(UV-Vis)紫外-可见吸收光谱分析
05第5章 紫外可见吸收光谱法

ε=200
苯 甲苯 间二甲苯 1,3,5-三甲苯 六甲苯
其中B带为芳香族的重要特 征吸收带,常用于识别:精 精 细结构是 π → π*与苯环振动 细结构 引起;
λmax(nm) 254 261 263 266 272
ε max 200 300 300 305 300
含带有孤对电子的取代基时,由于n → π*共轭, B带强度 增大简化,红移;对于烷基取代基影响不大。
ε
能级跃迁
电子能级间跃迁 同时,总伴随有 的同时 同时 振动和转动 振动 转动能级间 转动 的跃迁。即电子光 谱中总包含 包含有振动 包含 能级和转动能级间 跃迁产生的若干谱 线而呈现宽谱带 宽谱带。 宽谱带
分子的内能: 分子的内能:电子能量Ee 、振动能量Ev 、转 动能量Er 即: E=Ee+Ev+Er 三种能级都是量子化的, 三种能级都是量子化的,且各自具有相应的能 量。
σ*
K E,B R
∆E
π*
n
π
σ
2):n→σ*跃迁
所需能量较大。 吸收波长为150~250nm,大部分在远紫外区,近紫外区 仍不易观察到。 含非键电子的饱和烃衍生物(含N、O、S和卤素等杂原 子)均呈现n→σ* 跃迁。
化合物 H2O CH3OH CH3CL CH3I CH3NH2 λmax(nm) 167 184 173 258 215 εmax 1480 150 200 365 600
讨论: 讨论:
0.005~0.050eV, (1) 转动能级间的能量差ΔΕr:0.005~0.050eV,跃迁 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 产生吸收光谱位于远红外区。远红外光谱或分子转动光谱; 约为:0.05~ eV, (2) 振动能级的能量差ΔΕv约为:0.05~1eV,跃迁产 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 生的吸收光谱位于红外区,红外光谱或分子振动光谱; 较大1 20eV。 (3) 电子能级的能量差ΔΕe较大1~20eV。电子跃迁产生 的吸收光谱在紫外-可见光区,紫外— 的吸收光谱在紫外-可见光区,紫外—可见光谱或分子的电 子光谱; 子光谱;
波谱分析第6章 紫外可见光谱(1)

图 分子轨道的能级和电子跃迁类型
s*
*
E
n
s
跃迁能量大小:
σ→σ* > n →σ* > π→π* > n→π*
仅在远紫外区可能观察到它们的吸收峰。
杂原子非键轨道中的电子向σ*轨道的跃迁,一般在 200 nm左右。
电子由成键轨道向*轨道的跃迁。如具有一个孤 立键的乙烯,跃迁的吸收光谱约在165 nm。分子中 如有两个或多个键处于共轭的关系,则这种谱带将 随共轭体系的增大而向长波方向移动。
max
254nm
270nm
红移和蓝移 增色效应与减色效应
最大吸收波长(λmax);在峰旁边一个小 的曲折称为肩峰;在吸收曲线的波长最 短一端,吸收相当大但不成峰形的部分 称为末端吸收。整个吸收光谱的形状是
鉴定化合物的标志。
吸收带分类
根据电子和轨道的种类,可以把吸收谱带分为四 类: K 吸收带、R 吸收带、B 吸收带和 E 吸收带。
图 (a) Frank-Condon原理示意图
(b) 紫外光谱的精细结构
6.1.2 电子跃迁选择定则(Selection rule)
跃迁必须遵守选择定则
理论上,允许的跃迁,跃迁几率大,吸收强度高( max大);禁阻的跃迁,
跃迁几率小,吸收强度低或者观察不到。 实际上禁阻的跃迁也可以观察到,只是其强度要比允许跃迁要小得多。
紫外-可见光谱分析
6.1.1紫外-可见光谱的基本原理
紫外-可见吸收光谱(UV-VIS) 分子吸收10~800nm光谱区的电磁波而产生的吸收光谱。该数 量级能量的吸收,可导致分子的价电子由基态(S0)跃迁至高能 级的激发态(S1, S2, S3, …) 紫外-可见光区分为三个区域:
紫外-可见吸收光谱分析

故 =
hc E
4.136 10 15 eV s 2.998 1010 cm s-1 = 5eV
=2.48×10-5cm=248 nm
