高等数学知识点总结 (1)
高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。
(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。
所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。
高等数学1重要知识点总结

高等数学1重要知识点总结•相关推荐高等数学1重要知识点总结在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是一些常考的内容,或者考试经常出题的地方。
掌握知识点有助于大家更好的学习。
下面是小编为大家整理的高等数学1重要知识点总结,希望对大家有所帮助。
高等数学1重要知识点总结11、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
3、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的`基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
高数笔记大一基础知识点

高数笔记大一基础知识点一、导数与微分在微积分中,导数和微分是非常基础的概念。
导数描述了函数在某一点上的变化率,而微分则表示函数在某一点上的近似线性变化。
1. 导数的定义对于函数f(x),在某一点x=a处的导数定义为:f'(a) = lim(x→a) [f(x) - f(a)] / (x - a)如果这个极限存在,那么函数在点x=a处是可导的。
2. 导数的计算法则- 常数法则:常数的导数为零- 幂函数法则:若f(x) = x^n,则f'(x) = nx^(n-1)- 指数函数法则:若f(x) = a^x,则f'(x) = (ln a) * a^x- 对数函数法则:若f(x) = log_a x,则f'(x) = 1 / (x * ln a)- 乘积法则:若f(x) = u(x) * v(x),则f'(x) = u'(x) * v(x) + u(x) * v'(x)- 商法则:若f(x) = u(x) / v(x),则f'(x) = [u'(x) * v(x) - u(x) *v'(x)] / [v(x)]^2- 链式法则:若f(x) = u(v(x)),则f'(x) = u'(v(x)) * v'(x)3. 微分的定义对于函数f(x),在某一点x=a处的微分定义为:df = f'(a) * dx其中,df表示函数在点x=a处的微小变化,dx表示自变量x的微小变化。
二、极限与连续极限是微积分中另一个重要的概念,它描述了函数在某一点上的值趋近于某个数的情况。
而连续则表示函数在某一区间内没有间断或跳跃。
1. 极限的定义设函数f(x)在点x=a的某一邻域内有定义,如果存在常数A,对于任意给定的ε,都存在正数δ,使得当0 < |x - a| < δ时,有|f(x) - A| < ε,则称A为f(x)当x趋于a时的极限,记作lim(x→a) f(x) = A。
高等数学知识点归纳

六. 凹凸与拐点(必求导!):
1. y " 表格; ( f "(x0 ) 0 )
2. 应用: (1)泰勒估计; (2) f ' 单调; (3)凹凸.
七. 罗尔定理与辅助函数: (注: 最值点必为驻点)
(1)区别: *单变量与双变量?
* x [a,b] 与 x [a, ), x (, ) ?
(2)类型: * f ' 0, f (a) 0 ;
* f ' 0, f (b) 0
5
* f " 0, f (a), f (b) 0 ; * f "(x) 0, f '(x0) 0, f (x0) 0
(5)隐式(方程): F (x, y) 0
x x(t)
(6)参式(数一,二):
y
y (t )
(7)变限积分函数:
F(x)
x
f (x,t)dt
a
(8)级数和函数(数一,三): S (x) anxn, x n0
2. 特征(几何):
(1)单调性与有界性(判别); ( f (x) 单调 x0 , (x x0 )( f (x) f (x0 )) 定号)
f
(x)
;
f
'(x0 )
lim
x x0
f (x) f (x0) x x0
(1) f '(0) lim f (x) f (0) (注: lim f (x) A( f 连续) f (0) 0, f '(0) A )
x0
x
x0 x
(2)左右导:
《高等数学》各章知识点总结——第1章

《高等数学》各章知识点总结——第1章1.集合的概念:集合是由确定的、互不相同的对象组成的一个整体。
集合中的对象称为元素,用大写字母A、B等表示集合,用小写字母a、b等表示元素。
集合中的元素无序,不重复。
2.集合的运算:(1)并集:表示由属于任一集合的元素组成的新集合,记作A∪B。
