八上期末试卷
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和44.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式.10.(3分)当x=时,分式的值为零.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是.12.(3分)已知y﹣x=3xy,则代数式的值为.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是.14.(3分)已知=+,则整式A﹣B=.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为cm.16.(3分)如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1=(2)+=18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.19.(6分)若关于x的方程+2=有增根,求增根和k的值.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF ⊥CD,垂足为F,求证:EF=AP.参考答案与试题解析一、精挑细选,火眼金睛(每小题3分,共24分)1.(3分)在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【解答】解:、、9x+这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.2.(3分)当x=()时,分式﹣2与互为相反数.A.B.C.D.【解答】解:由题意可知:﹣2+=0x2﹣2x(x﹣5)+(x﹣5)(x+1)=0x2﹣2x2+10x+x2﹣4x﹣5=06x=5x=经检验,x=是分式方程的解故选:B.3.(3分)一组数据3,4,x,6,7的平均数是5,则这组数据的中位数和方差分别是()A.4和2 B.5和2 C.5和4 D.4和4【解答】解:∵数据3,4,x,6,7的平均数是5,∴3+4+x+6+7=5×5解得:x=5,∴中位数为5,方差为s2= [(3﹣5)2+(4﹣5)2+(5﹣5)2+(6﹣5)2+(7﹣5)2]=2.故选:B.4.(3分)下列命题是假命题的是()A.等边三角形的三个角都是60°B.平行于同一条直线的两直线平行C.直线经过外一点有且只有一条直线与已知直线平行D.两边及一角分别对应相等的两个三角形全等【解答】解:A、等边三角形的三个角都是60°,正确;B、平行于同一条直线的两直线平行,正确;C、直线经过外一点有且只有一条直线与已知直线平行,正确;D、两边及一角分别对应相等的两个三角形全等,错误;故选:D.5.(3分)如图,直线l∥m∥n,等边△ABC的顶点B、C分别在直线n和m上,边BC与直线n所夹的角为25°,则∠α的度数为()A.25°B.45°C.35°D.30°【解答】解:如图,∵m∥n,∴∠1=25°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠2=60°﹣25°=35°,∵l∥m,∴∠α=∠2=35°.故选:C.6.(3分)下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形D.四个角都相等的四边形是矩形【解答】解;A、一组对边平行且一组对角相等的四边形是平行四边形,首先由两直线平行,同旁内角互补及等角的补角相等得出另一组对角相等,然后根据两组对角分别相等的四边形是平行四边形可知是个真命题,正确,不合题意;B、每组邻边都相等的四边形是菱形,正确,不合题意;C、对角线互相垂直的平行四边形是菱形,故此选项错误,符合题意;D、四个角都相等的四边形是矩形,正确,不合题意;故选:C.7.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.8.(3分)已知关于x的分式方程的解为非负数,则a的取值范围是()A.a≤2 B.a<2 C.a≤2且a≠﹣4 D.a<2且a≠﹣4【解答】解:分式方程去分母得:2x+a=﹣x+2,移项合并得:3x=2﹣a,解得:x=,∵分式方程的解为非负数,∴≥0,且≠2,解得:a≤2,且a≠﹣4.故选:C.二、认真填写,试一试自己的身手(每小题3分,共24分)9.(3分)把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.10.(3分)当x=3时,分式的值为零.【解答】解:分式的值为零,即x2﹣9=0,∵x≠﹣3,∴x=3.故当x=3时,分式的值为零.故答案为3.11.(3分)如图,已知AB∥CD,BC∥DE.若∠A=20°,∠C=120°,则∠AED的度数是80°.【解答】解:延长DE交AB于F,∵AB∥CD,BC∥DE,∴∠AFE=∠B,∠B+∠C=180°,∴∠AFE=∠B=60°,∴∠AED=∠A+∠AFE=80°,故答案为:80°.12.(3分)已知y﹣x=3xy,则代数式的值为4.【解答】解:∵y﹣x=3xy,∴x﹣y=﹣3xy,则原式====4.故答案是:4.13.(3分)已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是3.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据2x1﹣1,2x2﹣1,2x3﹣1,2x4﹣1,2x5﹣1的平均数是(2x1﹣1+2x2﹣1+2x3﹣1+2x4﹣1+2x5﹣1)=3.故答案为:3.14.(3分)已知=+,则整式A﹣B=﹣1.【解答】解:∵=+=,∴3x﹣4=A(x﹣2)+B(x﹣1),整理得出:3x﹣4=(A+B)x﹣2A﹣B,∴,解得:,则整式A﹣B=1﹣2=﹣1,故答案为:﹣1.15.(3分)如图,▱ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD 于E,则△DCE的周长为8cm.【解答】解:∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8,∴△DCE 的周长是:CD +DE +CE=AE +DE +CD=AD +CD=8,故答案为:8.16.(3分)如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD=4,△ABC 的面积是 42 .【解答】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC ,∴OE=OD ,OD=OF ,即OE=OF=OD=4,∴△ABC 的面积是:S △AOB +S △AOC +S △OBC =×AB ×OE +×AC ×OF +×BC ×OD=×4×(AB +AC +BC )=×4×21=42,故答案为:42.三、认真解答,一定要细心!(本大题共9小题,共72分,在答案卷上要写出解答过程)17.(10分)解下列分式方程.(1)+1= (2)+=【解答】解:(1)方程两边都乘以2(x+3),得:4x+2(x+3)=7,解得:x=,当x=时,2(x+3)=≠0,所以分式方程的解为x=;(2)方程两边都乘以(1﹣3x)(1+3x),得:(1﹣3x)2﹣(1+3x)2=12,解得:x=﹣1,当x=﹣1时,(1﹣3x)(1+3x)=﹣8≠0,所以分式方程的解为x=﹣1.18.(8分)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.【解答】解:(1)CD与EF平行.理由如下:∵CD⊥AB,EF⊥AB,∵垂直于同一直线的两直线互相平行,∴CD∥EF;(2)∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC,∴∠ACB=∠3=115°.19.(6分)若关于x的方程+2=有增根,求增根和k的值.【解答】解:方程两边都乘(x﹣3),得k+2(x﹣3)=﹣x+4∵原方程有增根,∴最简公分母(x﹣3)=0,解得x=3,当x=3时,k=1.20.(8分)两组数据:3,a,2b,5与a,6,b的平均数都是8,若将这两组数据合并为一组数据.(1)求出a,b的值;(2)求这组数据的众数和中位数.【解答】解:(1)∵两组数据:3,a,2b,5与a,6,b的平均数都是8,∴,解得:;(2)若将这两组数据合并一组数据,按从小到大的顺序排列为3,5,6,6,12,12,12,一共7个数,第四个数是6,所以这组数据的中位数是6,12出现了3次,最多,即众数为12.21.(8分)如图所示,在△ABC中,AB=AC,D为AB上一点,E为AC延长线上的一点,且CE=BD,连接DE交BC于点P.(1)求证:PE=PD;(2)若CE:AC=1:5,BC=10,求BP的长.【解答】(1)证明:过点D作DF∥AC交BC于点F,∴∠ACB=∠DFB,∠FDP=∠E,∵AB=AC(已知),∴∠ACB=∠ABC,∴∠ABC=∠DFB,∴DF=DB;又∵CE=BD(已知),∴CE=DF;又∵∠DPF=∠CPE,∴△ECP≌△DFP,∴PE=PD;(2)解:∵CE=BD,AC=AB,CE:AC=1:5(已知),∴BD:AB=1:5,∵DF∥AC,∴△BDF∽△BAC,∴==;∵BC=10,∴BF=2,FC=8,∵△DFP≌△ECP,∴FP=PC,∴PF=4,则BP=BF+FP=6.22.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.23.(8分)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵DF∥BE,∴∠DFA=∠BEC,在△ADF和△CBE中,∴△AFD≌△CEB(SAS);(2)∵△AFD≌△CEB,∴AD=BC,∠DAF=∠BCE,∴AD∥BC,∴四边形ABCD是平行四边形.24.(8分)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.【解答】证明:在线段BC上截取BE=BA,连接DE,如图所示.∵BD平分∠ABC,∴∠ABD=∠EBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵AD=CD,∴ED=CD,∴∠DEC=∠C.∵∠BED+∠DEC=180°,∴∠A+∠C=180°.25.(8分)在正方形ABCD中,P为对角线BD上一点,PE⊥BC,垂足为E,PF⊥CD,垂足为F,求证:EF=AP.【解答】证明:连接PC,∵四边形ABCD是正方形,∴∠BCD=90°,∠ABD=∠CBD=45°,BA=BC,∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四边形PECF是矩形,∴PC=EF,在△ABP和△CBP中,,∴△ABP≌△CBP,∴PA=PC,∴AP=EF.。
八年级上册期末考试试卷精选及答案

八年级上册期末考试试卷精选及答案一、选择题1.若解关于x 的方程1222x m x x -=+--时产生增根,那么m 的值为( ) A .1 B .2 C .0 D .-12.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC3.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +- 4.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A.12B.112C.2 D.35.关于x的分式方程22x mx+-=3的解是正数,则负整数m的个数为()A.3 B.4 C.5 D.66.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD,则下列结论错误的是()A.△ABD≌△ACE B.∠ACE+∠DBC=45°C.BD⊥CE D.∠BAE+∠CAD=200°7.程老师制作了如图1所示的学具,用来探究“边边角条件是否可确定三角形的形状”问题,操作学具时,点Q在轨道槽AM上运动,点P既能在以A为圆心、以8为半径的半圆轨道槽上运动,也能在轨道槽QN上运动,图2是操作学具时,所对应某个位置的图形的示意图.有以下结论:①当∠PAQ=30°,PQ=6时,可得到形状唯一确定的△PAQ②当∠PAQ=30°,PQ=9时,可得到形状唯一确定的△PAQ③当∠PAQ=90°,PQ=10时,可得到形状唯一确定的△PAQ④当∠PAQ=150°,PQ=12时,可得到形状唯一确定的△PAQ其中所有正确结论的序号是( )A.②③B.③④C.②③④D.①②③④8.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x |=2,则x =2;④同旁内角的平分线互相垂直.其中真命题的个数为( )A .1个B .2个C .3个D .4个 9.如图,已知AB =AD ,AC =AE ,若要判定△ABC ≌△ADE ,则下列添加的条件中正确的是( )A .∠1=∠DACB .∠B =∠DC .∠1=∠2D .∠C =∠E10.如图,小明书上的三角形被墨迹遮挡了一部分,测得两个角的度数为32°、74°,于是他很快判断这个三角形是( )A .等边三角形B .等腰三角形C .直角三角形D .钝角三角形 二、填空题 11.若|21(3)0x x y ++-=,则22x y +=_______.12.如图,在等边ABC 中,D 、E 分别是AB 、AC 上的点,将ADE 沿直线DE 折叠后,点A 落在点A '处,ABC 的边长为4cm ,则图中阴影部分的周长为_____cm .13.如图,在△ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,且S △ABC =1cm 2,则S △BEF =_____cm 2.14.用12根等长的火柴棒拼成一个等腰三角形,火柴棒不允许剩余、重叠、折断,则能摆出不同的等腰三角形的个数为________个.15.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示,若DE=4,则DF=___.16.如图所示的方格中,∠1+∠2+∠3=_____度.17.分解因式:a2b-4b3=______.18.如果x2+mx+6=(x﹣2)(x﹣n),那么m+n的值为_____.19.在△ABC中,AB=AC,∠ABC=∠ACB,CE是高,且∠ECA=36°,平面内有一异于点A,B,C,E的点D,若△ABC≌△CDA,则∠DAE的度数为_____.20.如图,已知AB=AC,∠A=36°,AB的中垂线MN交AC于点D,交AB于点M,CE平分∠ACB,交BD于点E.下列结论:①BD是∠ABC的角平分线;②ΔBCD是等腰三角形;③BE=CD;④ΔAMD≌ΔBCD;⑤图中的等腰三角形有5个.其中正确的结论是___.(填序号)三、解答题21.如图,已知△ABC.(1)请用尺规作图作出AC的垂直平分线,垂足为点D,交AB于点E(保留作图痕迹,不要求写作法);(2)连接CE,如果△ABC的周长为27,DC的长为5,求△BCE的周长.22.如图,在四边形ABCD 中,//AD BC ,ABC ∠的平分线交CD 于点E ,交AD 的延长线于点F ,DEF F ∠=∠.(1)写出3对由条件//AD BC 直接推出的相等或互补的角;___________、_____________、_______________.(2)3∠与F ∠相等吗?为什么?(3)证明://DC AB .请在下面括号内,填上推理的根据,完成下面的证明://AD BC ,2F ∴∠=∠.