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
可见,由于分子内部电子能级跃迁而产生的吸收光谱主 要处于紫外可见光区(200~800nm),这种分子光谱称为电子光 谱或紫外-可见光谱。 在电子能级跃迁时不可避免地要产生振动能级的跃迁。 ΔEv大约比ΔEe小10倍,一般在0.05~1eV之间。如果是0.1eV,
Zhengzhou University of Light Industry
仪器分析
郑州轻工业学院
程传玲
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
第五章 紫外-可见吸收光谱法 Ultraviolet-Visible Absorption Spectrometry , UV-VIS
烟草化学 Tobacco Chemistry
Zhengzhou University of Light Industry
将不同波长的光透过某一物质,测量每一波长下物质对 光的吸收程度即吸光度,然后以波长为横坐标,以吸光度为
纵坐标作图,这种图谱称为该物质吸收曲线或吸收光谱。某
物质的吸收光谱反映了它在不同的光谱区域内吸收能力的分 布情况,可以从波形、波峰的强度、位置及其数目看出来,
区域内,不同波长的光引起人的视觉神经的感受不同,所以
我们看到了各种不同颜色的光。例如,400~450nm的光是紫 光,580~600nm的光是黄光等。
仪器分析第六章UVVIS

C
O
CH3
—环己烷 …水
异丙叉丙酮的紫外-可见光谱
二、溶剂极性对吸收光谱精细结构的影响 例如:对称四嗪在不同溶剂中的吸收光谱
Ⅰ:在蒸汽态中 Ⅱ:在环己烷中 Ⅲ:在水中
★
三、正确选择溶剂 溶剂对紫外-可见吸收光谱影响很大,因此选择溶
剂应注意下列要求: 1.对试样有很好的溶解力,且对试样应是惰性的; 2.在溶解度允许的范围内,尽量选择极性较小的
二、配位场跃迁
过渡金属离子及其化合物除了电荷迁移跃 迁外,还有配位场跃迁。
配位场跃迁的产生:过渡金属离子配合物 在配体的配位场作用下,5个能量相等的d 轨道或7个能量相等的f轨道裂分成几组能 量不等的d轨道或f轨道,当物质吸收光能 后,处于低能级的d电子或f电子可分别跃 迁至高能级的d轨道或f轨道,产生吸收光 谱。
最大吸收峰所对应的波长λmax是化合物中电 子能级跃迁时吸收的特征波长,对鉴定化 合物尤为重要,与λmax相应的εmax也是定性 和定量分析的另一重要参数。
整个吸收光谱的形状决定于物质的性质, 反映物质分子内部能级分布状况,是物质 定性的依据。
▲
6.2有机化合物紫外—可见吸收光谱
一、有机化合物电子跃迁类型 紫外-可见吸收光谱是由分子中价电子在电
能复合成白光的两种颜色的光叫互补色光。物 质所显示的颜色是吸收光的互补色。
KMnO4的颜色及吸收光谱
▲
6.1 分子吸收光谱基本原理
一、电子跃迁产生紫外—可见吸收光谱 分子和原子一样,也有它的特征分子能级,
这些能级是由分子内部运动决定的。
①价电子的运动
分子内部运动
②分子内原子在平衡 位置附近的振动
使电子从给予体外层轨道向接受体相应的 轨道跃迁产生吸收光谱,此过程又称内氧 化-还原。
紫外可见吸收光谱分析

(2) 介质不均匀性引起的偏离 朗伯-比尔定律在均匀、非散射时可成立,当介质不均匀,或有胶体、乳浊、悬浮体存
在时,入射光除了被吸收外,还有反射、折射损失,故所测A值比实际吸收要大许多,导 致偏离比尔定律。
引起工作曲线弯曲的原因还有一些,如:溶质的性质变化、操作不当等等。
§ 2.3 影响显色反应的若干因素 (一) 吸光光度法对显色反应的要求
2、分子吸收光谱
①电子光谱 在多原子分子中,分子轨道中有许多电子能级,平时各电子都尽先进入低能级,处于基态。当
有光波照射这些分子时,轨道中的电子会吸收光波中的某些波长的光,使这束光中缺少某些波长的 光。电子本身将从低能级跃迁到高能级上。
象这样的情况下,被吸收的光往往波长较短,在紫外和可见光范围。本章主要讨论这一部分内 容。
红色), 1﹕3(pH 8~11.5 黄色,最稳定)三种不同颜色的络合物生成。
