matlab计算汽车动力性经济性(已编好程序)
汽车理论习题Matlab程序

确定一轻型货车的动力性能货车可装用4挡或5挡变速器,任选其中的一种进行整车性能计算:1绘制汽车驱动力与行驶阻力平衡图;2求汽车最高车速,最大爬坡度及克服该坡度时相应的附着率;3绘制汽车行驶加速度倒数曲线,用图解积分法求汽车用2档起步加速行驶至70km/h的车速-时间曲线,或者用计算机求汽车用2档起步加速行驶至70km/h的加速时间;轻型货车的有关数据:汽油发动机使用外特性的Tq-n曲线的拟合公式为式中,Tq为发动机转矩N m;n为发动机转速r/min;发动机的最低转速nmin =600r/min,最高转速nmax=4000r/min;装载质量 2000kg 整车整备质量 1800kg 总质量 3880kg 车轮半径传动系机械效率ηt=滚动阻力系数f=空气阻力系数×迎风面积C D A=主减速器传动比i0=飞轮转动惯量 I f=m2二前轮转动惯量I w1=m2四后轮转动惯量I w2=m2质心至前轴距离满载 a=质心高满载 hg=解:Matlab程序:1 求汽车驱动力与行驶阻力平衡图和汽车最高车速程序: n=600:10:4000;Tq=+n/1000n/1000.^2+n/1000.^n/1000.^4;m=3880;g=;nmin=600;nmax=4000;G=mg;ig= ;nT=;r=;f=;CDA=;i0=;L=;a=;hg=;If=;Iw1=;Iw2=;Ft1=Tqig1i0nT/r;Ft2=Tqig2i0nT/r;Ft3=Tqig3i0nT/r;Ft4=Tqig4i0nT/r;Ft5=Tqig5i0nT/r;ua1=rn/ig1/i0;ua2=rn/ig2/i0;ua3=rn/ig3/i0;ua4=rn/ig4/i0;ua5=rn/ig5/i0;ua=0:5:120;Ff=Gf;Fw=CDAua.^2/;Fz=Ff+Fw;plotua1,Ft1,ua2,Ft2,ua3,Ft3,ua4,Ft4,ua5,Ft5,ua,Fz;title'驱动力-行驶阻力平衡图';xlabel'uakm/s';ylabel'FtN';gtext'Ft1',gtext'Ft2',gtext'Ft3',gtext'Ft4',gtext'Ft5',gtext'Ff+Fw'; zoom on;x,y=ginput1;zoom off;disp'汽车最高车速=';dispx;disp'km/h';汽车最高车速=km/h2求汽车最大爬坡度程序:n=600:10:4000;Tq=+n/1000n/1000.^2+n/1000.^n/1000.^4;m=3880;g=;nmin=600;nmax=4000;G=mg;ig= ;nT=;r=;f=;CDA=;i0=;L=;a=;hg=;If=;Iw1=;Iw2=;Ft1=Tqig1i0nT/r;ua1=rn/ig1/i0;Ff=Gf;Fw1=CDAua1.^2/;Fz1=Ff+Fw1;Fi1=Ft1-Fz1;Zoom on;imax=100tanasinmaxFi1/G;disp'汽车最大爬坡度=';dispimax;disp'%';汽车最大爬坡度=%3求最大爬坡度相应的附着率和求汽车行驶加速度倒数曲线程序:clearn=600:10:4000;Tq=+n/1000n/1000.^2+n/1000.^n/1000.^4;m=3880;g=;nmin=600;nmax=4000;G=mg;ig= ;nT=;r=;f=;CDA=;i0=;L=;a=;hg=;If=;Iw1=;Iw2=;Ft1=Tqig1i0nT/r;Ft2=Tqig2i0nT/r;Ft3=Tqig3i0nT/r;Ft4=Tqig4i0nT/r;Ft5=Tqig5i0nT/r;ua1=rn/ig1/i0;ua2=rn/ig2/i0;ua3=rn/ig3/i0;ua4=rn/ig4/i0;ua5=rn/ig5/i0;Fw1=CDAua1.^2/;Fw2=CDAua2.^2/;Fw3=CDAua3.^2/;Fw4=CDAua4.^2/;Fw5=CDAua5.^2/;Ff=Gf;deta1=1+Iw1+Iw2/mr^2+Ifig1^2i0^2nT/mr^2;deta2=1+Iw1+Iw2/mr^2+Ifig2^2i0^2nT/mr^2;deta3=1+Iw1+Iw2/mr^2+Ifig3^2i0^2nT/mr^2;deta4=1+Iw1+Iw2/mr^2+Ifig4^2i0^2nT/mr^2;deta5=1+Iw1+Iw2/mr^2+Ifig5^2i0^2nT/mr^2;a1=Ft1-Ff-Fw1/deta1m;ad1=1./a1;a2=Ft2-Ff-Fw2/deta2m;ad2=1./a2;a3=Ft3-Ff-Fw3/deta3m;ad3=1./a3;a4=Ft4-Ff-Fw4/deta4m;ad4=1./a4;a5=Ft5-Ff-Fw5/deta5m;ad5=1./a5;plotua1,ad1,ua2,ad2,ua3,ad3,ua4,ad4,ua5,ad5;axis0 99 0 10;title'汽车的加速度倒数曲线';xlabel'uakm/h';ylabel'1/a';gtext'1/a1';gtext'1/a2';gtext'1/a3';gtext'1/a4';gtext'1/a5'; a=maxa1;af=asinmaxFt1-Ff-Fw1/G;C=tanaf/a/L+hgtanaf/L;disp'假设后轮驱动,最大爬坡度相应的附着率=';dispC;假设后轮驱动,最大爬坡度相应的附着率=4 >>clearnT=;r=;f=;CDA=;i0=;If=;Iw1=;Iw2=;L=;a=;hg=;m=3880;g=;G=mg; ig= ;nmin=600;nmax=4000;u1=rnmin./ig/i0;u2=rnmax./ig/i0;deta=0ig;for i=1:5detai=1+Iw1+Iw2/mr^2+Ifigi^2i0^2nT/mr^2;endua=6::99;N=lengthua;n=0;Tq=0;Ft=0;inv_a=0ua;delta=0ua; Ff=Gf;Fw=CDAua.^2/;for i=1:Nk=i;if uai<=u22n=uaiig2i0/r/;Tq=+n/1000n/1000^2+n/1000^n/1000^4;Ft=Tqig2i0nT/r;inv_ai=deta2m/Ft-Ff-Fwi;deltai=inv_ai/;elseif uai<=u23n=uaiig3i0/r/;Tq=+n/1000n/1000^2+n/1000^n/1000^4;Ft=Tqig3i0nT/r;inv_ai=deta3m/Ft-Ff-Fwi;deltai=inv_ai/;elseif uai<=u24n=uaiig4i0/r/;Tq=+n/1000n/1000^2+n/1000^n/1000^4;Ft=Tqig4i0nT/r;inv_ai=deta4m/Ft-Ff-Fwi;deltai=inv_ai/;elsen=uaiig5i0/r/;Tq=+n/1000n/1000^2+n/1000^n/1000^4;Ft=Tqig5i0nT/r;inv_ai=deta5m/Ft-Ff-Fwi;deltai=inv_ai/;enda=delta1:k;ti=suma;endplott,ua;axis0 80 0 100;title'汽车2档原地起步换挡加速时间曲线';xlabel'时间ts';ylabel'速度uakm/h';>> ginputans =所以汽车2档原地起步换挡加速行驶至70km/h 的加速时间约为已知货车装用汽油发动机的负荷特性与万有特性;负荷特性曲线的拟合公式为:44332210e e e e P B P B P B P B B b ++++=其中,b 为燃油消耗率g/kW h ;Pe 为发动机净功率kW ;拟合式中的系数随转速n 变化;怠速油耗s mL Q id /299.0=怠速转速400r/min;计算与绘制题中货车的1汽车功率平衡图;2最高档与次高档的等速百公里油耗曲线;或利用计算机求货车按JB3352-83规定的六工况循环行驶的百公里油耗;计算中确定燃油消耗值b 时,若发动机转速与负荷特性中给定的转速不相等,可由相邻转速的两根曲线用插值法求得;解:Matlab 程序:(1)汽车功率平衡图程序:clearn=600:10:4000;Tq=+n/1000n/1000.^2+n/1000.^n/1000.