(①_________);3F∠=∠(已证), 23∴∠=∠,(②__________); 又12∠=∠(③___________),13∠∠∴=,//DC AB ∴(④_____________).23.已知ABC ,80ABC ∠=︒,点E 在BC 边上,点D 是射线AB 上的 一个动点,将ABD △沿DE 折叠,使点B 落在点B '处,(1)如图1,若125ADB '∠=︒,求CEB '∠的度数;(2)如图2,试探究ADB '∠与CEB '∠的数量关系,并说明理由;(3)连接CB ',当//CB AB '时,直接写出CB E ∠'与ADB '∠的数量关系为 .24.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.25.已知m =a 2b ,n =2a 2+3ab .(1)当a =﹣3,b =﹣2,分别求m ,n 的值.(2)若m =12,n =18,求123a b+的值. 26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若148∠=︒,求2∠的度数;(2)求证://AB DE .28.数学课堂上,老师提出问题:可以通过通分将两个分式的和表示成一个分式的形式,是否也可以将一个分式31(1)(1)x x x ++-表示成两个分式和的形式?其中这两个分式的分母分别为x+1和x -1,小明通过观察、思考,发现可以用待定系数法解决上面问题.具体过程如下:设31(1)(1)x x x ++-11A B x x =++- 则有31(1)(1)x x x ++-(1)(1)()(1)(1)(1)(1)(1)(1)A x B x A B x B A x x x x x x -+++-=+=+-+-+- 故此31A B B A +=⎧⎨-=⎩ 解得12A B =⎧⎨=⎩所以31(1)(1)x x x ++-=1211x x ++- 问题解决:(1)设1(1)1x A B x x x x -=+++,求A 、B . (2)直接写出方程111(1)(1)(2)2x x x x x x x --+=++++ 的解. 29.如图,//AB CD ,点E 在直线CD 上,射线EF 经过点,B BG ,平分ABE ∠交CD 于点G .(1)求证:BGE GBE ∠=∠;(2)若70∠︒=DEF ,求FBG ∠的度数.30.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)+、2(m n)-、mn 这三个代数式之间的等量关系:______;()4根据()3题中的等量关系,若m n 12+=,mn 25=,求图②中阴影部分的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】关于x 的方程1222x m x x -=+--有增根,那么最简公分母为0,所以增根是x=2,把增根x=2代入化为整式方程的方程即可求出未知字母的值.【详解】将原方程两边都乘(x-2)得: 12(2)x m x -=+-, 整理得30x m -+=,∵方程有增根,∴最简公分母为0,即增根是x=2;把x=2代入整式方程,得m=1.故答案为:A.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:根据最简公分母确定增根的值;化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值.2.B解析:B 【解析】【分析】证△ABC≌△ADC,得出∠B=∠D=30°,∠BAC=∠DAC=12∠BAD=25°,根据三角形内角和定理求出即可.【详解】解:在ABC和△ADC中,AB ADCB CDAC AC=⎧⎪=⎨⎪=⎩(已知)(已知),所以△ABC≌△ADC,(SSS)所以∠BCA=∠DCA.(全等三角形的对应角相等)因为∠B=30°,∠BAC=25°,所以∠BCA=180°﹣∠B﹣∠BAC=125°,所以∠BCD=360°﹣2∠BCA=110°.故可得:@代表SSS;◎代表∠DCA;★代表对应角;※代表110°,故选:B.【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.3.A解析:A【解析】【分析】根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c)c=ac+bc-c2,故选项B、D正确,或“L”型钢材的截面的面积为:bc+(a-c)c=bc+ac-c2,故选项C正确,选项A错误,故选:A.【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.4.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.5.B解析:B【解析】【分析】首先解分式方程2=32x mx+-,然后根据方程的解为正数,可得x>0,据此求出满足条件的负整数m的值为多少即可.【详解】解:2=32x mx+-,2x+m=3(x﹣2),2x﹣3x=﹣m﹣6,﹣x=﹣m﹣6,x=m+6,∵关于x的分式方程2=32x mx+-的解是正数,∴m+6>0,解得m>﹣6,∴满足条件的负整数m的值为﹣5,﹣4,﹣3,﹣2,﹣1,当m=﹣4时,解得x=2,不符合题意;∴满足条件的负整数m的值为﹣5,﹣3,﹣2,﹣1共4个.故选:B.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.6.D解析:D【解析】【分析】根据SAS 即可证明△ABD ≌△ACE ,再利用全等三角形的性质以及等腰直角三角形的性质即可一一判断.【详解】∵∠BAC =∠DAE =90°,∴∠BAC +∠CAD =∠DAE +∠CAD ,即∠BAD =∠CAE .在△BAD 和△CAE 中,∵AB AC BAD CAE AD AE ∠∠=⎧⎪=⎨⎪=⎩,∴△BAD ≌△CAE (SAS ),∴BD =CE ,故A 正确;∵△ABC 为等腰直角三角形,∴∠ABC =∠ACB =45°,∴∠ABD +∠DBC =45°.∵△BAD ≌△CAE ,∴∠ABD =∠ACE ,∴∠ACE +∠DBC =45°,故B 正确.∵∠ABD +∠DBC =45°,∴∠ACE +∠DBC =45°,∴∠DBC +∠DCB =∠DBC +∠ACE +∠ACB =90°,则BD ⊥CE ,故C 正确.∵∠BAC =∠DAE =90°,∴∠BAE +∠DAC =360°﹣90°﹣90°=180°,故D 错误.故选D .【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.C解析:C【解析】【分析】分别在以上四种情况下以P 为圆心,PQ 的长度为半径画弧,观察弧与直线AM 的交点即为Q 点,作出PAQ ∆后可得答案.【详解】如下图,当∠PAQ=30°,PQ=6时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,所以PAQ ∆不唯一,所以①错误.如下图,当∠PAQ=30°,PQ=9时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以②正确.如下图,当∠PAQ=90°,PQ=10时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现两个位置的Q 都符合题意,但是此时两个三角形全等,所以形状相同,所以PAQ ∆唯一,所以③正确.如下图,当∠PAQ=150°,PQ=12时,以P 为圆心,PQ 的长度为半径画弧,弧与直线AM 有两个交点,作出PAQ ∆,发现左边位置的Q 不符合题意,所以PAQ ∆唯一,所以④正确.综上:②③④正确.故选C .【点睛】本题考查的是三角形形状问题,为三角形全等来探索判定方法,也考查三角形的作图,利用对称关系作出另一个Q 是关键.8.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x |=2,则x =±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B .【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.9.C解析:C【解析】【分析】根据题目中给出的条件AB AD =,AC AE =,根据全等三角形的判定定理判定即可.【详解】解:AB AD =,AC AE =,则可通过12∠=∠,得到BAC DAE ∠=∠,利用SAS 证明△ABC ≌△ADE ,故选:C .【点睛】此题主要考查了全等三角形的判定,关键是要熟记判定定理:SSS ,SAS ,AAS ,ASA .10.B解析:B【解析】【分析】根据三角形的内角和是180°,求得第三个内角的度数,然后根据角的度数判断三角形的形状.【详解】第三个角的度数=180°-32°-74°=74°,所以,该三角形是等腰三角形.故选B.【点睛】此题考查了三角形的内角和公式以及三角形的分类.二、填空题11.【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】∵,∴,,∴,,∴.故答案为:.【点睛】本题考查了非负数的性质以及代数式的求值.解题解析:5-【解析】【分析】根据非负数的性质列式求出x 、y 的值,然后代入代数式进行计算即可得解.【详解】 ∵21(3)0x x y ++-=,∴10x +=,30x y -=,∴1x =-,3y =-,∴222(1)2(3)165x y +=-+⨯-=-=-.故答案为:5-.【点睛】本题考查了非负数的性质以及代数式的求值.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0. 12.12【解析】【分析】由题意得AE=A′E,AD=A′D,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D,AE=A′解析:12【解析】【分析】由题意得AE=A′E ,AD=A′D ,故阴影部分的周长可以转化为三角形ABC 的周长.【详解】解:将△ADE 沿直线DE 折叠,点A 落在点A′处,所以AD=A′D ,AE=A′E .则阴影部分图形的周长等于BC+BD+CE+A′D+A′E ,=BC+BD+CE+AD+AE ,=BC+AB+AC,=12cm.故答案为:12.【点睛】此题考查翻折问题,折叠问题的实质是“轴对称”,解题关键是找出经轴对称变换所得的等量关系.13.【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从解析:1 4【解析】【分析】由于D、E、F分别为BC、AD、CE的中点,可判断出AD、BE、CE、BF为△ABC、△ABD、△ACD、△BEC的中线,根据中线的性质可知将相应三角形分成面积相等的两部分,从而完成解答.【详解】∵由于D、E、F分别为BC、AD、CE的中点∴△ABE、△DBE、△DCE、△AEC的面积相等S△BEC=12S△ABC=12S△BEF=12S△BEC=12×12=14故答案为:14.【点睛】本题考察了三角形中线的知识;求解的关键是熟练掌握三角形中线的性质,从而完成求解.14.2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x根,则第三边是()根,根据三角形解析:2【解析】【分析】本题根据三角形的三边关系定理,得到不等式组,从而求出三边满足的条件,再根据三边长是整数,进而求解.【详解】设摆出的三角形中相等的两边是x 根,则第三边是(122x -)根,根据三角形的三边关系定理得到:122122x x x x x x +>-⎧⎨-+>⎩, 则3x >, 6x <,又因为x 是整数,∴x 可以取4或5,因而三边的值可能是:4,4,4或5,5,2;共二种情况,则能摆出不同的等腰三角形的个数为2.故答案为:2.【点睛】本题考查了三角形的三边关系:在组合三角形的时候,注意较小的两边之和应大于最大的边,三角形三边之和等于12.15.8【解析】【分析】根据角平分线求出,在的中易求和的长,同理在求出的长,即可得出答案.【详解】,OC 是∠AOB 的平分线在中,在中,故答案为:8.【点睛】本题考查角平分线的解析:8【解析】【分析】根据角平分线求出30EOD FOD ∠=∠=︒,在30的Rt EOD 中易求OD 和OE 的长,同理在Rt EOF 求出EF 的长,即可得出答案.【详解】60AOB ∠=︒,OC 是∠AOB 的平分线30EOD FOD ∴∠=∠=︒在Rt EOD 中,30,4EOD DE ∠=︒= 228,43OD OE OD ED ∴==-=在Rt EOF 中,6043EOF OE ∠=︒=, 30,83EFO OF ∴∠=︒=2212EF OF OE ∴=-=1248DF EF DE ∴=-=-=故答案为:8.【点睛】本题考查角平分线的定义、含30的直角三角形的解法,掌握30直角三角形的特征是解题关键.16.135【解析】由题意得,在与中, ∵AB=DE, ∠ABC=∠ADE,BC=AD, , ,,又∵△DEF 是等腰直角三角形, ,.解析:135【解析】由题意得,在与中, ∵AB =DE ,∠ABC =∠ADE ,BC =AD ,()ABC ADE SAS ∴∆≅∆ ,,, 又∵△DEF 是等腰直角三角形, ,.17.b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a解析:b(a+2b)(a-2b)【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】解:a2b-4b3=b(a2-4b2)=b(a+2b)(a-2b).故答案为:b(a+2b)(a-2b).【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.18.-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣解析:-2【解析】【分析】把(x-2)(x-n)展开,之后利用恒等变形得到方程,即可求解m、n的值,之后可计算m+n的值.【详解】解:∵(x﹣2)(x﹣n)=x2﹣(2+n)x+2n,∴m=﹣(2+n),2n=6,∴n=3,m=﹣5,∴m+n=﹣5+3=﹣2.故答案为﹣2.【点睛】本题考查了因式分解的十字相乘法,我们可以直接套用公式()()()2x p q x pq x p x q+++=++即可求解. 19.117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=解析:117°、27°、9°和81°【解析】【分析】根据等腰三角形的性质和全等三角形的性质解答即可.【详解】解:如图:∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠BAC=54°,∠ACB=∠ABC=63°,∵△ABC≌△CDA,∴∠CAD=∠ACB=63°,∴∠DAE=∠CAD+∠BAC=63°+54°=117°,同理,∠DAE=9°,当△ABC为钝角三角形时,∵在△ABC中,AB=AC,CE是高,且∠ECA=36°,∴∠EAC=54°,∠ACB=∠ABC=27°,∵△ABC≌△CDA,∴∠CAD=∠ACB=27°,∴∠DAE=∠EAC﹣∠CAD=54°﹣27°=27°,同理可得:∠DAE=81°.故答案为:117°、27°、9°和81°.【点睛】本题考查了全等三角形的性质,关键是根据等腰三角形的性质和全等三角形的性质解答.20.