3、温度的影响:一般在室温.有些需加热. 4、显色时间的影响
5、溶剂的影响:可提高显色反应的灵敏度. 6、共存离子的影响:
§ 2.4 光度测量误差和测量条件的选择
一、 仪器测量误差
在吸光光度分析中,除了各种化学条件所引起的误差外,仪器测量不准确也是误差的主要来源。 任何光度计都有一定的测量误差,这种误差可能来源于光电池不灵敏、光电流测量不准和光源不稳
§ 2 光度分析法的基本原理
一、光度分析法的特点 1、适用范围:常用于测定试样中1%~10-3 %的微量组分,甚至可测定低至10-4 %~10-5 %的痕量组份。目 前,随着仪器和方法的改进,有的已达10-9 %。一般情况下,相对误差为2~5 %,这在微量分析中已是十 分精确的了。 2、特点:灵敏、快速、准确、简便。
cF2e
UV-Vis紫外吸收光谱分析共29页PPT资料

二.价电子跃迁类型
紫外吸收光谱是由分子中价电子的跃 迁而产生的。紫外吸收光谱决定于分 子中价电子的分布和结合情况。
HC O
n
s
Hp
A.σ→σ*:一般发生在远紫外线区,10 ~200nm
B. π→π*:发生在近紫外线区 ~200nm
C. n→σ*:发生在远、近紫外线区之间
150nm~250nm
D. n →π* :发生在近紫外线区与可见光区之间,
❖ 吸光物质的特征常数,ε(λ)
❖ 在温度和介质条件一定时,ε 仅与吸光物质的结构与性质有关
❖ 不随浓度c 和光程长度b 的改变而改变:ε= b c / A。
❖ εmax越大表明该物质的吸光能力越强,测定的灵敏度越高。
3.吸光度的加合性
多组分混合体系中,如果各组分分子之间不存在离解、聚合、
化学反应等化学平衡时,其吸光度具有加合性,即:
图a):X,Y 组份最大吸收波长不重迭,相互不干扰,可以按两个单一组份处理。
具体做法:以浓度为cs的标准溶液调T=100%或A=0(调零),所测得的试样吸 光度实际就是上式中的A,然后求出c,则试样中该组份的浓度为(cs+c)。
2、多组分定量方法
① 由于吸光度具有加合性,因此可以在同一试样中测定多个组份。 设试样中有两组份 X 和 Y,将其显色后,分别绘制吸收曲线,会出现如图所 示的三种情况:
5.最佳的吸光度测量范围
由L-B定律: AlgTbc
微分后得: dlgT0.43d4Tbdc
T
将上两式相比,并将 dT 和 dc 分别换为T 和 c,得
c 0.434T c TlgT
当相对误差 c/c 最小时,求得T=0.368 或 A=0.434。即当A=0.434 时,吸 光度读数误差最小!
(UV-Vis)紫外-可见吸收光谱分析

朗伯-比耳定律 材料对光的吸收可以用吸收定律加以描述。
布格Bouguer和朗伯Lambert先后于1729年和1760年阐 明了光的吸收和吸收层厚度的关系,称为朗伯定律。 1852年比耳又提出了光的吸收和吸收物浓度之间的关 系,称为比耳定律。两者的结合称为朗伯比耳定律。
1
B(hv Eg ) 2
为吸收系数,B为常数,hv 为光子的能量
Eg 为半导体的禁带宽带。
( )2和 hv为线性关系,由半导体的吸收光谱,做 ( )2
B
B
(
)
2和
hv
的图谱,就得到线性吸收边
B
如果将吸收边的线性关系延伸到与 hv
轴相交的地方,就可以得到半导体的带隙 Eg
一般将用这种方法得到的带隙叫做光学带隙,它的测 量是紫外-可见吸收光谱在半导体材料中最常见的应用。
dI x
ai dni
i 1
Ix
s
当光束通过厚度为b的吸收层时,产生的总的吸光度等
于在全部吸收层内吸收的总和,对上式积分得到:
m
ln I0
ai ni
i 1
I
s
吸光度是指吸光体对光的吸收程度,通常人们用
A
log
I0 I
来表示,因此,根据吸光度A的定义
A log I0
I
2. 禁戒的直接跃迁
某些情况下,即使在直接禁带的半导体材料中,其价 带顶和导带底都在K空间的原点,但是它们之间的跃 迁即K=0可能被选择定则禁止,而K不为0的情况下的 跃迁反而被允许,一般把这种跃迁称为禁戒的直接跃 迁。同样通过计算,可以得到吸收系数和光子能量的 关系
仪器分析方法比较