^4;m=3880;g=;G=mg;ig= ;nT=;r=;f=;CDA=;i0=;L=;a=;hg=;If=;Iw1=;Iw2=;ua1=rn/ig1/i0;ua2=rn/ig2/i0;ua3=rn/ig3/i0;ua4=rn/ig4/i0;ua5=rn/ig5/i0;Pe1=Tq.ig1i0.ua1./3600r;Pe2=Tq.ig2i0.ua2./3600r;Pe3=Tq.ig3i0.ua3./3600r;Pe4=Tq.ig4i0.ua4./3600r;Pe5=Tq.ig5i0.ua5./3600r;ua=0::119;Ff=Gf;Fw=CDAua.^2/;Pf=Ffua/3600;Pw=Fw.ua/3600;Pe0=Pf+Pw./nT;Pe=maxPe1;plotua1,Pe1,ua2,Pe2,ua3,Pe3,ua4,Pe4,ua5,Pe5,ua,Pe0,ua,Pe;axis0 119 0 100;title'汽车功率平衡图';xlabel'uakm/h';ylabel'Pekw';gtext'1',gtext'2',gtext'3',gtext'4',gtext'5',gtext'Pf+Pw/et',gt ext'Pe';2最高档与次高档的等速百公里油耗曲线程序:clearn=600:1:4000;m=3880;g=;G=mg;ig= ;nT=;r=;f=;CDA=;i0=;L=;a=;hg=;If=;Iw1=;Iw2=;n0=815 1207 1614 2012 2603 3006 3403 3804;B00= ;B10= ;B20= ;B30= ;B40= ;B0=splinen0,B00,n;B1=splinen0,B10,n;B2=splinen0,B20,n;B3=splinen0,B30,n;B4=splinen0,B40,n;Ff=Gf;ua4=rn/ig4/i0;ua5=rn/ig5/i0;Fz4=Ff+CDAua4.^2/;Fz5=Ff+CDAua5.^2/;Pe4=Fz4.ua4./nT1000;Pe5=Fz5.ua5./nT1000;for i=1:1:3401b4i=B0i+B1iPe4i+B2iPe4i.^2+B3iPe4i.^3+B4iPe4i.^4; b5i=B0i+B1iPe5i+B2iPe5i.^2+B3iPe5i.^3+B4iPe5i.^4; endpg=;Q4=Pe4.b4./.ua4.pg;Q5=Pe5.b5./.ua5.pg;plotua4,Q4,ua5,Q5;axis0 100 10 30;title'最高档与次高档等速百公里油耗曲线';xlabel'uakm/h';ylabel'百公里油耗L/100km';gtext'4',gtext'5';i为、、、、时的燃油经济性—加速时改变题中轻型货车的主减速器传动比,做出i值对汽车性能的影响;间曲线,讨论不同解:Matlab程序:主程序:i0=,,,,; %输入主传动比的数据for i=1:1:5yi=jiasushijiani0i; %求加速时间endy;for i=1:1:5bi=youhaoi0i; %求对应i0的六工况百公里油耗endb;plotb,y,'+r'hold onb1=linspaceb1,b5,100;y1=splineb,y,b1; %三次样条插值plotb1,y1; %绘制燃油经济性-加速时间曲线title'燃油经济性—加速时间曲线';xlabel'百公里油耗L/100km';ylabel'加速时间s';gtext'i0=',gtext'i0=',gtext'i0=',gtext'i0=',gtext'i0=';子程序:1 function y=jiasushijiani0 %求加速时间的处理函数n1=linspace0,5000; %先求各个档位的驱动力nmax=4000;nmin=600;r=;yita=;CDA=;f=;G=3880;ig=,,,;%i0=for i=1:1:4 %i为档数uamaxi=chesunmax,r,igi,i0; %计算各个档位的最大速度与最小速度uamini=chesunmin,r,igi,i0;uai,:=linspaceuamini,uamaxi,100;ni,:=zhuansuuai,:,r,igi,i0; %计算各个档位的转速范围 Ttqi,:=zhuanjuni,:; %求出各档位的转矩范围 Fti,:=qudongliTtqi,:,igi,i0,yita,r; %求出驱动力Fi,:=fG+CDAuai,:.^2/; %求出滚动阻力和空气阻力的和deltai,:=1+++igi^2i0^2yita/3880r^2; %求转动质量换算系数ai,:=1./deltai,:.3880./Fti,:-Fi,:; %求出加速度F2i,:=Fti,:-Fi,:;end%下面分各个档位进行积分,求出加速时间temp11,:=ua2,:/;temp12,:=1./a2,:;n1=1;for j1=1:1:100if ua3,j1>maxua2,:&&ua3,j1<=70temp21,n1=ua3,j1/;temp22,n1=1./a3,j1;n1=n1+1;endendn2=1;for j1=1:1:100if ua4,j1>maxua3,:&&ua4,j1<=70;temp31,n2=ua4,j1/;temp32,n2=1./a4,j1;n2=n2+1;endendy=temp11,1temp12,1+qiujitemp11,:,temp12,:+qiujitemp21,:,temp22,:+qiuj itemp31,:,temp32,:;end2 function ua=chesun,r,ig,i0; %由转速计算车速ua=r.n/igi0;3 function n=zhuansuua,r,ig,i0; %求转速n=igi0.ua./r;end4 function y=zhuanjun; %求转矩函数y=+.n./1000.n./1000.^2+.n./1000.^.n./1000.^4;5 function y=qudongliTtq,ig,i0,yita,r; %求驱动力函数y=igi0yita.Ttq/r;end6 function p=qiujix0,y0 %求积分函数n0=sizex0;n=n02;x=linspacex01,x0n,200 ;y=splinex0,y0,x; %插值% figure;plotx,y;p=trapzx,y ;end7 %求不同i0下的六工况油耗function b=youhaoi0;global f G CDA yita m r If Iw1 Iw2 pg B0 B1 B2 B3 B4 n %声明全局变量ig=,,,;r=;yita=;CDA=;f=;%i0=;G=3880;If=;Iw1=;Iw2=;m=3880; %汽车的基本参数设定n0=815 1207 1614 2012 2603 3006 3403 3804;B00= ;B10= ;B20= ;B30= ;B40= ;n=600:1:4000;B0=splinen0,B00,n;B1=splinen0,B10,n;B2=splinen0,B20,n; %使用三次样条插值,保证曲线的光滑连续B3=splinen0,B30,n;B4=splinen0,B40,n;ua4=r.n./i0ig4; %求出发动机转速范围内对应的III、IV档车速F4=fG+CDAua4.^2/; %求出滚动阻力和空气阻力的和P_fw4=F4.ua4./yita1000; %求出阻力功率for i=1:1:3401 %用拟合公式求出各个燃油消耗率b4i=B0i+B1iP_fw4i+B2iP_fw4i^2+B3iP_fw4i^3+B4iP_fw4i^4;endpg=; %汽油的重度取Lua4_m=25,40,50; %匀速阶段的车速s_m=50,250,250; %每段匀速走过的距离b4_m=splineua4,b4,ua4_m; %插值得出对应速度的燃油消耗率F4_m=fG+CDAua4_m.^2/; %车速对应的阻力P_fw4_m=F4_m.ua4_m./yita1000; %发动机功率Q4_m=P_fw4_m.b4_m.s_m./102.ua4_m.pg ; Q4_a1=jiasu40,25,ig4,,ua4,i0; Q4_a2=jiasu50,40,ig4,,ua4,i0; Qid=;tid=;s=1075;Q_i=Qidtid; %求出减速阶段的燃油消耗量 Q4all=sumQ4_m+Q4_a1+Q4_a2+Q_i100/s; %IV 档六工况百公里燃油消耗量 b=Q4all;8加速阶段处理函数function q=jiasuumax,umin,ig,a,ua0,i0;global f G CDA yita m r If Iw1 Iw2 pg B0 B1 B2 B3 B4 n; %i0 ; ua1=umin:1:umax; %把速度范围以1km/h 为间隔进行划分 delta=1+Iw1+Iw2/mr^2+Ifig^2i0^2yita/mr^2;P0=Gf.ua0./3600+CDA.ua0.