①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,解析:①②③⑤【解析】【分析】首先由AB的中垂线MD交AC于点D、交AB于点M,求得△ABD是等腰三角形,即可求得∠ABD的度数,又由AB=AC,即可求得∠ABC与∠C的度数,则可求得所有角的度数,进而得出BD是∠ABC的角平分线,可得△BCD也是等腰三角形,BE=CE,ΔBCD是等腰三角形,ΔAMD为直角三角形,故这两个三角形不可能全等,由角的度数即可得图中的等腰三角形.【详解】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°又∵CE平分∠ACB,∴∠DCE=∠BCE=36°又∵AB的中垂线MN交AC于点D,交AB于点M,∴∠AMD=∠BMD=90°,AD=BD,∴∠ABD=∠BAD=36°,∠ADB=108°,又∵∠ADB=∠ACB+∠DBC=108°∴∠DBC=36°∠ABD=∠DBC,∴BD是∠ABC的角平分线,故①结论正确.∠BDC=72°=∠ACB,∴ΔBCD是等腰三角形,故②结论正确.∵∠DBC=∠ECB=36°∴△BEC为等腰三角形,∴BE=CE又∵∠BDC=∠CED=72°∴△DCE为等腰三角形,∴CD=CE∴BE=CD故③结论正确.∵ΔBCD是等腰三角形,ΔAMD为直角三角形∴这两个三角形不可能全等,故④结论错误.图中△ABC、△ADB、△BCD、△BEC、△DCE都为等腰三角形,故⑤结论正确.故本题正确的结论是①②③⑤.【点睛】此题主要考查等腰三角形的性质,熟练掌握,再利用等角转换,即可解题.三、解答题21.(1)见解析(2)17【解析】【分析】(1)利用基本作图作DE垂直平分AC;(2)根据线段垂直平分线的性质得到EA=EC,AD=CD=5,则利用△ABC的周长得到AB+BC=17,然后根据等线段代换可求出△AEC的周长.【详解】(1)如图,DE为所作;(2)∵DE垂直平分AC,∴EA=EC,AD=CD=5,∴AC=10,∵△ABC的周长=AB+BC+AC=27,∴AB+BC=27﹣10=17,∴△AEC的周长=BE+EC+BC=BE+AE+BC=AB+BC=17.【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.(1)2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒ (2)相等,理由见解析(3)见解析【解析】【分析】(1)根据平行线的性质解答;(2)根据对顶角的性质解答;(3)根据平行线的性质及等量代换,平行线的判定定理解答.【详解】(1)∵//AD BC ,∴2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒;故答案为:2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒; (2)3∠与F ∠相等.理由如下:DEF F ∠=∠,3DEF ∠=∠,3F ∴∠=∠.(3)//AD BC ,2F ∴∠=∠.(①两直线平行,内错角相等);3F∠=∠(已证), 23∴∠=∠,(②等量代换); 又12∠=∠(③角平分线的定义),13∠∠∴=,//DC AB ∴(④内错角相等,两直线平行).故答案为:①两直线平行,内错角相等;②等量代换;③角平分线的定义;④内错角相等,两直线平行.【点睛】此题考查平行线的性质定理及判定定理,角平分线的性质定理,等量代换的推理依据,熟练掌握平行线的判定及性质定理是解题的关键.23.(1)35CEB '∠=︒;(2)20ADB CEB ''∠=∠-︒,理由见解析;(3)①当点D 在边AB 上时,80CB E ADB ''∠=∠-︒,②当点D 在AB 的延长线上时,80CB E ADB ''∠+∠=︒;【解析】【分析】(1)利用四边形内角和求出∠BEB′的值,进而可求出CEB '∠的度数;(2)方法类似(1);(3)分两种情形:如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′;如图2中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.分别利用平行线的性质证明即可.【详解】解:(1)如图1中由翻折的性质可知,∠DBE=∠DB′E=80°,∵∠ADB′=125°,∴∠BDB′=180°-125°=55°,∵∠BEB′+∠BDB′+∠DBE+∠DB′E=360°,∴∠BEB′=360°-55°-80°-80°=145°,∴∠CEB′=180°-145°=35°.(2)结论:∠ADB′=∠CEB′-20°.理由:如图2中,∵80ABC ∠=︒,∴B′=CBD=180°-80°=100°,∵∠ADB′+∠BEB′=360°-2×100°=160°,∴∠ADB′=160°-∠BEB′,∵∠BEB′=180°-∠CEB′,∴∠ADB′=∠CEB′-20°.(3)如图1-1中,当点D 线段AB 上时,结论:∠CB′E+80°=∠ADB′理由:连接CB′.∵CB′//AB ,∴∠ADB′=∠CB′D ,由翻折可知,∠B=∠DB′E=80°,∴∠CB′E+80°=∠CB ′D=∠ADB′.如图2-1中,当点D 在AB 的延长线上时,结论:∠CB′E+∠ADB′=80°.由:连接CB′.∵CB′//AD ,∴∠ADB′+∠DB′C=180°,∵∠ABC=80°,∴∠DBE=∠DB′E=100°,∴∠CB′E+100°+∠ADB′=180°,∴∠CB′E+∠ADB′=80°.综上所述,∠CB'E 与∠ADB'的数量关系为∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°. 故答案为:∠CB′E+80°=∠ADB′或∠CB′E+∠ADB′=80°.【点睛】本题考查翻折变换,多边形内角和定理,平行线的性质,以及分类讨论等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(1)65°;(2)见解析【解析】【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A =∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.25.(1)m 的值是﹣18,n 的值是36;(2)12【解析】【分析】(1)直接将a 、b 值代入,利用有理数的混合运算法则即可求得m 、n 值;(2)先由m 、n 值得出12=a 2b ,18=2a 2+3ab ,进而变形用a 表示出3ab 、2a+3b ,再通分化简代数式,代入值即可求解.【详解】解:(1)∵m=a2b,n=2a2+3ab,a=﹣3,b=﹣2,∴m=(﹣3)2×(﹣2)=9×(﹣2)=﹣18,n=2×(﹣3)2+3×(﹣3)×(﹣2)=2×9+18=18+18=36,即m的值是﹣18,n的值是36;(2)∵m=12,n=18,m=a2b,n=2a2+3ab,∴12=a2b,18=2a2+3ab,∴36a =3ab,18a=2a+3b,∴123a b+=32 3b aab+=18 36 a a=12.【点睛】本题考查代数式的求值、有理数的混合运算、分式的化简求值,熟练掌握求代数式的值的方法,第(2)中能用a表示出3ab、2a+3b是解答的关键.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC,∠ACD=∠D,再由∠ACD=∠B可得∠D=∠B,然后可利用AAS证明△ABC≌△CDE,进而得到CB=DE;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC∥DE,∴∠ACB=∠DEC,∠ACD=∠D,∵∠ACD=∠B.∴∠D=∠B,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.(1)248∠=︒;(2)证明见解析;【解析】【分析】(1)先求六边形ABCDEF的每个内角的度数,再根据四边形的内角和是360°,求∠2的度数.(2)由(1)中∠ADC的度数,可得∠BAD=∠ADE,利用内错角相等,两直线平行,可证AB∥DE.【详解】(1)∵六边形ABCDEF的每个内角的度数是(6-2)×180°÷6=120°∴∠FAB=120°,∵∠1=48°∴∠FAD=∠FAB-∠1=120°-48°=72°,∴∠2=360°-120°-120°-72°=48°.(2)∵∠1=48°,∠2=48°,∴AB∥DE.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.注意平行于同一条直线的两直线平行.28.(1)A=1,B=-2;(2)23 x=【解析】【分析】(1)根据题目所给方法进行求解即可;(2)根据题目所给方法先对等号左边各式进行变形化简,最后再解分式方程即可.【详解】解:(1)∵1(1)xx x-=+(1)1(1)(1)A B A x Bxx x x x x x++=++++()(1)A B x Ax x++=+,∴11A BA+=-⎧⎨=⎩,解得12 AB=⎧⎨=-⎩;(2)设1(1)(2)12x A B x x x x -=+++++, 则有1(2)(1)()2(1)(2)12(1)(2)(1)(2)x A B A x B x A B x A B x x x x x x x x -++++++=+==++++++++, ∴121A B A B +=-⎧⎨+=⎩,解得23A B =⎧⎨=-⎩, ∴123(1)(2)12x x x x x -=-++++, 由(1)知,112(1)1x x x x x -=-++, ∴原方程可化为13122x x x -=++, 解得23x =, 经检验,23x =是原方程的解. 【点睛】本题为关于分式及分式方程的创新题,此类型题重点在于理解题目所给的做题方法,并按照题目所给示例进行解答.29.(1)见解析;(2)145°【解析】【分析】(1)根据//AB CD ,可得ABG BGE ∠=∠,根据BG 平分ABE ∠,可得ABG GBE ∠=∠,进而可得BGE GBE ∠=∠;(2)根据//AB CD ,可得70ABE DEF ∠=∠=︒,根据平角定义可得180110ABF ABE ∠=︒-∠=︒,根据BG 平分ABE ∠,可得1352ABG ABE ∠=∠=︒,进而可得FBG ∠的度数.【详解】解:(1)证明://AB CD ,ABG BGE ∴∠=∠, BG 平分ABE ∠,ABG GBE ∴∠=∠,BGE GBE ∴∠=∠;(2)//AB CD ,70ABE DEF ∴∠=∠=︒,180110ABF ABE ∴∠=︒-∠=︒, BG 平分ABE ∠,1352ABG ABE ∴∠=∠=︒, 11035145FBG ABF ABG ∴∠=∠+∠=︒+︒=︒.答:FBG ∠的度数为145︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.30.(1)()m n -(2)①2(m n)-②2(m n)4mn +-(3)22(m n)4mn (m n)+-=-(4)44【解析】【分析】()1由图①可知,分成的四个小长方形每个长为m ,宽为n ,因此图②中阴影部分边长为小长方形的长减去宽,即()m n -;()2①直接用阴影正方形边长的平方求面积;②用大正方形面积减四个小长方形的面积; ()3根据阴影部分面积为等量关系列等式;()4直接代入计算.【详解】()1小长方形每个长为m ,宽为n ,∴②中阴影部分正方形边长为小长方形的长减去宽,即()m n -故答案为()m n -()2①阴影正方形边长为()m n -∴面积为:2(m n)-故答案为2(m n)-②大正方形边长为()m n +∴大正方形面积为:2(m n)+四个小长方形面积为4mn∴阴影正方形面积=大正方形面积4-⨯小长方形面积,为:2(m n)4mn +- 故答案为2(m n)4mn +-()3根据阴影正方形面积可得:22(m n)4mn (m n)+-=-故答案为22(m n)4mn (m n)+-=-()224(m n)4mn (m n)+-=-且m n 12+=,mn 25= ,222(m n)(m n)4mn 1242514410044∴-=+-=-⨯=-=【点睛】本题考查了根据图形面积列代数式,用几何图形面积验证完全平方公式.找准图中各边的等量关系是解题关键.。
八年级(上)期末数学试卷附答案解析

八年级(上)期末数学试卷一、选择题:每空3分,共30分.1.函数y=+中自变量x的取值范围是()A.x≤2 B.x≤2且x≠1 C.x<2且x≠1 D.x≠12.下列长度的三条线段,哪一组不能构成三角形()A.3,3,3 B.3,4,5 C.5,6,10 D.4,5,93.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.4.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形5.如图,每个小正方形的边长为1,△ABC的三边a、b、c的大小关系式正确的是()A.c<a<b B.a<b<c C.a<c<b D.c<b<a6.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°7.如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°8.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB 于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°9.(2x)n﹣81分解因式后得(4x2+9)(2x+3)(2x﹣3),则n等于()A.2 B.4 C.6 D.810.甲、乙两地之间的高速公路全长200千米,比原来国道的长度减少了20千米.高速公路通车后,某长途汽车的行驶速度提高了45千米/时,从甲地到乙地的行驶时间缩短了一半.设该长途汽车在原来国道上行驶的速度为x千米/时,根据题意,下列方程正确的是()A.B.C.D.二、填空题:每空3分,共18分.11.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=.12.当x=时,2x﹣3与的值互为倒数.13.如图,已知△ABC的三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,若∠BAC=80°,则∠BOD的度数为.14.因式分解:(x2+4)2﹣16x2=.15.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠CPD的度数是°.16.如图,∠BAC=110°,若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是.三、解答题:第17-21题各8分,第22-23题各10分,第24题12分,共72分。
八年级(上)期末数学试卷(含答案)