仪器分析方法比较常见的仪器分析方法包括原子吸收光谱法(AAS)、紫外可见光谱法(UV-Vis)、红外光谱法(IR)、质谱法(MS)和色谱法(GC、HPLC)。
下面对这些方法进行比较。
1.原子吸收光谱法(AAS)是一种常用的金属元素分析方法。
这种方法可以测定许多金属元素的浓度,具有高灵敏度和高选择性。
然而,AAS 只适用于金属元素的分析,不适用于其他类型的化学物质。
2. 紫外可见光谱法(UV-Vis)是一种非常常用的分析方法,用于测量物质的吸光度。
这种方法适用于有机化合物和无机化合物的分析,可以测量样品的浓度、化学键的结构和化合物的稳定性。
UV-Vis具有灵敏度高、分辨率好和操作简便等优点。
3.红外光谱法(IR)可以用来确定化学物质的功能基团和结构。
这种方法测量物质对红外辐射的吸收情况,因为每个化学物质都有特定的吸收峰,所以可以根据吸收峰的位置和强度来推断化合物的结构。
IR具有高灵敏度和高分辨率。
4.质谱法(MS)是目前最常用的分子结构分析方法之一、质谱仪可以测量化合物离子的质量和相对丰度,从而确定化学物质的分子量和分子结构。
质谱法适用于分析有机和无机化合物,具有高分辨率和高灵敏度。
5.色谱法(GC、HPLC)是一种广泛应用的分离和分析方法,用于分离复杂混合物中的化合物。
气相色谱法(GC)适用于分析气体和挥发性液体的化合物,液相色谱法(HPLC)适用于分析非挥发性化合物。
色谱法具有高分离效率、高分辨率和高灵敏度。
综上所述,不同的仪器分析方法具有不同的优点和适用范围。
在实际应用中,需要根据样品的性质和分析目的选择合适的方法。
例如,对于金属元素的分析,可以选择AAS;对于有机化合物的浓度测定,可以选择UV-Vis或HPLC;对于化合物结构的确定,可以选择IR或MS。
此外,对于复杂样品的分析,也可以采用多种方法的组合,以获得更准确的结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为紫外光区光源。
• 其中:486.13nm (F线) 和 656.28nm ( C线)
可作为波长校正。
(二).单色器 紫外-可见分光光度计的单色器的作用是
将来自光源的连续光谱按波长顺序色散,并从
中分离出一定宽度的谱带。单色器由入射狭缝、
准直镜、色散元件、物镜和出射狭缝构成。
(1).色散光件
棱镜
棱镜的色散作用是棱镜材料对不同波长的光有
A logT
实际测量,往往测量物质的透光率,再转化为吸光强度。
半导体材料中光的吸收规律 紫外-可见光的吸收主要是电子从基态到激发态的跃迁 半导体材料中,电子从基态到激发态的跃迁是和它们 的能带结构相关的。 因此光的吸收规律必然和它们的能带结构相关 直接禁带 间接禁带 ZnO,GaAs,CdS Si,Ge
B(hv E g )
2 2
3
2
3. 间接跃迁 在间接带隙的半导体材料中,由于价带顶和导带底在 K空间的位置不同,加上光子的波矢比电子的波矢小 得多,为了满足动量守恒的原则,必须要借助其他过 程,如声子参与或杂质散射来实现电子在能级间的跃 迁,这种电子跃迁方式称为间接跃迁。通过计算,可 以得到吸收系数和光子能量的关系:
m I0 4 A log 4.343 10 Nb ai Ci I i 1
将常数项和光子的吸收界面 a i 合并为单一项,
m I 以 i 表示 称为摩尔吸光系数。则 A log 0 b i Ci I i 1 I0 一般对于单一组分,上式可以写成: A log bC I
( ) B
B(hv Eg )
1 2
2
和 hv 的图谱, 就得到线性吸收边
二. 紫外-可见吸收光谱的方法和设备 紫外-可见光分光光度计是在紫外和可见光范围内, 改变通过样品的入射光波长,并测得不同入射光波 长下样品的吸光度,从而获得样品信息的分析仪器。
• 仪器的基本构造: • 紫外-可见分光光度计都是由光源、单色器、吸收 池、检测器和信号指示系统五个部分构成。
2. 禁戒的直接跃迁 某些情况下,即使在直接禁带的半导体材料中,其价 带顶和导带底都在K空间的原点,但是它们之间的跃 迁即K=0可能被选择定则禁止,而K不为0的情况下的 跃迁反而被允许,一般把这种跃迁称为禁戒的直接跃 迁。同样通过计算,可以得到吸收系数和光子能量的 关系