^3/76140+deltam.ua0/3600a/yita; P=Gf.ua1/3600+CDA.ua1.^3/76140+deltam.ua1/3600a/yita; dt=1/a ; %速度每增加1km/h 所需要的时间for i=1:1:3401 %重新利用拟合公式求出b 与ua 的关系 b0i=B0i+B1iP0i+B2iP0i^2+B3iP0i^3+B4iP0i^4; endb1=interp1ua0,b0,ua1; %插值出各个速度节点的燃油消耗率 Qt=P.b1./.pg; %求出各个速度节点的燃油消耗率 i1=sizeQt; i=i12;Qt1=Qt2:i-1;q=Qt1+Qtidt./2+sumQt1dt; %求该加速阶段的燃油消耗量2)求行驶车速Ua =30km/h,在ϕ=路面上车轮不抱死的制动距离;计算时取制动系反应时间'2τ=,制动减速度上升时间''2τ=;3)求制动系前部管路损坏时汽车的制动距离s,制动系后部管路损坏时汽车的制动距离's ; 解:Matlab 程序: (1) 求利用附着系数曲线和制动效率曲线程序: cleark=4080;hgk=;Lk=;ak=;betak=;bk=Lk-ak;%空载时的参数 mm=9290;hgm=;Lm=;am=;betam=;bm=Lm-am;%满载时的参数 z=0::; figure1; fai=z;fai_fk=betakzLk./bk+zhgk;%空载时前轴的φffai_fm=betamzLm./bm+zhgm;%满载时前轴的φffai_rk=1-betakzLk./ak-zhgk;%空载时后轴的φrfai_rm=1-betamzLm./am-zhgm;%满载时后轴的φrplotz,fai_fk,'b--',z,fai_fm,'r',z,fai_rk,'b--',z,fai_rm,'r',z,fai,' k';title'利用附着系数与制动强度的关系曲线';xlabel'制动强度z/g';ylabel'利用附着系数φ';gtext'φr空载',gtext'φr满载',gtext'φ=z',gtext'φf空载',gtext'φf 满载';figure2;Efk=z./fai_fk100;%空载时前轴的制动效率Efm=z./fai_fm100;Erk=z./fai_rk100;Erm=z./fai_rm100;plotfai_fk,Efk,'b',fai_fm,Efm,'r',fai_rk,Erk,'b',fai_rm,Erm,'r'; axis0 1 0 100;title'前.后制动效率曲线';xlabel'附着系数φ';ylabel'制动效率%';gtext'Ef',gtext'Er',gtext'Er',gtext'满载',gtext'空载';(2)问和3问程序:clearmk=4080;hgk=;Lk=;ak=;betak=;bk=Lk-ak;%空载时的参数mm=9290;hgm=;Lm=;am=;betam=;bm=Lm-am;%满载时的参数z=0::1;fai_fk=betakzLk./bk+zhgk;%空载时前轴的φffai_fm=betamzLm./bm+zhgm;%满载时前轴的φffai_rk=1-betakzLk./ak-zhgk;%空载时后轴的φrfai_rm=1-betamzLm./am-zhgm;%满载时后轴的φrEfk=z./fai_fk100;%空载时前轴的制动效率Efm=z./fai_fm100;Erk=z./fai_rk100;Erm=z./fai_rm100;t1=;t2=;ua0=30;fai=;g=;ak1=Erk81gfai/100;am1=Erm81gfai/100;Sk1=t1+t2/2ua0/+ua0^2/ak1;%制动距离Sm1=t1+t2/2ua0/+ua0^2/am1;disp'空载时,汽车制动距离Sk1=';dispSk1;disp'满载时,汽车制动距离Sm1=';dispSm1;ak2=faigak/Lk+faihgk; am2=faigam/Lm+faihgm; ak3=faigbk/Lk-faihgk; am3=faigbm/Lk-faihgm;Sk2=t1+t2/2ua0/+ua0^2/ak2;%制动距离 Sm2=t1+t2/2ua0/+ua0^2/am2; Sk3=t1+t2/2ua0/+ua0^2/ak3; Sm3=t1+t2/2ua0/+ua0^2/am3;disp'空载时,前制动器损坏,汽车制动距离Sk2='; dispSk2;disp'满载时,前制动器损坏,汽车制动距离Sm2='; dispSm2;disp'空载时,后制动器损坏,汽车制动距离Sk3='; dispSk3;disp'满载时,后制动器损坏,汽车制动距离Sm3='; dispSm3;空载时,汽车制动距离Sk1=满载时,汽车制动距离Sm1=空载时,前制动器损坏,汽车制动距离Sk2=满载时,前制动器损坏,汽车制动距离Sm2=空载时,后制动器损坏,汽车制动距离Sk3=满载时,后制动器损坏,汽车制动距离Sm3=二自由度轿车模型的有关参数如下:总质量 m=绕Oz 轴转动惯量 23885m kg I z ⋅= 轴距 L= 质心至前轴距离 a= 质心至后轴距离 b=前轮总侧偏刚度 k 1=-62618N/rad 后轮总侧偏刚度 k 2=-110185N/rad 转向系总传动比 i=20 试求:1) 稳定性因数K 、特征车速u ch ; 2) 稳态横摆角速度增益曲线asr u -⎪⎭⎫δω、车速u=s 时的转向灵敏度sw rδω;3) 静态储备系数.,侧向加速度为时的前、后轮侧偏角绝对值之差21αα-与转弯半径的比值R/R 0R 0=15m;4) 车速u=s 时,瞬态响应的横摆角速度波动的固有圆频率0ω、阻尼比ζ、反应时间τ与峰值反应时间ε解:Matlab 程序: m=;Iz=3885;L=;a=;b=;k1=-62618;k2=-110185; i=20;g=;R0=15;u1=; K=ma/k2-b/k1/L^2; Uch=1/K^1/2;%特征车速disp'稳定性因数s^2/m^2K='; dispK;disp'特征车速m/sUch='; dispUch; u=0::30;S=u./L1+Ku.^2;%稳态横摆角速度增益 plotu,S;title'汽车稳态横摆角速度增益曲线'; xlabel'车速um/s';ylabel'稳态横摆角速度增益'; disp'u=s 时,转向灵敏度为'; dispS448;SM=k2/k1+k2-a/L; ay=g; A=KayL; B=L/R0; R=L/B-A;C=R/R0;%转弯半径比 disp'静态储备系数.='; dispSM;disp'侧向加速度为时前、后轮侧偏角绝对值之差rad a1-a2='; dispA;disp'侧向加速度为时转弯半径比值R/R0='; dispC;W0=L/u1k1k2/mIz1+Ku1^2^1/2;%固有圆频率D=-mk1a^2+k2b^2-Izk1+k2/2LmIzk1k21+Ku1^2^1/2;%阻尼比 t=atan1-D^2^1/2/-mu1aW0/Lk2-D/W01-D^2^1/2;%反应时间 E=atan1-D^2^1/2/D/W01-D^2^1/2+t;%峰值反应时间 disp'车速u=s 时的瞬态响应参数分别为:'; disp'横摆角速度波动的固有圆频率rad 为 '; dispW0;disp'阻尼比为'; dispD;disp'反应时间s 为'; dispt;disp'峰值反应时间s 为'; dispE;稳定性因数s^2/m^2K=特征车速m/sUch=u=s 时,转向灵敏度为静态储备系数.