八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.04.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1 7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x2﹣3x=.12.(3分)方程=1的解是.13.(3分)如图,已知在△ABC中,DE是BC的垂直平分线,垂足为E,交AC 于点D,若AB=6,AC=9,则△ABD的周长是.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.21.(8分)计算下列各式:(x﹣1)(x+1)=;(x﹣1)(x2+x+1)=;(x﹣1)(x3+x2+x+1)=;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形【解答】解:三角形具有稳定性.故选:A.2.(3分)已知点P1(﹣4,3)和P2(﹣4,﹣3),则P1和P2()A.关于原点对称B.关于y轴对称C.关于x轴对称D.不存在对称关系【解答】解:∵P1(﹣4,3)和P2(﹣4,﹣3),∴横坐标相同,纵坐标互为相反数,∴P1和P2关于x轴对称的点,故选:C.3.(3分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.0【解答】解:根据题意得,x﹣1=0且x+1≠0,解得x=1且x≠﹣1,所以x=1.故选:A.4.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【解答】解:由题可知:a=,b=1,c=﹣1∴b>a>c,故选:B.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)下列运算正确的是()A.(x3)2=x5B.(﹣2x)2÷x=4x C.(x+y)2=x2+y2D. +=1【解答】解:A、(x3)2=x6,此选项错误;B、(﹣2x)2÷x=4x2÷x=4x,此选项正确;C、(x+y)2=x2+2xy+y2,此选项错误;D、+=﹣==﹣1,此选项错误;故选:B.7.(3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组 B.2组 C.3组 D.4组【解答】解:第①组满足SSS,能证明△ABC≌△DEF.第②组满足SAS,能证明△ABC≌△DEF.第③组满足ASA,能证明△ABC≌△DEF.第④组只是SSA,不能证明△ABC≌△DEF.所以有3组能证明△ABC≌△DEF.故符合条件的有3组.故选:C.8.(3分)如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为()A.30°B.36°C.54°D.72°【解答】解:在正五边形ABCDE中,∠A=×(5﹣2)×180=108°又知△ABE是等腰三角形,∴AB=AE,∴∠ABE=(180°﹣108°)=36°.故选:B.9.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2 D.a2﹣b2=(a+b)(a﹣b)【解答】解:由题意这两个图形的面积相等,∴a2﹣b2=(a+b)(a﹣b),故选:D.10.(3分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC =2S四边形AEPF,上述结论正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠A PF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF ,故①②正确;∵△AEP ≌△CFP ,同理可证△APF ≌△BPE , ∴△EFP 是等腰直角三角形,故③错误; ∵△APE ≌△CPF , ∴S △APE =S △CPF ,∴四边形AEPF =S △AEP +S △APF =S △CPF +S △BPE =S △ABC .故④正确, 故选:C .二、填空题(本大题共5小题,每小题3分,共15分,把答案写在题中横线上)11.(3分)因式分解:x 2﹣3x= x (x ﹣3) . 【解答】解:x 2﹣3x=x (x ﹣3).故答案为:x (x ﹣3)12.(3分)方程=1的解是 x=3 .【解答】解:去分母得:x ﹣1=2, 解得:x=3,经检验x=3是分式方程的解, 故答案为:x=313.(3分)如图,已知在△ABC 中,DE 是BC 的垂直平分线,垂足为E ,交AC 于点D ,若AB=6,AC=9,则△ABD 的周长是 15 .【解答】解:∵DE 是BC 的垂直平分线, ∴DB=DC ,∴△ABD 的周长=AB +AD +BD=AB +AD +DC=AB +AC=15, 故答案为:15.14.(3分)若代数式x2+kx+25是一个完全平方式,则k=﹣10或10.【解答】解:∵代数式x2+kx+25是一个完全平方式,∴k=﹣10或10.故答案为:﹣10或10.15.(3分)如图,AB=12,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动4分钟后△CAP与△PQB全等.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、解答题(本大题共7个小题,共55分,解答应写出证明过程或演算步骤)16.(6分)计算:(1)[(a+b)2﹣(a﹣b)2]÷2ab(2)×÷(﹣)【解答】解:(1)原式=(a2+2ab+b2﹣a2+2ab﹣b2)÷2ab=4ab÷2ab=2;(2)原式=•(﹣)=﹣.17.(8分)先化简,再求值:(1)(2x+y)2+(x﹣y)(x+y)﹣5x(x﹣y),其中xy=1(2)先化简1﹣+,然后从0,1,﹣1,2四个数中选取一个合适的数作为x的值代入求值.【解答】解:(1)原式=4x2+4xy+y2+x2﹣y2﹣5x2+5xy=9xy,当xy=1时,原式=9;(2)原式=1﹣+=1﹣+=1+=,当x=0时,原式=2.18.(6分)如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF ⊥AC,垂足分别为E,F.求证:EB=FC.【解答】证明:∵AD是△ABC的角平分线,DE⊥AB、DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,在Rt△BED和Rt△DFC中,,∴Rt△BED≌Rt△CFD(HL),∴EB=FC.19.(8分)元旦晚会上,王老师要为她的学生及班级的六位科任老师送上贺年卡,网上购买贺年卡的优惠条件是:购买50或50张以上享受团购价.王老师发现:零售价与团购价的比是5:4,王老师计算了一下,按计划购买贺年卡只能享受零售价,如果比原计划多购买6张贺年卡就能享受团购价,这样她正好花了100元,而且比原计划还节约10元钱;(1)贺年卡的零售价是多少?(2)班里有多少学生?【解答】解:(1)设零售价为5x元,团购价为4x元,则解得,,经检验:x=是原分式方程的解,5x=2.5答:零售价为2.5元;(2)学生数为=38(人)答:王老师的班级里有38名学生.20.(8分)在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE.(2)如图,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变,求证:△AEF≌△BCF.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠CAE,在△ABE和△ACE中,∵∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵AB=AC,点D是BC的中点,∴AD⊥BC,即∠ADC=90°,∴∠CAD+∠C=90°,∵BF⊥AC,∠BAC=45°,∴∠CBF+∠C=90°,∠BFC=∠AFE=90°,BF=AF,∴∠CAD=∠CBF;在△AEF和△BCF中,∵,∴△AEF≌△BCF(ASA).21.(8分)计算下列各式:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;…(1)根据以上规律,直接写出下式的结果:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)你能否由此归纳出一般性的结论(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1(其中n为正整数);(3)根据(2)的结论写出1+2+22+23+24+…+235的结果.【解答】解:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1,故答案为:x2﹣1;x3﹣1;x4﹣1;(1)(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x+1)=x n﹣1;故答案为:(1)x7﹣1;(2)x n﹣1;(3)1+2+22+23+24+…+235=(2﹣1)(235+234+233+…+2+1)=236﹣1.22.(11分)如图1所示,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边,A为直角顶点,在AD左侧作等腰直角三角形ADF,连接CF,AB=AC,∠BAC=90°.(1)当点D在线段BC上时(不与点B重合),线段CF和BD的数量关系与位置关系分别是什么?请给予证明.(2)当点D在线段BC的延长线上时,(1)的结论是否仍然成立?请在图2中画出相应的图形,并说明理由.【解答】解:(1)CF=BD,且CF⊥BD,证明如下:∵∠FAD=∠CAB=90°,∴∠FAC=∠DAB.在△ACF和△ABD中,,∴△ACF≌△ABD∴CF=BD,∠FCA=∠DBA,∴∠FCD=∠FCA+∠ACD=∠DBA+∠ACD=90°,∴FC⊥CB,故CF=BD,且CF⊥BD.(2)(1)的结论仍然成立,如图2,∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;∴CF=BD,且CF⊥BD.。
八年级上册期末试卷(实用11篇)

八年级上册期末试卷(实用11篇)八年级上册期末试卷(1)1、选择题(下列各题的四个选项中,只有一项是最符合题意的。
每小题1分,共20分)与水生环境相比,陆地环境要复杂得多,一般来讲,陆生动物适应陆地生活的结构特点有①体表具有防止水分散失的结构②有辅助呼吸的气囊③有能在空气中呼吸的器官④有发达的感觉器官和神经系统⑤有支持躯体和运动的器官⑥有防寒皮毛②③④⑥ B①③④⑤ C①③④⑥①②①⑤下列对动物特征的叙述,准确的是水螅、涡虫和蝈虫都有口无肛门,属于低等动物B河蚌、蜗牛和乌贼身体柔软,都有大的贝壳保护蝗虫、蜘蛛和蜈蚣的足和触角均分节,且体表都有外骨骼,适应环境的能力较强就鱼、章鱼、鲨鱼、娃娃鱼、鯨鱼和美人鱼都不属于鱼类乳酸菌在自然界广泛分布,与人类关系密切,有关乳酸菌的叙述正确的是A单细胞个体,有细胞核,是真核生物B乳酸菌能利用二氧化碳和水制造乳酸乳酸菌主要通过产生芽孢来繁殖后代D用其制作泡菜时,要使泡菜坛内缺氧下列诗句中的各种动物,不具备“体表都有外骨骼,足和触角均分节”特征的是正是河豚欲上时儿童急走追黄蝶C蝉噪林逾静 D早有蜻蜓立上头下列关于人体运动的说法,错误的是运动系统主要是由骨、关节和肌肉组成的B运动是骨骼肌受到神经传来的刺激收缩,牵动骨绕关节活动而产生的C运动的完成不仅依靠运动系统,还需要其他系统的协调配合屈肘时,肱三头肌收缩为运动提供动力关于社会行为的叙述,哪一项是错误的A社会行为有利于动物的生存和繁衍社会行为是群体内形成了一定的组织,成员间有明确分工的动物集群行为所有高等动物都有社会行为具有社会行为的群体,组织内一定有传递信息的“语言”当蚂蚁发现新食物源或要迁移到新的巢址时,都要通知同伴。
下列关于这种行为的说法错误的是A这种行为与小鼠走迷宫获取食物的行为均属于学习行为这种行为直接反映了蚂蚁个体之间能够进行信息交流C蚂蚁的这种行为叫通讯,靠嗅觉和触觉实现D蚂蚁的这种行为是由体内的遗传物质决定的吃剩的饭菜放在冰箱内不易腐败变质且能保存较长时间,其主要原因是低温把微生物冻死了B低温抑制了微生物的生长、繁殖冰箱内含杀死微生物的物质D冰箱内无空气,微生物无法生存如图①~⑤表示五种不同的生物,有关叙述错误的是①是酵母菌,②是细菌,③是病毒,④是草履虫,⑤是衣藻有细胞壁的是①②⑤,有成形细胞核的是①②④⑤,无细胞膜的是③有蛋白质外壳的是③,有叶绿体的是⑤,有伸缩泡的是④,有纤毛的是④⑤进行自养生活,①②③④进行异养生活,③营寄生生活,①营腐生活如图是部分蝶形花科植物分类图解,据此分析正确的是蝶形花科所包含的植物种类比紫檀属少紫檀、绿豆和菜豆属于同一个分类等级绿豆和菜豆的亲缘关系比绿豆和紫檀更远紫檀、绿豆和菜豆三种植物中,前两者形态结构更相似下列对于生物分类单位的叙述,正确的是分类单位越小,生物间的亲缘关系越近分类单位越大,所包含的生物种类越少“科”是生物分类中最小的单位同一分类单位中,生物的特征完全相同下列有关生物多样性的说法,正确的是生物多样性是指生物种类的多样性B科研人员将油桃和蟠桃进行杂交,培育出油蟠桃,利用的是遗传的多样性保护生物的多样性可大量引进外来物种要保护生物多样性,必须禁止对生物资源的开发和利用下列现象与活动,与真菌无关的是制作腐乳发面蒸馒头脏衣服受潮发霉幼儿患手足口病完成屈肘动作的正确顺序是①骨骼肌收缩②骨受到肌肉牵拉绕着关节产生动作③骨骼肌接受神经传来的兴奋③①② B②③①①③②②①③下列关于动物在生物圈中的作用的叙述,错误的是维持生态平衡 B促进物质循环帮助植物传粉、传播种子 D动物能产生二氧化碳下列表示骨,关节和肌肉关系的模式图中,正确的是下列关于病毒的说法,错误的是A由蛋白质外壳和内部的遗传物质构成B十分微小,没有细胞结构可以在人体细胞内繁殖可以在空气中独立生活酸奶的制作过程需要加入乳酸菌、嗜热杆菌等益生菌,因此需要专门进行菌种培养。
八年级上册期末考试试卷含详细答案

八年级上册期末考试试卷含详细答案一、选择题1.下列各式从左到右的变形中,是因式分解的是( )A .2(3)(3)9a a a +-=-B .233m m m m ⎛⎫-=- ⎪⎝⎭C .243(4)3a a a a --=--D .22()()a b a b a b -=+-2.如图,在四边形ABCD 中,AB =AD ,BC =DC ,AC 与BD 相交于点O ,则①CA 平分∠BCD ;②AC ⊥BD ;③∠ABC =∠ADC =90°;④四边形ABCD 的面积为AC •BD .上述结论正确的个数是( )A .1个B .2个C .3个D .4个3.已知2m n +=,m n 2=-,则()()11m n ++的值为( )A .6B .2-C .0D .14.△ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动。
同时,点Q 在线段CA 上由C 点向A 点运动。