(2)交集:表示同时属于所有集合的元素组成的新集合,记作A∩B。
(3)差集:表示属于一个集合但不属于另一个集合的元素组成的新集合,记作A-B。
(4)互斥:两个集合的交集为空集,即A∩B=∅。
(5)补集:表示全集中不属于一些集合的所有元素的集合,记作A'。
3.集合之间的关系:(1)包含关系:若集合A的所有元素都属于集合B,则称集合A包含于集合B,记作A⊆B。
(2)相等关系:若集合A和集合B的元素完全相同,则称集合A等于集合B,记作A=B。
(3)真包含关系:若集合A包含于集合B,并且集合A不等于集合B,则称集合A真包含于集合B,记作A⊂B。
4.映射的概念:(1)映射:设有两个非空集合A和B,如果存在一种对应关系,使得A 中的每个元素对应B中的唯一元素,则称这种对应关系为映射。
(2)函数:映射的另一种称呼,表示自变量和因变量之间的关系。
通常用f(x)表示函数,其中x为自变量,f(x)为相应的因变量。
5.映射的性质:(1)定义域和值域:映射的定义域是指所有自变量的集合,值域是指所有因变量的集合。
(2)单射:每个自变量只对应唯一的因变量。
(3)满射:每个因变量都有对应的自变量。
(4)一一对应:既是单射又是满射的映射。
(5)复合映射:将两个映射结合起来形成一个新的映射,称为复合映射。
总结:本章主要阐述了集合的基本概念、集合的运算、集合之间的关系和映射的概念及其性质。
理解这些基本概念对于后续学习高等数学的内容具有重要的指导意义,也为我们建立起了抽象数学思维的基础。
在学习中,我们需要牢记集合的运算规则和映射的性质,灵活运用,为数学的进一步学习打下坚实的基础。
高等数学各项基础知识点总结

高等数学知识点总结第一章函数与极限一.函数的概念1.两个无穷小的比较设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim (1)l =0,称f (x)是比g(x)高阶的无穷小,记以f (x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。
(2)l ≠0,称f (x)与g(x)是同阶无穷小。
(3)l =1,称f (x)与g(x)是等价无穷小,记以f (x)~g(x)2.常见的等价无穷小当x →0时sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x,1−cos x ~2/2^x ,x e −1~x ,)1ln(x +~x ,1)1(-+αx ~xα二.求极限的方法1.两个准则准则1.单调有界数列极限一定存在准则2.(夹逼定理)设g (x )≤f (x )≤h (x )若A x h A x g ==)(lim ,)(lim ,则Ax f =)(lim 2.两个重要公式公式11sin lim 0=→xx x 公式2e x x x =+→/10)1(lim 3.用无穷小重要性质和等价无穷小代换4.用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次233521211...()2!3!!sin ...(1)()3!5!(21)!n xn n n n x x x e x o x n x x x x x o x n ++=++++++=-+++-++)(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-=)()1(...32)1ln(132n n n x o nx x x x x +-++-=++)(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则定理1设函数)(x f 、)(x F 满足下列条件:(1)0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim 0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大.这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital)法则.∞∞型未定式定理2设函数)(x f 、)(x F 满足下列条件:(1)∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;(2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;(3))()(lim 0x F x f x x ''→存在(或为无穷大),则注:上述关于0x x →时未定式∞∞型的洛必达法则,对于∞→x 时未定式∞∞型同样适用.使用洛必达法则时必须注意以下几点:(1)洛必达法则只能适用于“00”和“∞∞”型的未定式,其它的未定式须先化简变形成“00”或“∞∞”型才能运用该法则;(2)只要条件具备,可以连续应用洛必达法则;(3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在.6.利用导数定义求极限基本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在)7.利用定积分定义求极限基本格式1011lim ()()n n k k f f x dx n n →∞==∑⎰(如果存在)三.函数的间断点的分类)()(lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→函数的间断点分为两类:(1)第一类间断点设0x 是函数y =f (x )的间断点。