=侧向加速度为时前、后轮侧偏角绝对值之差rad a1-a2=侧向加速度为时转弯半径比值R/R0=车速u=s 时的瞬态响应参数分别为: 横摆角速度波动的固有圆频率rad 为阻尼比为反应时间s 为峰值反应时间s 为车身-车轮双质量系统参数:10,9,25.0,5.10====μγζHz f ;“人体-座椅”系统参数:25.0,3==s s Hz f ζ;车速s m u /20=,路面不平度系数()3801056.2m n G q -⨯=,参考空间频率n 0=;计算时频率步长Hz f 2.0=∆,计算频率点数180=N ;1) 计算并画出幅频特性q z /1、12/z z 、2/z q 和均方根值谱()f G z 1 、()f G z 2 、()f G a 谱图;进一步计算aw w a zz q L a 、、、、、σσσσ21 值 2) 改变“人体-座椅”系统参数:5.0~125.0,6~5.1==s s Hz f ζ;分析aw w L a 、值随s s f ζ、的变化;3) 分别改变车身-车轮双质量系统参数:5.0~125.0,3~25.00==ζHz f ,20~5,18~5.4==μγ;绘制GFd fd z /2σσσ、、 三个响应量均方根值随以上四个系统参数变化的曲线; 解:Matlab 程序 1问yps=;%阻尼比ζ gama=9;%刚度比γ mu=10;%质量比μfs=3;ypss=;g=;a0=10^-6;f0=; ua=20;Gqn0=10^-8;n0=;detaf=;N=180; f=detaf0:N;lamta=f/f0;lamtas=f/fs;Wf=0f;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;z1_q=gamasqrt1-lamta.^2.^2+4yps^2lamta.^2./deta;z2_z1=sqrt1+4yps^2lamta.^2./1-lamta.^2.^2+4yps^2lamta.^2; p_z2=sqrt1+2ypsslamtas.^2./1-lamtas.^2.^2+2ypsslamtas.^2; z2_q=gamasqrt1+4yps^2lamta.^2./deta; p_q=p_z2.z2_q;jfg_Gqddf=4pi^2sqrtGqn0n0^2uaf; jfg_Gzdd1f=z1_q.jfg_Gqddf; jfg_Gzdd2f=z2_q.jfg_Gqddf; jfg_Gaf=p_q.jfg_Gqddf;sigmaqdd=sqrttrapzf,jfg_Gqddf.^2;%路面不平度加速度均方根值 sigmazdd1=sqrttrapzf,jfg_Gzdd1f.^2;%车轮加速度均方根值 sigmazdd2=sqrttrapzf,jfg_Gzdd2f.^2;%车身加速度均方根值 sigmaa=sqrttrapzf,jfg_Gaf.^2;%人体加速度均方根值 for i=1:N+1 if fi<=2 Wfi=; elseif fi<=4 Wfi=fi/4; elseif fi<= Wfi=1; elseWfi=fi; end endkk=Wf.^2.jfg_Gaf.^2;aw=sqrttrapzf,kk;%加权加速度均方根值 Law=20log10aw/a0;%加权振级disp'路面不平度加速度均方根值为';dispsigmaqdd; disp'车轮加速度均方根值为';dispsigmazdd1; disp'车身加速度均方根值为';dispsigmazdd2; disp'人体加速度均方根值为';dispsigmaa;disp'加权加速度均方根值为';dispaw;disp'加权振级';dispLaw;figure1plotf,z1_q,title'幅频特性|z1/q|, f=, ζ=,γ=9,μ=10',xlabel'激振频率f/Hz',ylabel'|z1/q|';figure2plotf,z2_z1,title'幅频特性|z2/z1|,f=, ζ=,γ=9,μ=10',xlabel'激振频率f/Hz',ylabel'|z2/z1|';figure3plotf,p_z2,title'幅频特性|p/z2|,fs=, ζs=',xlabel'激振频率f/Hz',ylabel'|p/z2|';figure4plotf,jfg_Gzdd1f,title'车轮加速度均方根值√Gz1f谱图',xlabel'激振频率f/Hz',ylabel'√Gz1f';figure5plotf,jfg_Gzdd2f,title'车身加速度均方根值√Gz2f谱图',xlabel'激振频率f/Hz',ylabel'√Gz2f';figure6plotf,jfg_Gaf,title'人体加速度均方根值√Gaf谱图',xlabel'激振频率f/Hz',ylabel'√Gaf';路面不平度加速度均方根值为车轮加速度均方根值为车身加速度均方根值为人体加速度均方根值为加权加速度均方根值为加权振级2问程序1:cleargama=9;%刚度比γmu=10;%质量比μf0=;g=;a0=10^-6;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f=detaf0:N;lamta=f/f0;Wf=0f;for i=1:N+1if fi<=2Wfi=;elseif fi<=4Wfi=fi/4;elseif fi<=Wfi=1;elseWfi=fi;endendfs=3;ypss=;ypss0=::;a=0ypss0;La=0ypss0;M=lengthypss0;for i=1:Myps=ypss0i;lamtas=f/fs;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;p_z2=sqrt1+2ypsslamtas.^2./1-lamtas.^2.^2+2ypsslamtas.^2;z2_q=gamasqrt1+4yps^2lamta.^2./deta;p_q=p_z2.z2_q;jfg_Gqddf=4pi^2sqrtGqn0n0^2uaf;jfg_Gaf=p_q.jfg_Gqddf;kk=Wf.^2.jfg_Gaf.^2;awi=sqrttrapzf,kk;endLaw=20log10aw/a0;figure1plotypss0,aw;title'aw随ζs的变化',xlabel'“人体—座椅”系统的阻尼比ζs',ylabel'aw/ms^-2';figure2plotypss0,Law;title'Law随ζs的变化',xlabel'“人体—座椅”系统的阻尼比ζs',ylabel'Law/dB';程序2:clearyps=;%阻尼比ζgama=9;%刚度比γmu=10;%质量比μf0=;g=;a0=10^-6;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f=detaf0:N;lamta=f/f0;Wf=0f;for i=1:N+1if fi<=2Wfi=;elseif fi<=4Wfi=fi/4;elseif fi<=Wfi=1;elseWfi=fi;endendypss=;fs=::6;M=lengthfs;for i=1:Mfs0=fsi;lamtas=f/fs0;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;p_z2=sqrt1+2ypsslamtas.^2./1-lamtas.^2.^2+2ypsslamtas.^2;z2_q=gamasqrt1+4yps^2lamta.^2./deta;p_q=p_z2.z2_q;jfg_Gqddf=4pi^2sqrtGqn0n0^2uaf;jfg_Gaf=p_q.jfg_Gqddf;kk=Wf.^2.jfg_Gaf.^2;awi=sqrttrapzf,kk;endLaw=20log10aw/a0;figure3plotfs,aw;title'aw随fs的变化',xlabel'“人体—座椅”系统的固有频率fs',ylabel'aw/ms^-2';figure4plotfs,Law;title'Law随fs的变化',xlabel'“人体—座椅”系统的固有频率fs',ylabel'Law/dB';3问程序1:clearfigure1fs=3;yps_s=;g=;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f0=;yps=;gama=9;mu=10;ff0=::3;sigmaz2=0ff0;sigmafd=0ff0;sigmaFd_G=0ff0;M=lengthff0;for i=1:Mf0=ff0i;f=detaf0:N;lamta=f/f0;lamtas=f/fs;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;z2_qdot=2pifgama.sqrt1+4yps^2lamta.^2./deta;fd_qdot=gamalamta.