若点Q 的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( )A .2B .5C .1或5D .2或35.如图,AOB ∆的外角,CAB DBA ∠∠的平分线,AP BP 相交于点P ,PE OC ⊥于E ,PF OD ⊥于F ,下列结论:(1)PE PF =;(2)点P 在COD ∠的平分线上;(3)90APB O ∠=︒-∠,其中正确的有 ( )A .0个B .1个C .2个D .3个6.如图,△ABC 中,AB =AC ,AD ⊥BC 于点D ,点E 是AB 的中点,点F 在AD 上,当△BEF 周长最小时,点F 的位置在( )A .AD 的中点B .△ABC 的重心 C .△ABC 三条高线的交点D .△ABC 三边中垂线的交点 7.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是( )A .8B .9C .10D .12 8.有下列说法:①轴对称的两个三角形形状相同;②面积相等的两个三角形是轴对称图形;③轴对称的两个三角形的周长相等;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的.其中正确的有( )A .4个B .3个C .2个D .1个 9.如图,在ABC ∆中,AD 平分BAC ∠,2B ADB ∠=∠,4,7AB CD ==,则AC 的长为( )A .3B .11C .15D .910.设,,a b c 是三角形的三边长,且满足222a b c ab bc ca ++=++,关于此三角形的形状有以下判断:①是直角三角形; ②是等边三角形; ③是锐角三角形;④是钝角三角形,其中正确的说法的个数有( )A .1个B .2个C .3个D .4个二、填空题11.如图,在△ABC 中,AB =10,AC =8,∠ABC 、∠ACB 的平分线相交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .则△AMN 的周长为_______.12.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ), ∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .13.化简分式22214ac a bc- 的结果为_____. 14.如图,直线a 平移后得到直线b ,若170∠=,则23∠-∠=______.15.()()()243232121211++⋯++计算结果的个位数字是______________. 16.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.17.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______. 18.从A 沿北偏东60︒的方向行驶到B ,再从B 沿南偏西20︒方向行驶到C ,则ABC ∠=______.19.在多项式241x +中添加一个单项式,使其成为一个完全平方式,则添加的单项式是______(只写出一个即可).20.当 x_____ 时,分2x x+式有意义. 三、解答题21.如图,等边ABC 中,D 为BC 边中点,CP 是BC 的延长线.按下列要求作图并回答问题:(要求:尺规作图,不写作法,保留作图痕迹)(1)作ACP ∠的平分线CF ;(2)作60ADE ∠=︒,且DE 交CF 于点E ;(3)在(1),(2)的条件下,可判断AD 与DE 的数量关系是__________;请说明理由.22.已知:如图,AD 垂直平分BC ,D 为垂足,DM ⊥AB ,DN ⊥AC ,M 、N 分别为垂足.求证:DM=DN .23.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-.24.如图,点B ,E ,C ,F 在一条直线上,AB=DE ,AC=DF ,BE=CF .试说明:(1)ABC DEF ≅;(2)A EGC ∠=∠.25.先化简,再求值:(a +2)2-(a +1)(a -1),其中a =32-. 26.如图,四边形ABCD 是长方形,E 是边CD 的中点,连接AE 并延长交边BC 的延长线于F ,过点E 作AF 的垂线交边BC 于M ,连接AM .(1)请说明 ΔADE ≌ ΔFCE ;(2)试说明AM = BC + MC ;(3)设S △AEM = S 1,S △ECM = S 2,S △ABM = S 3,试探究S 1,S 2,S 3三者之间的等量关系,并说明理由.27.已知,//AB CD ,点M 在AB 上,点N 在CD 上.(1)如图1中,BME E END ∠∠∠、、的数量关系为:________;(不需要证明) 如图2中,BMF F FND ∠∠∠、、的数量关系为:__________;(不需要证明)(2)如图3中,NE 平分FND ∠,MB 平分FME ∠,且2180E F ∠+∠=︒,求FME ∠的度数;(3)如图4中,60BME ∠=︒,EF 平分MEN ∠,NP 平分END ∠,且//EQ NP ,则FEQ ∠的大小是否发生变化,若变化,请说明理由,若不变化,求出FEQ ∠的度数.28.如图①所示是一个长为2m ,宽为2n(m n)>的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的方式拼成一个正方形()1如图②中的阴影部分的正方形的边长等于______(用含m 、n 的代数式表示); ()2请用两种不同的方法列代数式表示图②中阴影部分的面积:方法①:______;方法②:______;()3观察图②,试写出2(m n)+、2(m n)-、mn 这三个代数式之间的等量关系:______;()4根据()3题中的等量关系,若m n 12+=,mn 25=,求图②中阴影部分的面积.29.在学习分式计算时有这样一道题:先化简1(1+)2x -÷22214x x x -+-,再选取一个你喜欢且合适的数代入求值.张明同学化简过程如下:解:1(1+)2x -÷22214x x x -+- =212x x -+-÷2(1)(2)(2)x x x -+-( ) =21(2)(2)2(1)x x x x x -+-⋅-- ( ) =21x x +- ( ) (1)在括号中直接填入每一步的主要依据或知识点;(2)如果你是张明同学,那么在选取你喜欢且合适的数进行求值时,你不能选取的数有__________.30.如图,△ACF ≌△DBE ,其中点A 、B 、C 、D 在一条直线上.(1)若BE ⊥AD ,∠F=62°,求∠A 的大小.(2)若AD=9cm ,BC=5cm ,求AB 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用因式分解的定义得出答案.【详解】A 、2(3)(3)9a a a +-=-,是整式乘法,故此选项不合题意;B 、233m m m m ⎛⎫-=- ⎪⎝⎭,不符合因式分解的定义,故此选项不合题意; C 、243(4)3a a a a --=--,不符合因式分解的定义,故此选项不合题意;D 、22()()a b a b a b -=+-是分解因式,符合题意;故选:D .【点睛】此题主要考查了因式分解的意义,正确分解因式是解题关键.2.B解析:B【解析】【分析】证明△ABC 与△ADC 全等,即可解决问题.【详解】解:在△ABC 与△ADC 中,AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△ADC (SSS ),∴∠ACB =∠ACD ,故①正确,∵AB =AD ,BC =DC∴AC 是BD 的垂直平分线,即AC ⊥DB ,故②正确;无法判断∠ABC =∠ADC =90°,故③错误,四边形ABCD 的面积=S △ADB +S △BCD =12DB ×OA +12DB ×OC =12AC •BD , 故④错误;故选B .【点睛】此题考查全等三角形的判定和性质,关键是根据SSS 证明△ABC 与△ADC 全等. 3.D解析:D【解析】【分析】根据整式乘法法则去括号,再把已知式子的值代入即可.【详解】∵2m n +=,m n 2=-,∴原式()11221m n mn =+++=+-=.故选:D .解析:D【解析】【分析】此题要分两种情况:①当BD=PC时,△BPD与△CQP全等,计算出BP的长,进而可得运动时间,然后再求v;②当BD=CQ时,△BDP≌△QCP,计算出BP的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=6cm,∵BD=PC,∴BP=8-6=2(cm),∵点P在线段BC上以2厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=2cm,∴v=2÷1=2;当BD=CQ时,△BDP≌△QCP,∵BD=6cm,PB=PC,∴QC=6cm,∵BC=8cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=6÷2=3(m/s).故v的值为2或3.故选择:D.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.5.C解析:C【解析】【分析】过点P作PG⊥AB,由角平分线的性质定理,得到PE PG PF==,可判断(1)(2)正确;由12APB EPF∠=∠,180EPF O∠+∠=︒,得到1902APB O∠=︒-∠,可判断(3)错误;即可得到答案.解:过点P 作PG ⊥AB ,如图:∵AP 平分∠CAB ,BP 平分∠DBA ,PE OC ⊥,PF OD ⊥,PG ⊥AB ,∴PE PG PF ==;故(1)正确;∴点P 在COD ∠的平分线上;故(2)正确; ∵12APB APG BPG EPF ∠=∠+∠=∠, 又180EPF O ∠+∠=︒,∴11(180)9022APB O O ∠=⨯︒-∠=︒-∠;故(3)错误; ∴正确的选项有2个;故选:C .【点睛】本题考查了角平分线的判定定理和性质定理,解题的关键是熟练掌握角平分线的判定和性质进行解题.6.B解析:B【解析】【分析】连接EC ,与AD 交于点P ,由题意易得BD=DC ,根据等腰三角形的“三线合一”可得当△BEF 周长最小时,即为BE+CE 的长,最后根据中线的交点可求解.【详解】解:连接EC ,与AD 交于点P ,如图所示:△ABC 中,AB =AC ,AD ⊥BC 于点D ,∴BD=DC ,点F 在AD 上,当△BEF 周长最小时,即BE+BF+EF 为最小,由轴对称的性质及两点之间线段最短可得:BE+BF+EF 为最小时即为BE+CE 的长;点F的位置即为点P的位置,根据三角形的重心是三角形三条中线的交点;故选B.【点睛】本题主要考查等腰三角形及轴对称的性质和三角形的重心,熟练掌握等腰三角形及轴对称的性质和三角形的重心是解题的关键.7.A解析:A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.8.B解析:B【解析】【分析】根据平移、翻折或旋转的性质逐项判断可求解.【详解】解:①轴对称的两个三角形形状相同,故正确;②面积相等的两个三角形形状不一定相同,故不是轴对称图形,故错误;③轴对称的两个三角形的周长相等,故正确;④经过平移、翻折或旋转得到的三角形与原三角形是形状相同的,故正确.故选:B.【点睛】本题考查了图形的变换,掌握平移、翻折或旋转的性质是解题的关键.9.B解析:B【解析】【分析】在AC上截取AE=AB,连接DE,如图,先根据SAS证明△ABD≌△AED,然后根据全等三角形的性质和已知条件可得∠BDE=∠AED,进而可得CD=EC,再代入数值计算即可.【详解】解:在AC上截取AE=AB,连接DE,如图,∵AD平分∠BAC,∴∠BAD=∠DAC,又∵AD=AD,∴△ABD ≌△AED (SAS ),∴∠B =∠AED ,∠ADB =∠ADE ,∵∠B =2∠ADB ,∴∠AED =2∠ADB ,而∠BDE =∠ADB +∠ADE =2∠ADB ,∴∠BDE =∠AED ,∴∠CED =∠EDC ,∴CD =CE ,∴AC =AE +CE =AB +CD =4+7=11.故选:B .【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定、角平分线的性质,正确作出辅助线、构造全等三角形是解题的关键.10.B解析:B【解析】【分析】先将原式转化为完全平方公式,再根据非负数的性质得出a b c ==.进而判断即可.【详解】∵222a b c ab bc ca ++=++,∴222222222a b c ab bc ca ++=++,即()()()2220a b b c a c -+-+-=,∴a b c ==,∴此三角形为等边三角形,同时也是锐角三角形.故选:B .【点睛】本题考查了因式分解的应用,根据式子特点,将原式转化为完全平方公式是解题的关键. 二、填空题11.18【解析】【分析】由在△ABC 中,∠ABC 与∠ACB 的平分线相交于点O ,过点O 作MN∥BC,易证得△BOM 与△CON 是等腰三角形,继而可得△AMN 的周长等于AB+AC .【详解】解析:18【解析】【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM 与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点睛】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.12.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠CBD=90°,由三角形内角和定理可求∠2的度数.【详解】∵AB∥CD(已知),∴∠1=∠BCD=40°(两直线平行,同位角相等).∵BD⊥BC,∴∠CBD=90°.∵∠2+∠CBD+∠BCD=180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.13.【解析】【分析】把分子分母中的公因式2ac约去即可.【详解】解:原式==.故答案为:.【点睛】本题考查约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约解析:7c ab-【解析】【分析】把分子分母中的公因式2ac约去即可.【详解】解:原式=227ac c ac ab -=7c ab-.故答案为:7c ab-.【点睛】本题考查约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.14.110°.【解析】【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【详解】延长直线,如图:∵直线a平移后得到直线b,∴a∥b,∴∠5=180°−∠1=180°−70°解析:110°.【解析】【分析】延长直线后根据平行线的性质和三角形的外角性质解答即可.【详解】延长直线,如图:∵直线a平移后得到直线b,∴a∥b,∴∠5=180°−∠1=180°−70°=110°,∵∠2=∠4+∠5,∠3=∠4,∴∠2−∠3=∠5=110°,故答案为110°.【点睛】此题考查平移的性质,解题关键在于作辅助线.15.6【解析】【分析】根据平方差公式化简所求,再根据2的n次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++=323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.16.40°【解析】【分析】如图,过E 作EF∥AB,则AB∥EF∥CD,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E 作EF∥AB,则AB∥EF∥CD,∴∠1=∠3,解析:40°【解析】【分析】如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.17.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112【解析】【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.18.40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A 沿北偏东60°的方向行驶到B ,则∠BAC=90°-解析:40【解析】【分析】根据方位角的概念,画图正确表示出行驶的过程,再根据已知转向的角度结合三角形的内角和与外角的关系求解.【详解】如图,A 沿北偏东60°的方向行驶到B ,则∠BAC=90°-60°=30°,B 沿南偏西20°的方向行驶到C ,则∠BCO=90°-20°=70°,又∵∠ABC=∠BCO-∠BAC ,∴∠ABC=70°-30°=40°.故答案为40°【点睛】解答此类题需要从运动的角度,正确画出方位角,再结合三角形的内角和与外角的关系求解.19.