完整版高数一知识点

完整版高数一知识点一、导数与微分高等数学中,导数是一种表示函数变化率的工具。
它是研究函数在某一点上的局部性质和变化趋势的基本概念。
导数可以通过极限的概念进行定义,表示函数在某一点上的瞬时变化率。
导函数的计算方法包括:1. 基本函数的导数公式:常数函数、幂函数、指数函数、对数函数、三角函数等的导数公式。
2. 四则运算法则:求导的四则运算法则包括加法法则、减法法则、乘法法则和除法法则。
3. 复合函数的求导:使用链式法则求解复合函数的导数。
微分是导数的应用之一,用于研究函数的近似变化。
微分的计算方法包括:1. 微分的定义:微分可以通过导数来进行计算,表示函数在某一点上的变化量。
2. 微分的近似计算:使用微分近似计算可以帮助我们在没有具体数值的情况下估计函数的变化。
二、不定积分与定积分不定积分是求解函数原函数的过程,也被称为反导数。
不定积分可以表示函数的面积、函数的平均值等。
计算不定积分的方法包括:1. 基本积分公式:根据一些基本函数的导数公式,可以得到相应的不定积分公式。
2. 积分的线性性质:积分具有线性性质,即函数的线性组合的积分等于各组成函数的积分之和。
3. 特殊函数的积分:对于一些特殊的函数,可以通过一些特殊的方法进行积分。
定积分是求解函数在某一区间上的面积的过程,也被称为积分。
定积分可以表示弧长、质量、体积等物理量。
计算定积分的方法包括:1. 定积分的定义:定积分可以通过分割区间,计算分割点上函数值与区间长度的乘积之和来进行计算。
2. 积分的性质:定积分具有一些性质,例如积分的线性性质、积分的区间可加性等。
3. 牛顿-莱布尼茨公式:牛顿-莱布尼茨公式给出了定积分与不定积分之间的关系。
三、常微分方程常微分方程是研究函数的导数与自变量之间关系的方程。
它是高等数学中一个重要的分支,应用广泛。
常微分方程的求解方法包括:1. 可分离变量法:对于可分离变量的常微分方程,可以通过分离变量并积分的方法进行求解。
高等数学知识点

高等数学知识点高等数学知识点在日复一日的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。
哪些知识点能够真正帮助到我们呢?下面是小编为大家收集的高等数学知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
高等数学知识点1第一章:函数与极限1.理解函数的概念,掌握函数的表示方法。
2.会建立简单应用问题中的函数关系式。
3.了解函数的奇偶性、单调性、周期性、和有界性。
4.掌握基本初等函数的性质及图形。
5.理解复合函数及分段函数的有关概念,了解反函数及隐函数的概念。
6.理解函数连续性的概念(含左连续和右连续)会判别函数间断点的类型。
7.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左右极限间的关系。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.掌握极限性质及四则运算法则。
10.理解无穷孝无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
第二章:导数与微分1.理解导数与微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描写一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握初等函数的求导公式,了解微分的四则运算法则和一阶微分形式的不变性,会求初等函数的微分。
3.会求隐函数和参数方程所确定的函数以及反函数的导数。
4.会求分段函数的导数,了解高阶导数的概念,会求简单函数的高阶导数。
第三章:微分中值定理与导数的应用1.熟练运用微分中值定理证明简单命题。
2.熟练运用罗比达法则和泰勒公式求极限和证明命题。
3.了解函数图形的作图步骤。
了解方程求近似解的两种方法:二分法、切线法。
4.会求函数单调区间、凸凹区间、极值、拐点以及渐进线、曲率。
第四章:不定积分1.理解原函数和不定积分的概念,掌握不定积分的基本公式和性质。