^2./2pif+eps./sqrtdeta;Fd_Gqdot=2pifgama/g.sqrtlamta.^2/mu+1-1.^2+4yps^2lamta.^2./deta;Gq_dotf=4pi^2Gqn0n0^2ua;Gz2f=z2_qdot.^2Gq_dotf;Gfd_qf=fd_qdot.^2Gq_dotf;GFd_Gf=Fd_Gqdot.^2Gq_dotf;sigmaz2i=sqrttrapzf,Gz2f;sigmafdi=sqrttrapzf,Gfd_qf;sigmaFd_Gi=sqrttrapzf,GFd_Gf;if f0==sgmz2=sigmaz2i;sgmfd=sigmafdi;sgmFd_G=sigmaFd_Gi;endendsz2=20log10sigmaz2/sgmz2;sfd=20log10sigmafd/sgmfd;sFd_G=20log10sigmaFd_G/sgmFd_G;plotff0,sz2,'r-',ff0,sfd,'b-.',ff0,sFd_G,'k--';axis 3 -25 15;title'三个响应量均方根值随f0变化的曲线',xlabel'车身部分固有频率f0/Hz',ylabel'σz2/dB,σfd/dB,σFd/G/dB';程序2:clearfigure2fs=3;yps_s=;g=;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f0=;yps=;gama=9;mu=10;c= i=1:Myps=yps0i;f=detaf0:N;lamta=f/f0;lamtas=f/fs;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;z2_qdot=2pifgama.sqrt1+4yps^2lamta.^2./deta;fd_qdot=gamalamta.^2./2pif+eps./sqrtdeta;Fd_Gqdot=2pifgama/g.sqrtlamta.^2/mu+1-1.^2+4yps^2lamta.^2./deta;Gq_dotf=4pi^2Gqn0n0^2ua;Gz2f=z2_qdot.^2Gq_dotf;Gfd_qf=fd_qdot.^2Gq_dotf;GFd_Gf=Fd_Gqdot.^2Gq_dotf;sigmaz2i=sqrttrapzf,Gz2f;sigmafdi=sqrttrapzf,Gfd_qf;sigmaFd_Gi=sqrttrapzf,GFd_Gf;if yps==sgmz2=sigmaz2i;sgmfd=sigmafdi;sgmFd_G=sigmaFd_Gi;endendsz2=20log10sigmaz2/sgmz2;sfd=20log10sigmafd/sgmfd;sFd_G=20log10sigmaFd_G/sgmFd_G;plotyps0,sz2,'r-',yps0,sfd,'b-.',yps0,sFd_G,'k--';axis -4 4;title'三个响应量均方根值随ζ变化的曲线',xlabel'车身部分阻尼比ζ',ylabel'σz2/dB,σfd/dB,σFd/G/dB';程序3:clearfigure3fs=3;yps_s=;g=;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f0=;yps=;mu=10;gama0=4::19;sigmaz2=0gama0;sigmafd=0gama0;sigmaFd_G=0gama0;M=lengthgama0;for i=1:Mgama=gama0i;f=detaf0:N;lamta=f/f0;lamtas=f/fs;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;z2_qdot=2pifgama.sqrt1+4yps^2lamta.^2./deta;fd_qdot=gamalamta.^2./2pif+eps./sqrtdeta;Fd_Gqdot=2pifgama/g.sqrtlamta.^2/mu+1-1.^2+4yps^2lamta.^2./deta;Gq_dotf=4pi^2Gqn0n0^2ua;Gz2f=z2_qdot.^2Gq_dotf;Gfd_qf=fd_qdot.^2Gq_dotf;GFd_Gf=Fd_Gqdot.^2Gq_dotf;sigmaz2i=sqrttrapzf,Gz2f;sigmafdi=sqrttrapzf,Gfd_qf;sigmaFd_Gi=sqrttrapzf,GFd_Gf;if gama==9sgmz2=sigmaz2i;sgmfd=sigmafdi;sgmFd_G=sigmaFd_Gi;endendsz2=20log10sigmaz2/sgmz2;sfd=20log10sigmafd/sgmfd;sFd_G=20log10sigmaFd_G/sgmFd_G;plotgama0,sz2,'r-',gama0,sfd,'b-.',gama0,sFd_G,'k--';axis4 18 -5 6;title'三个响应量均方根值随γ变化的曲线',xlabel'悬架与轮胎的刚度比γ',ylabel'σz2/dB,σfd/dB,σFd/G/dB';程序4:clearfigure4fs=3;yps_s=;g=;ua=20;Gqn0=10^-8;n0=;detaf=;N=180;f0=;yps=;gama=9;mu0=5::20;sigmaz2=0mu0;sigmafd=0mu0;sigmaFd_G=0mu0;M=lengthmu0;for i=1:Mmu=mu0i;f=detaf0:N;lamta=f/f0;lamtas=f/fs;deta=1-lamta.^2.1+gama-1/mulamta.^2-1.^2+4yps^2lamta.^2.gama-1/mu+1la mta.^2.^2;z2_qdot=2pifgama.sqrt1+4yps^2lamta.^2./deta;fd_qdot=gamalamta.^2./2pif+eps./sqrtdeta;Fd_Gqdot=2pifgama/g.sqrtlamta.^2/mu+1-1.^2+4yps^2lamta.^2./deta;Gq_dotf=4pi^2Gqn0n0^2ua;Gz2f=z2_qdot.^2Gq_dotf;Gfd_qf=fd_qdot.^2Gq_dotf;GFd_Gf=Fd_Gqdot.^2Gq_dotf;sigmaz2i=sqrttrapzf,Gz2f;sigmafdi=sqrttrapzf,Gfd_qf;sigmaFd_Gi=sqrttrapzf,GFd_Gf;if mu==10sgmz2=sigmaz2i;sgmfd=sigmafdi;sgmFd_G=sigmaFd_Gi;endendsz2=20log10sigmaz2/sgmz2;sfd=20log10sigmafd/sgmfd;sFd_G=20log10sigmaFd_G/sgmFd_G;plotmu0,sz2,'r-',mu0,sfd,'b-.',mu0,sFd_G,'k--';axis5 20 -2 2;title'三个响应量均方根值随μ变化的曲线',xlabel'车身与车轮部分质量比μ',ylabel'σz2/dB,σfd/dB,σFd/G/dB';。
基于MATLAB的汽车动力性仿真

农业装备与车辆工程 AGRICULTURAL EQ农U业IP装ME备N与T 车& 辆VE工H程ICLE ENGINEERING
No.9 2007 ( Totally 194)
基于 MATLAB 的汽车动力性仿真
张竹林, 郭荣春
( 山东交通学院, 山东 济南 250023)
收稿日期: 2007- 07- 27 作者简介: 张 竹 林 ( 1979- ) , 男 , 山 东 青 岛 人 , 助 教 , 硕 士 研 究 生 , 研 究 方向为计算机仿真和计算机辅助设计。
·52·
k—曲线拟合的最高次方, 一般取 k=2~5。 a0, a1, …, ak 可由最小二乘法来决定。 本文中用 VC 编写动态库文件, 按照发动机台架 试验台的 AK 协议进行通讯, 采取的数据自动写入 Access 的数据库中, 在拟合程序中基于 ODBC 数据 库进行数据读取和利用 MATLAB 函数进行拟合。
参考文献
[ 1] 王沫然. MATLAB 与科学计算( 第 2 版) . 北京: 电子工业出 版社, 2005. [ 2] 余志生. 汽车理论( 第 4 版) . 北京: 机械工业出版社, 2007.