或【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x;如果这里首末两项是Q 和1,则乘积项是4x2=2解析:4x ±或416x【解析】【分析】【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ;如果这里首末两项是Q 和1,则乘积项是4x 2=2⋅2x 2,所以Q=4x 4;如果该式只有4x 2项或1,它也是完全平方式,所以Q=-1或-4x 2.解:∵4x 2+1±4x=(2x±1)2;4x 2+1+4x 4=(2x 2+1)2;4x 2+1-1=(±2x )2;4x 2+1-4x 2=(±1)2.∴加上的单项式可以是±4x 、4x 4、-4x 2、-1中任意一个.20.【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握解析:2≠-【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握知识点:分式有意义,分母不为0.三、解答题21.(1)见解析;(2)见解析;(3)AD DE =,见解析【解析】【分析】(1)根据角平分线的作法作图即可;(2)根据作一个角等于已知角的方法作图即可;(3)连接AE ,首先根据等边三角形的性质计算出30BAD EDC ∠=∠=︒,30DEC EDC ∠=∠=︒,进而得到CE CD BD ==,然后证明ABD ACE ∆≅∆可得AD AE =,再由60ADE ∠=︒,可得ADE ∆是等边三角形,进而得到AD DE =.【详解】(1)尺规作图,如下图;(2)尺规作图,如下图;(3)AD DE =理由如下:如图,连接AE∵等边ABC 中,D 为BC 边中点,∴BD DC =,90ADB ADC ∠=∠=︒,∵60B ADE ∠=∠=︒,∴30BAD EDC ∠=∠=︒,∵120ACP ∠=︒,CE 为ACP ∠的平分线,∴60ACE ECP ∠=∠=︒,∴30DEC ECP EDC ∠=∠-∠=︒,∴30DEC EDC ∠=∠=︒,∴CE CD BD ==,在ABD △和ACE △中,∵AB AC =,60B ACE ∠=∠=︒,BD CE =,∴ABD ACE SAS △≌△(),∴AD AE =,又∵60ADE ∠=︒,∴ADE 是等边三角形,∴AD DE =.【点睛】此题主要考查了基本作图,以及全等三角形的判定与性质,解题的关键是正确掌握全等三角形的判定方法.22.见解析.【解析】【分析】根据垂直平分线的性质得到AC=AB ,再利用等腰三角形的性质得到AD 是角平分线,最后利用角平分线的性质即可得到结论.【详解】证明:∵AD 垂直平分BC ,∴AC=AB ,即ABC 是等腰三角形,∴AD 平分∠BAC ,∵DM ⊥AB ,DN ⊥AC ,∴DM=DN .【点睛】本题考查了垂直平分线的性质,等腰三角形的判定与性质,角平分线的性质,熟练掌握各性质判定定理是解题的关键.23.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+,2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.24.(1)见解析;(2)见解析【解析】【分析】(1)根据等式性质,由BE=CF 得BC=EF ,再根据SSS 定理得△ABC ≌△DEF 即可;(2)由全等三角形得∠B=∠DEF ,由平行线的判定定理得AB ∥DE ,再根据平行线的性质得∠A=∠EGC .【详解】(1)∵BE CF =,∴BE EC CF EC +=+,即BC EF =,在△ABC 与△DEF 中,AB DE AC DF BC EF =⎧⎪=⎨⎪=⎩, ∴(SSS)ABC DEF ≅△△;(2)∵△ABC ≌△DEF ,∴∠B=∠DEF ,∴AB ∥DE ,∴∠A=∠EGC .【点睛】本题考查了全等三角形的判定和性质,平行线的性质与判定,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.25.-1.【解析】分析:原式利用完全平方公式,以及平方差公式化简,去括号合并得到最简结果,把a 的值代入计算即可求出值.详解:原式=a 2+4a +4﹣a 2+1=4a +5当a =32-时,原式=﹣6+5=﹣1. 点睛:本题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解答本题的关键.26.(1)见解析;(2)见解析;(3)S 3=2S 1-4S 2,理由见解析.【解析】【分析】(1)根据ASA 可证得 ΔADE ≌ ΔFCE ;(2)由(1)可得AE=EF ,AD=CF ,根据垂直平分线的性质可得再由线段等量关系即可说明AM = BC + MC ;(3)由AE=EF 得出S △ECF =S 1-S 2,再由底和高的倍数关系得到S △ABF =4S △ECF =4S 1-4S 2,从而根据S 3=S △ABF -S △MAF 得到结果.【详解】解:(1)∵E 是边CD 的中点,∴DE=CE ,∵∠D=∠DCF=90°,∠DEA=∠ECF ,∴△ADE ≌△FCE (ASA );(2)由(1)得AE=EF ,AD=CF ,∴点E 为AF 中点,∵ME ⊥AF ,∴AM=MF ,∵MF=CF+MC ,∵AD=BC=CF ,∴MF=BC+MC ,即AM=BC+MC ;(3)S 3=2S 1-4S 2,理由是:由(2)可知:AE=EF ,AD=BC=CF ,∴S 1=S △MEF =S 2+S △ECF ,∴S △ECF =S 1-S 2,∵AB=2EC ,BF=2CF ,∠B=∠ECF=90°,∴S △ABF =4S △ECF =4S 1-4S 2,∴S 3=S △ABF -S △MAF =S △ABF -2S 1=2S 1-4S 2.【点睛】本题考查了长方形的性质,全等三角形的判定与性质,线段垂直平分线的性质,勾股定理。
八年级(上)期末数学试卷含答案解析

八年级(上)期末数学试卷一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.13.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣25.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形8.下列运算正确的是()A.B.C.D.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为.12.(1)(a2)3•(a2)4÷(a2)5=;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=.13.等腰三角形一个角为50°,则此等腰三角形顶角为.14.已知4x2+mx+9是完全平方式,则m=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.若分式有意义,则x的取值范围是.17.已知x+y=6,xy=4,则x2y+xy2的值为.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.19.已知关于x的分式方程=1有增根,则a=.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为度.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.23.计算:(1)﹣a﹣1(2)(﹣)÷.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.26.解方程:.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案与试题解析一、精心选一选(每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项正确;C、是轴对称图形,故此选项错误;D、是轴对称图形,故此选项错误;故选:B.【点评】此题主要考查了轴对称图形,关键是掌握轴对称图形的定义.2.(π﹣2013)0的计算结果是()A.π﹣2013 B.2013﹣πC.0 D.1【考点】零指数幂.【分析】根据零指数幂:a0=1(a≠0)进而得出答案.【解答】解:(π﹣2013)0=1.故选:D.【点评】此题主要考查了零指数幂:a0=1(a≠0),正确根据定义得出是解题关键.3.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.D.6x3÷(﹣3x2)=2x【考点】整式的混合运算.【专题】计算题.【分析】A、原式利用幂的乘方运算法则计算得到结果,即可做出判断;B、原式利用同分母幂的乘法法则计算得到结果,即可做出判断;C、原式利用负指数幂法则计算得到结果,即可做出判断;D、原式利用单项式除以单项式法则计算得到结果,即可做出判断.【解答】解:A、(x3)2=x6,故选项错误;B、2a﹣5•a3=2a﹣2,故选项错误;C、3﹣2=,故选项正确;D、6x3÷(﹣3x2)=﹣2x,故选项错误.故选C.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.把分式方程去分母后所得结果正确的是()A.1﹣(1﹣x)=1 B.1+(1﹣x)=1 C.1﹣(1﹣x)=x﹣2 D.1+(1﹣x)=x﹣2【考点】解分式方程.【分析】根据等式的性质:两边都乘以(x﹣2),可得答案.【解答】解:去分母,得1+(1﹣x)=x﹣2,故D正确;故选:D.【点评】本题考查了解分式方程,利用了等式的性质.5.如图,∠1=∠2,∠C=∠D,AC、BD交于E点,下列结论中不正确的是()A.∠DAE=∠CBE B.△DEA不全等于△CEBC.CE=DE D.△EAB是等腰三角形【考点】全等三角形的判定与性质;等腰三角形的判定与性质.【分析】根据三角形的内角和定理就可以求出∠DAB=∠CBA,由等式的性质就可以得出∠DAE=∠CBE,根据AAS就可以得出△DEA≌△CEB;由△DEA≌△CEB就可以得出CE=DE,∠1=∠2就可以得出AE=BE,就可以得出结论.【解答】解:∵∠1+∠C+∠ABC=∠2+∠D+∠DAB=180°,且∠1=∠2,∠C=∠D,∴∠ABC=∠DAB,∴∠ABC﹣∠2=∠DAB﹣∠1,∴∠DAB=∠CBA.故A正确;在△DEA和△CEB中,∴△DEA≌△CEB(AAS),故B错误;∴AC=BD.∵∠1=∠2,∴BE=AE,∴△EAB是等腰三角形,AC﹣AE=BD﹣BE,故D正确;∴CE=DE.故C正确.故选B.【点评】本题考查了三角形全等的判定及性质的运用,等腰三角形的判定及性质的运用,等式的性质的运用,解答时证明三角形全等是关键.6.下列各式由左边到右边的变形中,是分解因式的为()A.a(x+y)=ax+ay B.x2﹣4x+4=x(x﹣4)+4C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+3x=(x﹣4)(x+4)+3x【考点】因式分解的意义.【专题】因式分解.【分析】根据分解因式就是把一个多项式化为几个整式的积的形式,利用排除法求解.【解答】解:A、是多项式乘法,故A选项错误;B、右边不是积的形式,x2﹣4x+4=(x﹣2)2,故B选项错误;C、提公因式法,故C选项正确;D、右边不是积的形式,故D选项错误;故选:C.【点评】这类问题的关键在于能否正确应用分解因式的定义来判断.7.若a、b、c是△ABC的三边,满足a2﹣2ab+b2=0且b2﹣c2=0,则△ABC的形状是()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形【考点】因式分解的应用;因式分解-运用公式法.【专题】计算题.【分析】把已知等式左边分解得到(a﹣b)2=0且(b+c)(b﹣c)=0,则a=b且b=c,即a=b=c,然后根据等边三角形的判定方法矩形判断.【解答】解:∵a2﹣2ab+b2=0且b2﹣c2=0,∴(a﹣b)2=0且(b+c)(b﹣c)=0,∴a=b且b=c,即a=b=c,∴△ABC为等边三角形.故选D.【点评】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.8.下列运算正确的是()A.B.C.D.【考点】分式的乘除法;分式的加减法.【分析】利用分式的乘除运算与加减运算法则求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、,故本选项错误;B、,=•=,故本选项错误;C、,==,故本选项正确;D、==﹣,故本选项错误.故选C.【点评】此题考查了分式的乘除运算与加减运算法则.此题难度不大,注意掌握符号的变化是解此题的关键.9.对于非零实数a、b,规定a⊗b=.若2⊗(2x﹣1)=1,则x的值为()A.B.C.D.﹣【考点】解分式方程.【专题】开放型.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解答】解:根据题意得:2⊗(2x﹣1)=﹣=1,去分母得:2﹣(2x﹣1)=4x﹣2,去括号得:2﹣2x+1=4x﹣2,移项合并得:6x=5,解得:x=,经检验是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.如图所示,两个全等的等边三角形的边长为1m,一个微型机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动,行走2012m停下,则这个微型机器人停在()A.点A处B.点B处C.点C处D.点E处【考点】规律型:图形的变化类.【分析】根据等边三角形和全等三角形的性质,可以推出,每行走一圈一共走了6个1m,2012÷6=335…2,行走了335圈又两米,即落到C点.【解答】解:∵两个全等的等边三角形的边长为1m,∴机器人由A点开始按ABCDBEA的顺序沿等边三角形的边循环运动一圈,即为6m,∵2012÷6=335…2,即正好行走了335圈又两米,回到第三个点,∴行走2012m停下,则这个微型机器人停在C点.故选:C.【点评】本题主要考查全等三角形的性质、等边三角形的性质,解题的关键在于求出2012为6的倍数余数是几.二、细心填一填(每小题4分,共40分)11.0.000608用科学记数法表示为 6.08×10﹣4.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000608用科学记数法表示为6.08×10﹣4,故答案为6.08×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(1)(a2)3•(a2)4÷(a2)5=a4;(2)(2x﹣y)2﹣(2x+y)(﹣y+2x)=2y2﹣4xy.【考点】整式的混合运算.【分析】(1)利用整式的乘方法则,积的乘方法则以及单项式的乘法法则化简即可.(2)先提公因式,然后再化简可以简便运算.【解答】解:(1)原式=a6•a8÷a10=a14﹣10=a4.故答案为a4.(2)原式=(2x﹣y)(2x﹣y﹣2x﹣y)=(2x﹣y)•(﹣2y)=2y2﹣4xy.故答案为2y2﹣4xy.【点评】本题考查整式的乘方法则,积的乘方法则以及单项式的乘法法则,灵活掌握运算法则是正确解题的关键.13.等腰三角形一个角为50°,则此等腰三角形顶角为50°或80°.【考点】等腰三角形的性质;三角形内角和定理.【分析】已知没有给出50°的角是顶角和是底角,所以要分两种情况进行讨论.【解答】解:分为两种情况:当50°是顶角时,顶角为50°当50°是底角时,其顶角是180°﹣50°×2=80°故填50°或80°.【点评】本题考查了等腰三角形的性质;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.14.已知4x2+mx+9是完全平方式,则m=±12.