别极大或极小值.
1) 求出 A 的一切可能的 Jordan 标准形; 2) 给出 A 可对角化的一个充要条件.
6
四、(15 分)已知 3 阶实数矩阵 A = ( aij ) 满足条件 aij = Aij (i , j = 1, 2,3) ,其中 Aij 是 aij 的 代数余子式,且 a33 = −1 ,求: 1) A
弦.
4
华东师范大学 1997 年攻读硕士学位研究生入学试题
考试科目:高等代数
一、 (10 分)计算下列行列式:
1
1
...
1
x1( x1 −1) x2 ( x2 − 1) ... xn ( xn −1) 2 2 x12 (x1 −1) x2 (x2 −1) ... xn (xn −1) . ⋮ ⋮ ⋮ n−1 n−1 n−1 x1 (x1 −1) x2 (x2 −1) ... xn (xn −1)
1
三、 (16 分)考察函数 f ( x) = x ln x 的凸性,并由此证明不等式:
a abb ≥ (ab)
a +b 2
(a > 0, b > 0).
∞n n 收敛,试就 ∑ d n 为正项级数和一般项级数两种情况分
n =1 n =1

别证明 ∑ an n + n 也收敛.
⎛ x1 ⎞ ⎛ 0 ⎞ ⎜ ⎟ ⎜ ⎟ 2) 方程组 A x2 = 0 的解. ⎜ ⎟ ⎜ ⎟ ⎜ x ⎟ ⎜1⎟ ⎝ 3⎠ ⎝ ⎠
五、 ( 15 分)证明:一个非零复数 α 是某一有理系数非零多项式的根的充要条件是 1 存在一个有理系数多项式 f ( x) 使得 = f (α ).
α
7
六、 (15 分)设 A 是 n 阶反对称阵. 证明: 1) 当 n 为奇数时 A = 0 . 当 n 为偶数时 A 是一实数的完全平方; 2) A 的秩为偶数.
9
华东师范大学 1998 年攻读硕士学位研究生入学试题
考试科目:数学分析
一、简答题(20 分) 1) 用定义验证: lim
3n 2 + 2 3 = . 2 n →∞ 2n + n + 1 2
⎧cos x, 2) 已知 f ( x) = ⎨ 2 ⎩ ln(1 + x ),
x<0 ,求 f ′( x). x≥0
3) 计算不定积分 ∫
x3
1 + x2
dx.
10
π
二、 (12 分)设 f ( x) 有连续的二阶导函数,且 f (π ) = 2 , ∫ [ f ( x) + f ′′( x)]sin xdx = 5 ,
0
求 f (0).
三、 (20 分)
∞ ∞ 1 1) 已知 ∑ an 为发散的一般项级数,试证明 ∑ (1 + ) an 也是发散级数;
5
⎛ 5 −2 0 0 ⎞ ⎜ ⎟ −2 0 0 0 ⎟ ⎜ 二、 (15 分)设 A = ,求正交矩阵 T ,使 T ' AT = T −1 AT 为对角形 ⎜ 0 0 5 −2 ⎟ ⎜ ⎟ ⎝ 0 0 −2 2 ⎠ 矩阵,并写出这个对角形矩阵.
⎛2 0 0 ⎞ ⎟ 三、(15 分)设 A = ⎜ ⎜ a 2 0 ⎟ 是复矩阵. ⎜ b c −1 ⎟ ⎝ ⎠
3
六、 (12 分)改变累次积分
I = ∫ dx ∫4 x −8 ( y − 4) dy
2
4
4 x − 20
x
的积分次序,并求其值.
七、 ( 12 分 ) 计 算曲 面 积 分 I = ∫∫ ( x 2 cos α + y 2 cos β + z 2 cos γ )ds 其 中 s 为 锥 面
s
z = x 2 + y 2 上介于 0 ≤ z ≤ h 的一块, {cos α , cos β , cosγ } 为 s 的下侧法向的方向余
相关文档
最新文档