·53·
关键词: 动力性; MATLAB; VC; 仿真
中图分类号: TP391.9
文献标识码: B
文章编号: 1673- 3142( 2007) 09- 0052- 02
Computer Simulat源自on of Power Per for mance for Automobile Based on MATLAB
ZHANG Zhu- lin, GUO Rong- chun
基于Matlab的纯电动客车经济性仿真分析

ZHOU Xiang, SUN Changcun, WANG Kai, LIN Yongmao, TONG Xiao
(Technology Center of Jiangxi Benergy Shangrao Coach Co., Ltd., Jiangxi Shangrao 334000)
10.16638/ki. 1671-7988.2021.013. 003
基于Matlab的纯电动客车经济性仿真分析
周翔,孙长存,王凯,林永茂,童骁 (江西博能上饶客车有限公司 技术中心,江西 上饶334000)
摘要:文章介绍了一种基于Matlab的纯电动客车经济性仿真分析方案,该方案能自定义整车相关参数,并通过导 入的电机效率数据拟合得到电机MAP模型,加载实际道路采集的路谱来进行有针对性的经济性仿真分析 ,可用作 指导产品的设计开发。 关键词:纯电动客车;电机MAP图;Matlab程序;经济性仿真 中图分类号:U469.72; U463.6 文献标识码:A 文章编号:1671-7988(2021)13-07-03
当Fh^F0时,制动时时回馈给储能系统的充电功率Ph= n*T*nh/9550,其中n为电机在该转速和扭矩的回馈模式下的 效率。
当 Fh>Fo 时,Ph=n*Tc*nh /9550。 最终因能量回收使储能电池增加的电能。 其中%仏="j/〈dt为电池充电效率。
图5车速与电机功率曲线图
3仿真结果分析 3.1电耗计算
9
表1车型参数
整备质量(kg)
11210
风阻系数
满载质量(kg)
基于MATLAB App Designer的电动汽车动力参数匹配

10.16638/ki.1671-7988.2020.15.002基于MATLAB App Designer的电动汽车动力参数匹配韦超毅1,许哲1,黄大明2*,徐光忠1(1.广西大学机械工程学院,广西南宁530004;2.南宁学院交通学院,广西南宁530200)摘要:“节能发展,绿色环保”已成为当今社会最关切的主题,电动汽车因此迎来了发展热潮。
电动汽车的动力参数匹配是设计开发中的关键环节,能够使电动汽车满足基本的动力性及经济性要求。
文章参考某款电动汽车的整车参数和性能指标,基于MA TLAB App Designer开发设计一款App,实现电动汽车的驱动电机、动力电池和传动比的关键参数匹配。
该款App能够使电动汽车的参数匹配计算提供便利,也为后续应用程序开发及扩展提供参考。
关键词:电动汽车;MATLAB;参数匹配;App Designer中图分类号:U469.72 文献标识码:A 文章编号:1671-7988(2020)15-04-04Matching Of Electric Vehicle Dynamic Parameters Based On Matlab App DesignerWei Chaoyi1, Xu Zhe1, Huang Daming2*, Xu Guangzhong1( 1.College of Mechanical Engineering&Guangxi University, Guangxi Nanning 530004;2.Transportation College&NanNing University, Guangxi Nanning 530200 )Abstract: "Energy-saving development, green environmental protection" has become the most concerned topic in today's society, and electric vehicles have ushered in a development boom. The matching of dynamic parameters of electric vehicles is a key link in the design and development, which can enable electric vehicles to meet the basic dynamic and economic requirements. The article refers to the entire vehicle parameters and performance indicators of an electric vehicle, develops and designs an App based on MA TLAB App Designer, and realizes the matching of key parameters of the electric vehicle's drive motor, power battery and transmission ratio. This App can facilitate the parameter matching calculation of electric vehicles, and also provide a reference for subsequent application development and expansion.Keywords: Electric vehicle; MATLAB; Parameter matching; App DesignerCLC NO.: U469.72 Document Code: A Article ID: 1671-7988(2020)15-04-04前言随着近年我国社会经济的持续快速发展,人们的生活水平不断地提升,汽车保有量也在逐年递增,汽车尾气的排放造成的污染日益严重。
汽车动力性试验仿真matlab

汽车动⼒性试验仿真matlab基于matlab 的⼀款轻型货车动⼒性试验仿真段##(武汉理⼯⼤学汽车学院,汽车##班;1049####)摘要:利⽤⼀款轻型货车发动机外特性的转矩拟合曲线及整车的其他配置参数建⽴了整车的动⼒学模型,在matlab 环境下⽤m 语⾔完成了仿真过程。
动⼒性是汽车的最基本性能,是汽车整车性能道路试验的必备项⽬之⼀,但道路试验需要较好的试验场地和有经验的试验⼈员,过程也很繁琐。
但若利⽤发动机及整车的参数建⽴数学模型,在软件中进⾏试验仿真则会⽅便很多。
设计合理的数学模型及⾼效的仿真程序,能得出接近真实试验的结果,为⼯作⼈员提供了重要参考,有很强的实⽤性。
关键词:汽车;动⼒性;试验仿真;matlab ;m 语⾔;实⽤性1 汽车动⼒性试验的基本内容汽车动⼒性评价指标有最⾼车速、加速时间、最⼤爬坡度等,与之对应的试验内容有最⾼车速的测试、汽车起步连续换挡加速时间与超车加速时间的测试和汽车最⼤爬坡度的测试。
另外,按照我国标准,动⼒性评价试验均在满载情况下进⾏。
1.1 最⾼车速汽车的最⾼车速是指汽车标准满载状态,在⽔平良好的路⾯(清洁、⼲燥、平坦的混凝⼟或沥青路⾯,纵向坡度在0.1%以内)上所能达到的最⾼⾏驶速度。
1.2 加速时间常⽤原地起步加速时间与超车加速时间来表明汽车的加速能⼒。
原地起步加速时间是指汽车由Ⅰ挡或Ⅱ挡起步,并以最⼤的加速度(包括选择最恰当的换挡时间)逐步换⾄最⾼挡到某⼀预定的距离或车速所需的时间。
⼀般常⽤0—100km/h 所需的时间来表明原地起步的加速能⼒。
超车加速是指⽤最⾼挡或次⾼挡有某⼀较低车速全⼒加速⾄某⼀⾼速所需的时间。
对超车加速能⼒还没有⼀致的规定,采⽤较多的是⽤最⾼挡或次⾼挡由30km/h 或40km/h 全⼒加速⾄某⼀⾼速所需的时间。
本⽂所取模型为⼀款轻型货车,动⼒性⼀般,再结合⽣活使⽤实际需要,现⽤40km/h 全⼒加速⾄70km/h 所⽤的时间来评价汽车的加速性能,因为此速度区间是城市道路在较佳的通车情况下加速时的常⽤⼯况。
汽车动力性和经济性计算

摘要汽车运用工程课程是交通运输本科专业的一门主干课程,而对于汽车来说,动力性与经济性是两个非常重要的指标,它们能综合反映出某一款车的性能高低。
本文正是通过计算一款车(新瑞虎1.6SMT舒适型)的动力性能以及燃油经济性来确定该款车的性能是否得到充分发挥,同时利用计算机VB高级语言编程,以此为基础,对其传动系参数进行了优化,通过对优化前后整车性能的对比分析,判断是否达到在动力性能与燃油经济性之间达到一个较优平衡。
相信通过这次的汽车运用工程课程设计,我将会更深层次地理解汽车各性能。