【考点】完全平方式.【分析】这里首末两项是2x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【解答】解:∵4x2+mx+9是完全平方式,∴4x2+mx+9=(2x±3)2=4x2±12x+9,∴m=±12,m=±12.故答案为:±12.【点评】此题主要考查了完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.若分式有意义,则x的取值范围是x≠.【考点】分式有意义的条件.【分析】根据分式有意义的条件是分母不等于0列式计算即可.【解答】解:由题意得,1﹣2x≠0,解得,x≠,故答案为:x≠.【点评】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.17.已知x+y=6,xy=4,则x2y+xy2的值为24.【考点】因式分解的应用.【专题】因式分解.【分析】先提取公因式xy,整理后把已知条件直接代入计算即可.【解答】解:∵x+y=6,xy=4,∴x2y+xy2=xy(x+y)=4×6=24.故答案为:24.【点评】本题考查了提公因式法分解因式,提取公因式后整理成已知条件的形式是解本题的关键.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.19.已知关于x的分式方程=1有增根,则a=1.【考点】分式方程的增根.【专题】计算题.【分析】方程两边都乘以最简公分母(x+2),把分式方程化为整式方程,再根据分式方程的最简公分母等于0求出方程有增根,然后代入求解即可得到a的值.【解答】解:方程两边都乘以(x+2)得,a﹣1=x+2,∵分式方程有增根,∴x+2=0,解得x=﹣2,∴a﹣1=﹣2+2,解得a=1.故答案为:1.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为80度.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据三角形的内角和和折叠的性质计算即可.【解答】解:∵∠1:∠2:∠3=28:5:3,∴设∠1=28x,∠2=5x,∠3=3x,由∠1+∠2+∠3=180°得:28x+5x+3x=180°,解得x=5,故∠1=28×5=140°,∠2=5×5=25°,∠3=3×5=15°,∵△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,∴∠DCA=∠E=∠3=15°,∠2=∠EBA=∠D=25°,∠4=∠EBA+∠E=25°+15°=40°,∠5=∠2+∠3=25°+15°=40°,故∠EAC=∠4+∠5=40°+40°=80°,在△EGF与△CAF中,∠E=∠DCA,∠DFE=∠CFA,∴△EGF∽△CAF,∴α=∠EAC=80°.故填80°.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.三、作图题(第21题8分,共8分)21.如图,已知△ABC的三个顶点分别为A(2,3)、B(3,1)、C(﹣2,﹣2).(1)请在图中作出△ABC关于直线x=﹣1的轴对称图形△DEF(A、B、C的对应点分别是D、E、F),并直接写出D、E、F的坐标;(2)求四边形ABED的面积.【考点】作图-轴对称变换.【分析】(1)先找出对称轴,再从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)从图中可以看出四边形ABED是一个梯形,根据梯形的面积公式计算.【解答】解:(1)D(﹣4,3);E(﹣5,1);F(0,﹣2);(5分)(2)AD=6,BE=8,∴S四边形ABED=(AD+BE)•2=AD+BE=14.(8分)【点评】本题的关键是找出各点的对应点,然后顺次连接.四、解答题(共72分)22.分解因式:(1)a3b﹣ab(2)x3y3﹣2x2y2+xy.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式ab,进而利用平方差公式分解因式得出答案;(2)直接提取公因式xy,进而利用完全平方公式分解因式得出答案.【解答】解:(1)a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1);(2)x3y3﹣2x2y2+xy=xy(x2y2﹣2xy+1)=xy(xy﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.23.计算:(1)﹣a﹣1(2)(﹣)÷.【考点】分式的混合运算.【分析】(1)先通分,再进行加减即可;(2)根据运算顺序,先算括号里面的,再进行分式的除法运算.【解答】解:(1)原式=﹣﹣==;(2)原式=(﹣)÷=•==﹣.【点评】本题考查了分式的混合运算,通分、因式分解和约分是解答的关键.24.化简与求值:[(x﹣2y)2+(x﹣2y)(x+2y)﹣2x(2x﹣y)]÷2x,其中x=5,y=﹣6.【考点】整式的混合运算—化简求值.【专题】计算题.【分析】原式被除数括号中第一项利用完全平方公式展开,第二项利用平方差公式化简,最后一项利用单项式乘以多项式法则计算,合并后利用多项式除以单项式法则计算得到最简结果,将x与y 的值代入计算,即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2﹣4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=5,y=﹣6时,原式=﹣5﹣(﹣6)=﹣5+6=1.【点评】此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.25.如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.①求证:△ABE≌△CBD;②若∠CAE=30°,求∠BDC的度数.【考点】全等三角形的判定与性质;三角形的外角性质.【专题】证明题.【分析】①利用SAS即可得证;②由全等三角形对应角相等得到∠AEB=∠CDB,利用外角的性质求出∠AEB的度数,即可确定出∠BDC的度数.【解答】①证明:在△ABE和△CBD中,,∴△ABE≌△CBD(SAS);②解:∵△ABE≌△CBD,∴∠AEB=∠BDC,∵∠AEB为△AEC的外角,∴∠AEB=∠ACB+∠CAE=30°+45°=75°,则∠BDC=75°.【点评】此题考查了全等三角形的判定与性质,以及三角形的外角性质,熟练掌握全等三角形的判定与性质是解本题的关键.26.解方程:.【考点】解分式方程.【专题】计算题.【分析】方程右边分子分母提取﹣1变形后,两边都乘以x﹣3去分母后,去括号,移项合并将x系数化为1,求出x的值,将x的值代入检验,即可得到分式方程的解.【解答】解:方程变形为+2=,去分母得:1+2(x﹣3)=x﹣4,去括号得:1+2x﹣6=x﹣4,解得:x=1,将x=1代入得:x﹣3=1﹣3=﹣2≠0,则分式方程的解为x=1.【点评】此题考查了解分式方程,做题时注意分式方程要检验.27.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【考点】分式方程的应用;二元一次方程的应用.【分析】(1)首先设足球单价为x元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程=,再解方程可得答案;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【解答】解:(1)设足球单价为x元,则篮球单价为(x+40)元,由题意得:=,解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m个和购买足球n个,由题意得:100m+60n=1000,整理得:m=10﹣n,∵m、n都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.五、综合题(共12分)28.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?【考点】全等三角形的判定.【专题】证明题;动点型.【分析】(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,由已知可得BD=PC,BP=CQ,∠ABC=∠ACB,即据SAS可证得△BPD≌△CQP.(2)可设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等,则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,据(1)同理可得当BD=PC,BP=CQ或BD=CQ,BP=PC时两三角形全等,求x的解即可.【解答】解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD=C Q,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.【点评】本题主要考查了全等三角形全等的判定,涉及到等腰三角形的性质,熟练掌握全等三角形的判定方法是解题的关键.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
八年级(上)期末数学试卷(附答案解析)

八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6 4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.45.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.58.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.810.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=.12.多项式3x2﹣6x的公因式为.13.若a2﹣b2=,a﹣b=,则a+b的值为.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做件.16.已知关于x的分式方程的解是非负数,则m的取值范围是.17.若m为正实数,且m2﹣m﹣1=0,则m2+=.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=.三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.20.先化简,再求值:÷(x+1+),其中x=2018.21.解方程:(1)﹣=1(2)=﹣1.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.下面四个交通标志图中为轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选B.2.使分式有意义的x的取值范围为()A.x>0 B.x≠﹣1 C.x≠1 D.任意实数【考点】62:分式有意义的条件.【分析】直接利用分式有意义则分母不为零,进而得出答案.【解答】解:要使分式有意义,则x﹣1≠0,解得:x≠1.故选:C.3.下列计算正确的是()A.3a×2b=5ab B.﹣a2×a=﹣a2C.(﹣x)9÷(﹣x)3=x3D.(﹣2a3)2=4a6【考点】49:单项式乘单项式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据单项式的乘法,同底数幂的除法,积的乘方,可得答案.【解答】解:A、3a×2b=6ab,故A不符合题意;B、﹣a2×a=﹣a3,故B不符合题意;C、(﹣x)9÷(﹣x)3=(﹣x)3,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.已知△ABC中,AB=7,BC=4,那么边长AC的长不可能是()A.11 B.9 C.7 D.4【考点】K6:三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,即可求解.【解答】解:根据三角形的三边关系定理可得:7﹣4<AC<7+4,即3<AC<11,故选:A.5.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质和三角形内角和定理可直接求出其底角的度数.【解答】解:因为等腰三角形的两个底角相等,又因为顶角是40°,所以其底角为=70°.故选:D.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】L3:多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.7.如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2 B.3 C.4 D.5【考点】KA:全等三角形的性质.【分析】根据全等三角形的对应边相等解答即可.【解答】解:∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC﹣AE=3,故选:B.8.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC 的是()A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90°【考点】KB:全等三角形的判定.【分析】本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.9.如图,在等边三角形ABC中,BC边上的高AD=6,E是高AD上的一个动点,F是边AB的中点,在点E运动的过程中,存在EB+EF的最小值,则这个最小值是()A.5 B.6 C.7 D.8【考点】PA:轴对称﹣最短路线问题;KK:等边三角形的性质.【分析】先连接CF,再根据EB=EC,将FE+EB转化为FE+CE,最后根据两点之间线段最短,求得CF的长,即为FE+EB的最小值.【解答】解:连接CF,∵等边△ABC中,AD是BC边上的中线∴AD是BC边上的高线,即AD垂直平分BC∴EB=EC,当B、F、E三点共线时,EF+EC=EF+BE=CF,∵等边△ABC中,F是AB边的中点,∴AD=CF=6,∴EF+BE的最小值为6,故选B10.A、B两地相距80km,已知乙的速度是甲的1.5倍,甲先由A去B,1小时后,乙再从A地出发去追甲,追到B地时,甲已早到20分钟,则甲的速度为()A.40km/h B.45km/h C.50km/h D.60km/h【考点】B7:分式方程的应用.【分析】设甲的速度是x千米/小时,B的速度是1.5x千米/小时,根据甲、乙行使相等距离而时间不同可列分式方程求解.【解答】解:设甲的速度是x千米/小时,B的速度是1.5x千米/小时,﹣1+=,x=40,经检验x=40是分式方程的解.答:甲的速度40千米/小时.二、填空题(每小题3分,共24分)11.计算:(π﹣2)0=1.【考点】6E:零指数幂.【分析】根据非零的零次幂等于,可得答案.【解答】解:(π﹣2)0=1,故答案为:1.12.多项式3x2﹣6x的公因式为3x.【考点】52:公因式.【分析】根据因式分解,可得答案.【解答】解:3x2﹣6x=3x(x﹣2),公因式是3x,故答案为:3x.13.若a2﹣b2=,a﹣b=,则a+b的值为.【考点】4F:平方差公式.【分析】已知第一个等式左边利用平方差公式化简,将a﹣b的值代入即可求出a+b的值.【解答】解:∵a2﹣b2=(a+b)(a﹣b)=,a﹣b=,∴a+b=.