2.会求有理函数、三角函数、有理式和简单无理函数的不定积分3.掌握不定积分的分步积分法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学(下)知识点主要公式总结第八章 空间解析几何与向量代数 1、二次曲面1)椭圆锥面:22222z b y a x =+ 2)椭球面:1222222=++cz b y a x 旋转椭球面:1222222=++c z a y a x 3)单叶双曲面:1222222=-+cz b y a x 双叶双曲面:1222222=--c z b y a x 4)椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z by a x =-2222 5)椭圆柱面:12222=+b y a x 双曲柱面:12222=-by a x6)抛物柱面:ay x =2 (二) 平面及其方程 1、点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n =,过点),,(000z y x2、一般式方程:0=+++D Cz By Ax截距式方程:1=++czb y a x 3、两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,⇔∏⊥∏21 0212121=++C C B B A A ;⇔∏∏21//212121C C B B A A ==4、点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:(三) 空间直线及其方程 1、一般式方程:⎪⎩⎪⎨⎧=+++=+++0022221111D z C y B x A D z C y B x A2、对称式(点向式)方程:pz z n y y m x x 000-=-=-3、两直线的夹角:),,(1111p n m s =,),,(2222p n m s =,⇔⊥21L L 0212121=++p p n n m m ;⇔21//L L212121p p n n m m ==4、直线与平面的夹角:直线与它在平面上的投影的夹角,⇔∏//L 0=++Cp Bn Am ;⇔∏⊥L pC nB mA ==第九章 多元函数微分法及其应用 1、 连续:),(),(lim00),(),(00y x f y x f y x y x =→2、偏导数:xy x f y x x f y x f x x ∆-∆+=→∆), (), (lim),(0000000 ;y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim ),(00000003、方向导数:βαcos cos yfx f l f ∂∂+∂∂=∂∂其中βα,为l的方向角。
4、梯度:),(y x f z =,则j y x f i y x f y x gradf y x),(),(),(000000+=。
5、全微分:设),(y x f z =,则d d d z z z x y x y∂∂=+∂∂ (一) 性质 1、函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:2、 微分法1) 复合函数求导:链式法则若(,),(,),(,)z f u v u u x y v v x y ===,则z z u z v x u x v x ∂∂∂∂∂=⋅+⋅∂∂∂∂∂,z z u z vy u y v y∂∂∂∂∂=⋅+⋅∂∂∂∂∂充分条件1)求函数),(y x f z =的极值 解方程组 ⎪⎩⎪⎨⎧==0y x f f 求出所有驻点,对于每一个驻点),(00y x ,令),(00y x f A xx =,),(00y x f B xy =,),(00y x f C yy =,① 若02>-B AC ,0>A ,函数有极小值, 若02>-B AC ,0<A ,函数有极大值;② 若02<-B AC ,函数没有极值; ③ 若02=-B AC ,不定。
2、 几何应用1)曲线的切线与法平面曲线⎪⎪⎩⎪⎪⎨⎧===Γ)()()(:t z z t y y t x x ,则Γ上一点),,(000z y x M (对应参数为0t )处的切线方程为:)()()(000000t z z z t y y y t x x x '-='-='-法平面方程为:0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x2) 曲面的切平面与法线曲面0),,(:=∑z y x F ,则∑上一点),,(000z y x M 处的切平面方程为:法线方程为:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=-第十章 重积分(一) 二重积分 :几何意义:曲顶柱体的体积1、 定义:∑⎰⎰=→∆=nk k