Abstract AutomobileApplicationEngineeringundergraduatecurriculumisatransportmaincou rse,andforthecar,powerandeconomyaretwoveryimportantindicators,whichcancompr ehensivelyreflecttheperformanceofaparticularlevelofacar.Thisarticleisbycalculatinga car(newTiggo1.6SMTcomfort)ofthedynamicperformanceandfueleconomytodetermi newhethertheperformanceofthecarisbroughtintofullplay,whiletakingadvantageofhigh-levelcomputerprogramminglanguageVBasabasis,itstransmissionparameterswere optimizedbycomparingbeforeandafteroptimizationofvehicleperformance,todetermin ewhetherthedynamicperformanceandfueleconomytoachieveanoptimalbalancebetw een.Ibelievethatthroughtheuseoftheautomobileengineeringcoursedesign,Iwillbeadeeperunderstandingoftheperformancecar.目录1.1各项汽车参数.......................................................1.2变速器各档的速比...................................................1.3新瑞虎发动机外特性曲线.............................................1.4转矩与转速的关系曲线以及公式.......................................1.5油耗与转矩的关系曲线以及公式.......................................1.6新瑞虎外形以及发动机外形图......................................... 第二章汽车动力性、经济性的设计计算 (5)2.1汽车动力性的计算 (6)2.1.1驱动力、各种阻力数学模型的建立 (6)2.1.2最高车速和最大爬坡度的计算 (7)2.1.3加速度倒数曲线的绘制 (8)2.1.4绘制动力因素特性曲线 (8)2.2汽车经济性的计算 (9)第三章计算机动力性、经济性计算流程图 (10)3.1计算机动力性的计算流程............................................................. .. (10)3.2计算机动力性的计算流程........................................................ .. (11)第三章计算机编程关于动力性和经济性的程序 (12)4.1驱动力-行驶阻力平衡 (2)4.2最大速度和最大爬坡度...............................................4.3加速度倒数曲线 (5)4.4动力因数曲线 (7)4.5二挡起步加速速度-时间图 (9)4.6二挡起步加速距离-时间图............................................4.7优化换挡的计算和分析...............................................4.8等速百公里油耗计算................................................. 第五章程序运行结果.....................................................................................................5.1程序界面...........................................................5.2驱动力—阻力平衡图.................................................5.3加速度倒数曲线图...................................................5.4动力因素特性曲线 (30)5.5二档起步加速速度—时间曲线图.......................................5.6二档起步加速距离—时间曲线图.......................................5.7优化连续换挡加速过程曲线图.........................................5.8最大速度和最大爬坡度和等速百公里油耗值以及经济性分析曲线........... 参考文献 .......................................................................................................................第一章新瑞虎基本技术参数1.1各项汽车参数新瑞虎各项参数见表1-1。
matlab汽车动力系统设计

matlab汽车动力系统设计汽车动力系统设计是现代汽车工程中的一个重要环节。
它涉及到了汽车动力源、传动系统和控制系统等多个方面,对汽车的性能和燃油效率有着直接影响。
本文将从汽车动力系统设计的角度出发,探讨其中的关键要素和设计原则。
汽车动力源是汽车动力系统设计的核心。
目前,常见的汽车动力源主要包括内燃机和电动机。
内燃机可以进一步分为汽油机和柴油机。
选择适合的动力源是汽车动力系统设计的首要任务。
在选择动力源时,需要考虑到车辆的用途、性能要求和环境影响等因素。
例如,对于城市代步车型,电动机可能更加适合,而对于跑车或越野车型,内燃机可能更具优势。
传动系统是汽车动力系统设计中的另一个重要组成部分。
传动系统的设计目标是将动力源产生的扭矩和转速传递到车轮上,以实现汽车的运动。
传动系统一般包括离合器、变速器和驱动轴等。
离合器的作用是在换挡时断开动力源和传动系统的连接,变速器则可以根据驾驶需求调整输出扭矩和转速。
在传动系统设计中,需要考虑到传动效率、换挡顺畅性和可靠性等因素。
控制系统在汽车动力系统设计中也起着重要作用。
控制系统包括发动机控制单元(ECU)和车辆动力控制系统等。
发动机控制单元通过对发动机的点火、喷油和气门控制等进行精确调整,以实现动力输出和燃油经济性的平衡。
车辆动力控制系统则通过对传动系统和车轮的控制,提供更好的操控性能和稳定性。
在设计控制系统时,需要考虑到系统的可调性、响应速度和稳定性等因素。
除了上述要素,汽车动力系统设计还需要考虑其他一些因素。
例如,车辆的质量分布、空气动力学特性和轮胎参数等。
车辆的质量分布会影响车辆的平衡性和操控性能,因此需要在设计中充分考虑。
空气动力学特性则决定了车辆的空气阻力和气动性能,对于高速车型尤为重要。
轮胎参数包括轮胎类型、尺寸和胎压等,会直接影响到车辆的牵引力和操控性能。
在汽车动力系统设计中,需要遵循一些基本原则。
首先,要确保动力系统的可靠性和安全性。
汽车是一种复杂的机械装置,因此在设计中要考虑到各种可能的故障和安全风险,并采取相应的措施来保证车辆的安全性。
柴油机轿车燃油经济性能仿真计算(MATLAB)

汽车工业学院Hubei Automotive Industries Institute课程设计说明书课程名称汽车设计设计题目柴油机轿车燃油经济性能仿真计算(MATLAB) 班号 T843-4 专业车辆工程学号 200804304XX 学生 XXX同组人指导教师(签字)成绩起止日期 2011 年 12 月 5 日 -- 2012 年 2 月 24 日目录1 设计任务及要求 (3)1.1设计任务 (3)1.2设计要求 (3)2 设计计算输入参数 (3)3 设计计算过程 (4)3.1.汽车瞬时车速的计算 (4)3.2.汽车瞬时油耗的计算 (4)3.3.汽车经济车速(90km/h)百公里油耗的计算 (4)3.4. ECE、EUDC、ECE+EUDC汽车循环工况油耗 (4)3.4.1 计算等速油耗 (4)3.4.2 加速行驶工况燃油消耗量的计算 (4)3.4.1 计算减速段油耗 (5)3.5发动机万有特性曲线图 (5)3.5.1 采集实验数据 (5)3.5.2 求方程系数 (5)3.5.3 绘制曲线 (6)4 设计计算程序界面介绍 (6)4.1 主界面 (6)4.2 参数输入 (6)4.3 结果输出 (7)5 设计计算结果 (9)5.1主界面 (9)5.2参数输入 (10)5.3结果输出界面 (11)5.3.1 数据计算结果显示 (11)5.3.2 图形结果显示 (12)5.3.2.1发动机万有特性曲线…………………………………………………………125.3.2.2等速百公里燃油消耗量曲线…………………………………………………135.3.2.3 ECE循环工况示意图 (14)5.3.2.4 EUDC循环工况示意图 (15)5.3.2.5 ECE+EUDC循环工况示意图 (16)6 设计体会 (17)7 参考文献 (18)1.设计任务及要求1.1设计任务通过采用MATLAB语言,学会编制程序对四挡柴油机轿车燃油经济性进行分析计算,得到以下的数据和图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