故答案为:.14.如图,已知△ABC的周长为27cm,AC=9cm,BC边上中线AD=6cm,△ABD 周长为19cm,AB=8cm.【考点】K2:三角形的角平分线、中线和高.【分析】设AB=xcm,BD=ycm,由三角形中线的定义得到BC=2BD=2ycm,再根据△ABC的周长为27cm,△ABD周长为19cm列出关于x、y方程组,解方程组即可.【解答】解:设AB=xcm,BD=ycm,∵AD是BC边的中线,∴BC=2BD=2ycm.由题意得,解得,所以AB=8cm.故答案为8cm.15.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后来客户要求提前5天交货,为保证按时完成任务,则每天应多做24件.【考点】B7:分式方程的应用.【分析】设每天应多做x件.根据实际所用的时间比原计划所用的时间提前5天列方程求解.【解答】解:设每天应多做x件,则依题意得:﹣=5,解得:x=24.经检验x=24是方程的根,答:每天应多做24件,故答案为24.16.已知关于x的分式方程的解是非负数,则m的取值范围是m ≥2且m≠3.【考点】B2:分式方程的解;C6:解一元一次不等式.【分析】解出分式方程,根据解是非负数求出m的取值范围,再根据x=1是分式方程的增根,求出此时m的值,得到答案.【解答】解:去分母得,m﹣3=x﹣1,解得x=m﹣2,由题意得,m﹣2≥0,解得,m≥2,x=1是分式方程的增根,所有当x=1时,方程无解,即m≠3,所以m的取值范围是m≥2且m≠3.故答案为:m≥2且m≠3.17.若m为正实数,且m2﹣m﹣1=0,则m2+=3.【考点】4C:完全平方公式.【分析】在m2﹣m﹣1=0同时除以m,得到,然后利用完全平方公式展开整理即可得解.【解答】解:在m2﹣m﹣1=0同时除以m,得:m﹣1﹣=0∴,=3,故答案为:3.18.如图,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,B′为AC延长线上一点,A′是B′B延长线上一点,且△A′B′C≌△ABC,则∠BCA′:∠BCB′=1:4.【考点】KA:全等三角形的性质.【分析】根据三角形的内角和定理分别求出,∠A、∠ABC、∠ACB,再根据全等三角形对应角相等求出∠B′,∠A′CB′,全等三角形对应边相等可得BC=B′C,再求出∠BC A′,∠BC B′,然后相比即可.【解答】解:∵∠A:∠ABC:∠ACB=3:5:10,∴∠A=30°,∠ABC=50°,∠ACB=100°,∵△A′B′C≌△ABC,∴∠B′=∠B=50°,∠A′CB′=∠C=100°,BC=B′C,∴∠BC B′=180°﹣2×50°=80°,∠BC A′=100°﹣80°=20°,∴∠BC A′:∠BC B′=1:4.故答案为:1:4三、解答题(共66分)19.分解因式:(1)4a2﹣36(2)(x﹣2y)2+8xy.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式提取4,再利用平方差公式分解即可;(2)原式整理后,利用完全平方公式分解即可.【解答】解:(1)原式=4(a2﹣9)=4(a+3)(a﹣3);(2)原式=x2﹣4xy+4y2+8xy=x2+4xy+4y2=(x+2y)2.20.先化简,再求值:÷(x+1+),其中x=2018.【考点】6D:分式的化简求值.【分析】根据分式的混合运算顺序和法则化简原式,再将x的值代入即可得.【解答】解:原式=÷(+)=•=,当x=2018时,原式=.21.解方程:(1)﹣=1(2)=﹣1.【考点】B3:解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x2﹣2x+2=x2﹣x,移项合并得:﹣x=﹣2,解得:x=2,经检验x=2是分式方程的解;(2)去分母得:15x﹣12=4x+10﹣3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.22.如图,点B、E、C、F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AB=DE.【考点】KD:全等三角形的判定与性质.【分析】先证明BC=EF,然后依据AAS证明△ABC≌△DEF,最后依据全等三角形的性质进行证明即可.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF.在△ABC和△DEF中,∴△ABC≌△DEF.∴AB=DE.23.如图,已知△ABC的三个顶点的坐标为A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).(1)请在图中作出△ABC关于y轴对称的△A′B′C′;(2)分别写出点A′、B′、C′的坐标.【考点】P7:作图﹣轴对称变换.【分析】(1)直接利用关于y轴对称点的性质得出答案;(2)利用(1)中图形得出各点坐标.【解答】解:(1)如图所示:△A′B′C′即为所求;(2)A′(1,2)、B′(4,1)、C′(2,﹣2).24.2015年5月,某县突降暴雨,造成山林滑坡,桥梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区,现有甲、乙两种货车,乙知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用的车辆与乙车货车装运800件帐篷所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐篷?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两辆汽车各有多少辆?【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.【解答】解:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=12,16﹣z=16﹣12=4.故甲种汽车有12辆,乙种汽车有4辆.25.如图,△ABC是等边三角形,D是三角形外一动点,满足∠ADB=60°,(1)当D点在AC的垂直平分线上时,求证:DA+DC=DB;(2)当D点不在AC的垂直平分线上时,(1)中的结论是否仍然成立?请说明理由;(3)当D点在如图的位置时,直接写出DA,DC,DB的数量关系,不必证明.【考点】KD:全等三角形的判定与性质;KG:线段垂直平分线的性质.【分析】(1)根据线段垂直平分线和等边三角形的性质可得AD=DC,∠ABD=30°,再由正弦定理可以证明DA+DC=DB;(2)延长DA到E,使得∠EBD=60,由已知可知△EBD是一个等边三角形,再证明△EBD≌△CBD,得出EA=DC,从而证明BD=ED=EA+AD=DC+AD;(3)可直接得DA,DC,DB的数量关系.【解答】证明:(1)点D只能在AC的下边,容易得到BD是AC的中垂线,因此AD=DC,∠ABD=30°,在三角形内由正弦定理可以得到=,可以很快得到BD=2AD=AD+AC;(2)延长DA到E,使得ED=BD,又因为∠ADB=60°因此△EBD是一个等边三角形,所以BE=ED=BD,∠EBD=60°,又因为△ABC是等边三角形,所以AB=BC,∠ABC=60°,所以∠EBA=∠DBC,在△EBA与△DBC中,因为,所以△ABE≌△CBD(SAS),因此EA=DC,所以BD=ED=EA+AD=DC+AD;(3)DC<DA+DB.26.在平面直角坐标系中,点A(0,a)、B(b,0)且a>|b|.(1)若a、b满足a2+b2﹣8a﹣4b+20=0.①求a、b的值;②如图1,在①的条件下,第一象限内以AB为斜边作等腰Rt△ABC,请求四边形AOBC的面积S;(2)如图2,若将线段AB沿x轴向正方向移动a个单位得到线段DE(D对应A,E对应B)连接DO,作EF⊥DO于F,连接AF、BF,判断AF与BF的关系,并说明理由.【考点】KY:三角形综合题.【分析】(1)①根据非负数的性质列出算式,求出a、b的值;②根据等腰直角三角形的性质求出AC、BC,根据三角形的面积公式计算即可;(2)作FG⊥y轴,FH⊥x轴垂足分别为G、H,证明四边形FHOG是正方形,得到OG=FH,∠GFH=90°,证明△AFG≌△BFH,根据全等三角形的性质计算即可.【解答】解:(1)①∵a2+b2﹣8a﹣4b+20=0,∴(a﹣4)2+(b﹣2)2=0,∴a=4,b=2;②∵A(0,4),B(2,0),∴AB==2,∵△ABC是等腰直角三角形,∴AC=BC=,∴四边形AOBC的面积S=×OA×OB+×AC×BC=4+5=9;(2)结论:FA=FB,FA⊥FB,理由如下:如图2,作FG⊥y轴,FH⊥x轴垂足分别为G、H,∵A(0,a)向右平移a个单位到D,∴点D坐标为(a,a),点E坐标为(a+b,0),∴∠DOE=45°,∵EF⊥OD,∴∠OFE=90°,∠FOE=∠FEO=45°,∴FO=EF,∴FH=OH=HE=(a+b),∴点F坐标为(,),∴FG=FH,四边形FHOG是正方形,∴OG=FH=,∠GFH=90°,∴AG=AO﹣OG=a﹣=,BH=OH﹣OB=﹣b=,∴AG=BH,在△AFG和△BFH中,,∴△AFG≌△BFH,∴FA=FB,∠AFG=∠BFH,∴∠AFB=∠AFG+∠BFG=∠BFH+∠BFG=90°,∴FA=FB,FA⊥FB.第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、在某地美食一条街,来自成都的贝贝和玲玲如果想吃家乡菜,应该进的美食店(按招
牌选择)是()
2、右图是哪种少数民族盛大传统节日的场景
A、朝鲜族
B傣族
C苗族
D 、维吾尔族
3、除纬度因素外,右图中对话双方气温差异的直接因
A. 人类活动
B.降水
C.海陆分布
D.地形
4、如果此山脉是秦岭,下列说法错误的是()
A. 此山脉与我国1月份0C等温线分布大体一致
B. 此山脉与我国400mm等降水量线分布
大体一致
C•此山脉以南是亚热带,以北是暖温带D.此山脉以南是湿润地区,
以北是半湿润地区
5、一个人冬季坐火车外出旅行。
当他到达目的地时,旅行袋内已
装满了他一路上不得不脱下来的衣服。
此人的旅行路线是
()
A.哈尔滨一一南宁
B. 广州一一昆明
C. 北京一一太原
D. 北京一一哈尔滨
6、下列哪幅图正确的反映了我国的地势特征()
八年级、单项选择题,(每空1分,共15分)
A、滥砍乱伐,造成水土流失
B、围湖造田,造成洪灾威胁
C 滥垦草原,造成风沙盛行
口SKau
D烧柴草,造成大气污染
A•“湘菜” B. “粤菜” C.
肿恥化中考瓷源网
C 、、千沟万壑,支离破碎
D 、地势崎岖,喀斯特地貌10、该高原位于我国地势( )
是什么吗?( )
12、两箱急救药品从北京送到拉萨,最合适的运输方式是( ) A 、铁路
B 公路
C 、河运
D 、航空 13、下列做法中不符合“因地制宜”禾U 用土地资源的是(
)
A .山区地形崎岖,适宜发展林业
B. 内蒙古草原地势平坦,适宜发展种植业
C. 沿海滩涂可发展养殖业
D •平原地区地势平坦,土地肥沃,应发展耕作业
2009年11月备受关注的世界低碳与生态经济大会暨技术博览会在南昌隆重开幕, 低碳经济与发展之策,共商“节能减排,绿色生态”之大计,据此回答以下各题: 14、按照节能减排的要求,“煤”变“油”技术(煤炭变成汽油和柴油,不含硫、氮等污
染物,是高质量的洁净油品)备受关注,依据我国煤炭资源分布特点,分析最适宜 布局“煤”变“油”项目的省区是( )
A 、山西
B 、内蒙古
C 、江西
D 、 西藏
15、按照发展绿色生态的要求,最适宜发展太阳能和地热能开发的省区的简称是( )
A 、赣
B 、晋
C 、藏
D 、陕
读某高原景观图,完成下列各题。
8、图示景观为( A 、内蒙古高原 C 、黄土高原 9、该高原描述正确的是(
A 、 地势平坦,一望无际 云贵高原 青藏高原 )
B 、雪山连绵,冰川广布 A 、第一级阶梯 B 第二级阶梯
C 、第三级阶梯
D 第二、三级阶梯之间 11、与传统工业相比, 高新技术产业有自己的特点。
你知道发展高新技术产业的最重要条件
A.自然资源丰富
B.科技力量雄厚
C.位置优越
D.劳动力资源充足 共同探讨
、综合填空题。
(每空0.5分。
共15 分)
16、读图回答问题(4分)。
(1)图中我国的陆上邻国中,A国是____________ ,人口最多的是 __________ (填字母)(2)据中央电视台报道,“嫦娥三号”探测器于12月2日1时30分,在我国四川省的
西昌卫星发射中心发射。
“嫦娥三号”携“玉兔号”月球车首次实现月球软着落和月面巡视
勘察,并开展月表形貌与地质构造调查等科学探测。
据此请回答。
西昌卫星发射基地所在的四川省应是左图中的(填字母)所代表的省区,四川省同时还有肥沃的四川盆地,该盆地的土壤是颜色的。
abc中,少数民
族种类最多的是 _______ 。
(3)在我国各省级行政单位中,完全位于热带的是__________ ,我国最大淡水湖鄱阳湖所在的省区是 _______ ,“风吹草地现牛羊”景观出现在____________ 。
(填图中字母)
17、2010年5月24日至25日中美在北京举行第二轮战略与经济对话。
美国国务卿希拉里?
“美国和中国拥有不同的历史,但是却拥有共同的目标和责任。
”请结合所学知识,回答
下列问题:(5分)
(1) 从纬度位置看,两国共同濒临 __________ 洋,领土大部分位于五带中的 ____________ 带。
(2) 中国的气候复杂多样, ___________ 显著,而美国以 _____________ 气候为主;从降水
的空间分布看,两国的降水量都大致从 _________ 向 (3) 受地势影响中国的大部分河流流向为 — 国的密西西比河的流向 为 ___________ 。
(4) 图中A 是中国的
工业基地,B 是美国的
工业区,两工业区发展工业共
同的有利条件是矿产丰富
18、2009年12月26日,世界上运营速度最快、里程最长的高速铁路一一武汉至广州高铁 开通运营。
请根据地图完成以下各题:(
6分)
(1)读图,武广高铁经过 A ______ 省、B ______ (写简称)、广东三个省区,极大地缩短
了三地之间的时空距离。
(2 )我国南方地区河网密布,山川广布,图中有
C _________ 山脉,
D __________ 山脉,目
前世界上规模最大的水电站坐落于 ________ (填字母)山脉的附近,位于长江干流的上 游。
武广高铁联系了 _______ 水系和珠江水系。
(3)根据所提供的气温降水量图,描述南方地区气候特征 _________________________ (共1分
包括气温和降水两方面)。
(4)武广高铁沿线最有可能看到的景观是(
)
(5)武广高铁经过了我国四大工业基地当中的 ___________ 工业基地。
该基地主要发展以轻工
业为主的外向型工业。
以下产品中来自这个工业区的是(
)
A
、 服装 B 、船舶 C 、飞机 D 、钢铁
(6)著名的旅游胜地桂林位于广西壮族自治区,该省是图中的 ____________ (填字母)。
参考答案: 一,单项选择题:
1—5:D B D B D 6 —— 10:C A C C B 11 —15:B D B A C 二,综合填空题 16.
( 1)蒙古, B (2)a 紫、 b (3)E .F . G 17、(1)太平,北温
A.成片的棉花田
B. 一望无际的苹果林
C.风吹草低见牛羊
D.金色的稻
(2)季风气候、温带大陆性、东南、西北
(3)自西向东、自北向南
(4)辽中南、东北
18、(1)湖北、湘
(2)巫山、武夷、C、长江
( 3 )夏季高温多雨,(0.5 分)冬季温暖湿润(0.5 分)( 4 ) D
(5)珠江三角洲、A
( 6 ) E。