k kDf y x f 1),(lim d ),(σηξσλ2、 计算: 1)直角坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=b x a x y x y x D )()(),(21ϕϕ,21()()(,)d d d (,)d bx ax Df x y x y x f x y y φφ=⎰⎰⎰⎰⎭⎬⎫⎩⎨⎧≤≤≤≤=d y c y x y y x D )()(),(21φφ, 21()()(,)d d d (,)d d y c y D f x y x y y f x y x ϕϕ=⎰⎰⎰⎰2) 极坐标⎭⎬⎫⎩⎨⎧≤≤≤≤=βθαθρρθρθρ)()(),(21D ,21()()(,)d d (cos ,sin )d Df x y x y d f βρθαρθθρθρθρρ=⎰⎰⎰⎰1、 定义: ∑⎰⎰⎰=→Ω∆=nk kk k kv f v z y x f 1),,(limd ),,(ζηξλ2、 计算:1)直角坐标⎰⎰⎰⎰⎰⎰=ΩDy x z y x z z z y x f y x v z y x f ),(),(21d ),,(d d d ),,( -------------“先一后二”⎰⎰⎰⎰⎰⎰=ΩZD bay x z y x f z v z y x f d d ),,(d d ),,( -------------“先二后一”2)柱面坐标⎪⎪⎩⎪⎪⎨⎧===zz y x θρθρsin cos ,(,,)d (cos ,sin ,)d d d f x y z v f z z ρθρθρρθΩΩ=⎰⎰⎰⎰⎰⎰3)球面坐标(三) 应用 曲面D y x y x f z S ∈=),(,),(:的面积:第十一章 曲线积分与曲面积分 (一) 对弧长的曲线积分1、 定义:01(,)d lim (,)ni i i Li f x y s f s λξη→==⋅∆∑⎰2、计算:设),(y x f 在曲线弧L 上有定义且连续,L 的参数方程为)(),(),(βαψϕ≤≤⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则(二) 对坐标的曲线积分 1、定义:设 L 为xoy 面内从 A 到B 的一条有向光滑弧,函数),(y x P ,),(y x Q 在 L 上有界,定义∑⎰=→∆=nk kk k Lx P x y x P 1),(lim d ),(ηξλ,∑⎰=→∆=nk kk kLy Q y y x Q 1),(lim d ),(ηξλ.向量形式:⎰⎰+=⋅LLy y x Q x y x P r F d ),(d ),(d2、计算:设),(,),(y x Q y x P 在有向光滑弧L 上有定义且连续, L 的参数方程为):(),(),(βαψϕ→⎪⎩⎪⎨⎧==t t y t x ,其中)(),(t t ψϕ在],[βα上具有一阶连续导数,且0)()(22≠'+'t t ψϕ,则设平面有向曲线弧为⎪⎩⎪⎨⎧==)()( t y t x L ψϕ:,L 上点),(y x 处的切向量的方向角为:βα,,)()()(cos 22t t t ψϕϕα'+''=,)()()(cos 22t t t ψϕψβ'+''=,则d d (cos cos )d LLP x Q y P Q s αβ+=+⎰⎰.(三) 格林公式 1、格林公式:设区域 D 是由分段光滑正向曲线 L 围成,函数),(,),(y x Q y x P 在D 上具有连续一阶偏导数,则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂LD y Q x P y x y P x Q d d d d2、G 为一个单连通区域,函数),(,),(y x Q y x P 在G 上具有连续一阶偏导数,则y Px Q ∂∂=∂∂ ⇔曲线积分 d d LP x Q y +⎰在G 内与路径无关(四) 对面积的曲面积分 1、 定义:设∑为光滑曲面,函数),,(z y x f 是定义在∑上的一个有界函数,定义 i i i i ni S f S z y x f ∆=∑⎰⎰=→∑),,(lim d ),,(1ζηξλ2、计算:———“一单二投三代入”),(:y x z z =∑,xy D y x ∈),(,则(五) 对坐标的曲面积分 1、 定义:设∑为有向光滑曲面,函数),,(),,,(),,,(z y x R z y x Q z y x P 是定义在∑上的有界函数,定义1(,,)d d lim (,,)()ni i i i xy i R x y z x y R S λξηζ∑→==∆∑⎰⎰同理,1(,,)d d lim (,,)()ni i i i yz i P x y z y z P S λξηζ∑→==∆∑⎰⎰;01(,,)d d lim (,,)()ni i i i zx i Q x y z z x R S λξηζ∑→==∆∑⎰⎰2、 性质:1)21∑+∑=∑,则计算:——“一投二代三定号”),(:y x z z =∑,xyD y x ∈),(,),(y x z z =在xyD 上具有一阶连续偏导数,),,(z y x R 在∑上连续,则(,,)d d [,,(,)]d d x yD R x y z x y R x y z x y x y ∑=±⎰⎰⎰⎰,∑为上侧取“ + ”, ∑为下侧取“ - ”.其中γβα,,为有向曲面∑在点),,(z y x 处的法向量的方向角。