axis([0 270 0 300]); %% 动力特性图(动力因数图) for i=1:length(ig); D(i,:)= (Ft(i,:)- Fw(i,:))/M/g; end figure(6) hold on for i=1:length(ig); plot(ua(i,:), D(i,:),'k'); plot(ua(i,:), f(i,:),'r'); end hold on grid on xlabel('车速(km/h)'); ylabel('动力因数D'); legend('动力因数D','滚动阻力系数f'); title('动力特性图'); axis([0 270 0 0.6]); %% 爬坡度曲线图 for i=1:length(ig); I(i,:)= (tan(asin((Ft(i,:)-(Ff(i,:)+Fw(i,:)))/(M*g))))*100; end figure(7) hold on for i=1:length(ig); if i==1 plot(ua(i,:),I(i,:),'r'); else plot(ua(i,:),I(i,:),'k'); end end hold on grid on xlabel('车速(km/h)'); ylabel('最大爬坡度(%)'); legend('Ⅰ挡','高速档'); title('爬坡度曲线图'); axis([0 270 0 50]); %% 加速度曲线图 deta=1+1/M*4*Iw/r^2+1/M*If*ig.^2*i0^2*eta/r^2; for i=1:length(ig); a(i,:)=(Ft(i,:)-Ff(i,:)-Fw(i,:))./deta(i)/M; if i==5 for j=1:length(n)
if a(i,j)<0 a(i,j)=0; else end end end end figure(8) hold on for i=1:length(ig); if i==1 plot(ua(i,:),a(i,:),'r'); else plot(ua(i,:),a(i,:),'k'); end end hold on grid on xlabel('车速(km/h)'); ylabel('加速度a(m/s^2)'); legend('Ⅰ档','高速档'); title('加速度曲线图'); axis([0 270 0 4.5]) %% 加速度倒数曲线 for i=1:length(ig); for j=1:length(n) b(i,j)=1./a(i,j); end end figure(9) hold on for i=1:length(ig) plot(ua(i,:),b(i,:),'k'); end hold on grid on xlabel('车速(km/h)'); ylabel('各档加速度倒数1/a'); legend('各档加速度倒数1/a曲线','Location','NorthWest'); title('各档加速度倒数曲线图'); axis([0 160 0 6]) ad1=b(1,:); ad2=ua(1,:); for i=1:(length(ig)-1);
[AX,H1,H2]=plotyy(n,Ttq,n,Pe); xlabel('发动机转速n(r/min)'); ylabel('发动机转矩Ttq(N*m)'); ylabel(AX(2),'发动机功率Pe(Kw)'); title('发动机外特性曲线'); %% 各挡位速度曲线 %计算各挡位车速 for i=1:length(ig); ua(i,:)=0.377*r*n/ig(i)/i0; end %计算各档位最高车速 uamax=ua(:,length(ua(1,:))); figure(3) hold on for i=1:length(ig); plot(n,ua(i,:),'k'); end hold on grid on xlabel('转速n(r/min)'); ylabel('各挡位车速(km/h)'); title('各挡位车速-转速表'); legend('1挡车速','2挡车速','3挡车速','4挡车速','5挡车速'); axis([1000 5000 0 270]); %% 驱动力和行驶阻力平衡图 %计算滚动阻力系数 for i=1:length(ig); f(i,:)=f0+f1*(ua(i,:)/100)+f4*(ua(i,:)/100).^4; end %计算滚动阻力 for i=1:length(ig); Ff(i,:)=c*M*g*f(i,:); end %计算空气阻力 for i=1:length(ig); Fw(i,:)=CD*A*(ua(i,:).^2)/21.15; end %计算行驶阻力 for i=1:length(ig); F(i,:)=Ff(i,:)+Fw(i,:); end %计算汽车驱动力 for i=1:length(ig); Ft(i,:)=Ttq*ig(i)*i0*eta/r;
%% 汽车动力性计算(自己编的动力性计算程序,供大家计算动力性时参考,具体参数大家 根据所给程序对应输入,并对坐标轴数值按需要进行修改) clc; clear; close all; %%根据所给发动机数据拟合外特性曲线(发动机数据按照你所得到的数据进行输入) n_test=[1000 1200 1400 1800 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600 5000]; T_test=[201 206 216 218 221 221 227 228 235 246 228 227 223 215 210 208 205 109]; figure(1) plot(n_test,T_test,'g'); hold on grid on p=polyfit(n_test,T_test,7); n=[1000:1:5000]; Ttq=polyval(p,n); plot(n,Ttq,'k'); xlabel('发动机转速n(r/min)'); ylabel('发动机转矩Ttq(N*m)'); title('发动机转矩曲线'); legend('测试曲线','拟合曲线'); axis([1000 5000 100 300]); %%所给车型动力总成相关参数 ig=[4.148 2.37 1.556 1.115 0.859 0.686]; i0=3.394; eta=0.9; r=0.307; M=1700; g=9.8; c=1.2; f0=0.009; f1=0.00018; f4=0.0003; CD=0.3; A=2.54; Iw=3.0; If=0.04; %% 发动机外特性曲线图 figure(2) hold on grid on for i=length(n); Pe=Ttq.*n/9550; end
end figure(4) hold on for i=1:length(ig); plot(ua(i,:), Ft(i,:),'k'); plot(ua(i,:), F(i,:),'r'); plot(ua(i,:), Ff(i,:),'b'); end hold on grid on xlabel('车速(km/h)'); ylabel('驱动力、行驶阻力(N)'); legend('驱动力Ft','行驶阻力Ff+Fw','滚动阻力Ff'); title('驱动力-行驶阻力平衡图'); axis([0 270 0 5000]); %% 汽车功率平衡图 %计算各档位功率 for i=1:length(ig); P(i,:)=Ft(i,:).*ua(i,:)/(3600*eta); end %计算风阻阻力功率 for i=1:length(ig); Pw(i,:)=CD*A*ua(i,:).^3/(76140*eta); end %计算滚动阻力功率 for i=1:length(ig); Pf(i,:)=M*g*f(i,:).*ua(i,:)/(3600*eta); end %计算总阻力功率 for i=1:length(ig); Pz(i,:)=Pw(i,:)+Pf(i,:); end figure(5) hold on for i=1:length(ig); plot(ua(i,:), P(i,:),'k'); plot(ua(i,:), Pz(i,:),'r'); end hold on grid on xlabel('车速(km/h)'); ylabel('发动机功率、阻力功率(kW)'); legend('发动机功率P','阻力功率Pz','Location','NorthWest'); title('功率平衡图');
for j=1:length(n) if ua(i+1,j)>=ua(i,length(n)) flag(i)=j; break; end end ad1=[ad1 b(i+1,j:length(n))]; ad2=[ad2 ua(i+1,j:length(n))]; end figure(10) hold on plot(ad2,ad1,'k'); hold on grid on xlabel('车速(km/h)'); ylabel('加速度倒数1/a'); legend('加速度倒数1/a曲线','Location','NorthWest'); title('加速度倒数曲线图'); axis([0 160 0 6]) %% 加速时间曲线 k=length(n); for i=1:length(ig); t(i,1)=0; for j=2:k t(i,j)=abs(ua(i,j)-ua(i,j-1))*(b(i,j)+b(i,j-1))/2; end end for i=1:length(ig); for j=1:k at(i,j)=sum(t(i,1:j))/3.6; end end totalat=at(1,:); for i=1:(length(ig)-1); for j=flag(i):k totalat=[totalat totalat(length(totalat))+t(i+1,j)/3.6]; end end figure(11) hold on plot(totalat,ad2,'k'); hold on grid on xlabel('时间(s)');