(六) 高斯公式 1、 高斯公式:设空间闭区域Ω由分片光滑的闭曲面∑所围成, ∑的方向取外侧, 函数,,P Q R 在Ω上有连续的一阶偏导数,则有 或()⎰⎰⎰⎰⎰∑Ω++=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂S R Q P z y x z R y Q x P d cos cos cos d d d γβα2、通量与散度通量:向量场),,(R Q P A =通过曲面∑指定侧的通量为:⎰⎰∑++=Φy x R x z Q z y P d d d d d d散度:zR y Q x P A div ∂∂+∂∂+∂∂= (七) 斯托克斯公式 1、斯托克斯公式:设光滑曲面 ? 的边界 ?是分段光滑曲线, ? 的侧与 ? 的正向符合右手法则,),,(),,,(),,,(z y x R z y x Q z y x P 在包含? 在内的一个空间域内具有连续一阶偏导数, 则有为便于记忆, 斯托克斯公式还可写作: 2、环流量与旋度环流量:向量场),,(R Q P A =沿着有向闭曲线?的环流量为⎰Γ++z R y Q x P d d d旋度:⎪⎪⎭⎫⎝⎛∂∂-∂∂∂∂-∂∂∂∂-∂∂=y P x Q x R z P z Q y R A rot , ,第十二章 无穷级数 (一) 常数项级数 1、定义:1)无穷级数:+++++=∑∞=n n nu u u u u3211部分和:n nk k nu u u u u S ++++==∑= 3211,正项级数:∑∞=1n nu,0≥nu交错级数:∑∞=-1)1(n n nu ,0≥n u2)级数收敛:若SS nn =∞→lim 存在,则称级数∑∞=1n nu收敛,否则称级数∑∞=1n nu发散3)条件收敛:∑∞=1n nu收敛,而∑∞=1n nu发散;∞2、 性质:1)改变有限项不影响级数的收敛性;2) 级数∑∞=1n n a ,∑∞=1n nb收敛,则∑∞=±1)(n n nb a收敛;3) 级数∑∞=1n na收敛,则任意加括号后仍然收敛;4) 必要条件:级数∑∞=1n nu收敛⇒0lim =∞→n n u .(注意:不是充分条件!) 3、审敛法正项级数:∑∞=1n nu,0≥nu1)定义:SS nn =∞→lim 存在;2)∑∞=1n nu收敛⇔{}nS 有界;3) 比较审敛法:∑∞=1n nu,∑∞=1n nv为正项级数,且),3,2,1( =≤n v u n n若∑∞=1n nv收敛,则∑∞=1n nu收敛;若∑∞=1n nu发散,则∑∞=1n nv发散.4)比较法的推论:∑∞=1n nu ,∑∞=1n n v 为正项级数,若存在正整数m ,当m n >时,n n kv u ≤,而∑∞=1n nv收敛,则∑∞=1n nu收敛;若存在正整数m ,当m n >时,n n kv u ≥,而∑∞=1n n v 发散,则∑∞=1n n u 发散.5)比较法的极限形式:∑∞=1n n u ,∑∞=1n n v 为正项级数,若)0( lim +∞<≤=∞→l l v u nnn ,而∑∞=1n n v 收敛,则∑∞=1n nu收敛;若0lim >∞→nnn v u 或+∞=∞→n n n v u lim ,而∑∞=1n n v 发散,则∑∞=1n nu发散.6)比值法:∑∞=1n n u 为正项级数,设l u u nn n =+∞→1lim ,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∑∞=1n nu可能收敛也可能发散.7) 根值法:∑∞=1n nu为正项级数,设l u nn n =∞→lim,则当1<l 时,级数∑∞=1n n u 收敛;则当1>l 时,级数∑∞=1n n u 发散;当1=l 时,级数∞可能收敛也可能发散.8) 极限审敛法:∑∞=1n nu为正项级数,若0lim >⋅∞→n n u n 或+∞=⋅∞→n n u n lim ,则级数∑∞=1n n u 发散;若存在1>p ,使得)0( lim +∞<≤=⋅∞→l l u n n pn ,则级数∑∞=1n n u 收敛.交错级数:莱布尼茨审敛法:交错级数:∑∞=-1)1(n n n u ,0≥nu 满足:),3,2,1( 1 =≤+n u u n n ,且0lim =∞→n n u ,则级数∑∞=-1)1(n n n u 收敛。