( ) 3和 hv 为线性关系, 由半导体的吸收光谱,做 B ( ) 3和 hv 的图谱, 就得到线性吸收边 B
E E 激发态 E基态 hv h
c
除此之外,分子也能对光有吸收,同样是由于电子 在能级之间的跃迁引起的。分子内部能量的变化 E 主要由3部分组成:振动能变化
E振动
、转动能变化
E转动、电子运动能量变化 E电子
E振动 约比 E电子 小10倍, E电子 最大,范围为1-10eV,
紫外-可见吸收光谱法
物质对光的吸收具有选择性,当改变通过某一物质的 入射光的波长,并且记录该物质在每一波长处的吸光 度时,这样就可以获得该物质的吸收光谱。
由于分子中电子能级的范围刚好在紫外-可见光(200800nm)波段,因此当入射光的波长在200-800nm时, 所获得的吸收光谱就是紫外-可见吸收光谱。
主要部件
光源 单色器 吸收池 检测器 讯号处理与显示器
• (一)光源
• 要求:1.发射强度足够且稳定
• 2.具有连续光谱
•
3.发光面积小
• (1)钨灯和卤钨灯: • 它能发射350~2500nm波长范围的连续光谱,
通常取其在360~1000nm 波段为可见光区光源。
(2). 氢灯和氘灯
• 能发射150~400nm 波长范围的连续光谱,可作
• 仪器类型: • 紫外-可见分光光度计主要有以下几种类型:单光 束分光光度计、双光束分光光度计、双波长分光 光度计和多通道分光光度计。
单光束 单波长分光光度计 双波长分光光度计 双光束 一束通过样品吸收池, 一束通过参比样品吸收 池。
单波长的双光束是应用最广的。 双波长分光光度计是让两束不同波长的单色光分别交 替通过同一样品吸收池,而直接读出这两个波长的吸 光度差的仪器。可以方便的由吸光度差求出样品中被 测组分的含量。如果选择适当的波长,还可以在干扰 组分的存在下,不经分离而直接得到被测组分的含量。
(2).准直镜
准直镜是以狭缝的焦点的聚光镜。
作用: 将发散光变成平行光,将色散光后的平
行单色光聚集于出口狭缝。 (3).狭缝 狭缝宽度直接影响分光质量 狭缝过宽,单色光不纯。 狭缝过窄,光通量小,降低灵敏度。
一般以减小狭缝宽度时吸光度不再改变时的宽
度为合适。 狭缝宽度为0~2mm(3mm),可调节。
dx
I0
I
x0
x
xb
先考察吸收层厚度为dx的小体积单元内的吸收情况。
光强为 I x 的光束通过小体积单元吸收层后,减弱了dI x
dI x / I x 表示吸收率。
根据量子理论,光束强度可以看作是单位时间、单位 体积内通过光子的总数, dI x / I x 可以看作是光束通过吸收介质时每个光子被 物质分子吸收的平均概率 从另一方面说,只有在近似分子尺寸的范围内,物质 分子与光子相互碰撞时才有可能捕获光子。
E转动比 E电子 小100或者1000倍。
。
由于分子中从基态到激发态的电子能级的能量变化范 围刚好对应于被吸收光的紫外-可见光200-800nm波段, 因此,紫外-可见吸收光谱可以探测材料分子中电子 在能级间的跃迁,进而可以研究材料的内部结构如禁 带和定量分析。
朗伯-比耳定律 材料对光的吸收可以用吸收定律加以描述。 布格Bouguer和朗伯Lambert先后于1729年和1760年阐 明了光的吸收和吸收层厚度的关系,称为朗伯定律。 1852年比耳又提出了光的吸收和吸收物浓度之间的关 系,称为比耳定律。两者的结合称为朗伯比耳定律。 朗伯-比耳定律,是通过研究光在溶液中的吸收规律 获得的。显示了入射强度为I0的光在通过长度为b, 截面积为s的吸光体的示意图。
a n
m
来表示,因此,根据吸光度A的定义 I 0 0.4343 m 0.4343 b m A log ai ni ai ni I s V i 1 i 1 V为体积,b为液体厚度。 由于溶液的摩尔浓度 C
1000 n NV
C是溶液的摩尔浓度,单位是mol/L,N是阿福加德罗常数。n为 吸光分子的数目。
固体中的吸收规律
I0 A log bC I
是物质对光的吸收的基本规律。
不仅适用于溶液,而且能很好的适用于固体和气体。
C 定义为 当光在固体中传播时,由于C是常数,
另外,光通过吸光体的长度b相当于样品的厚度d,
因此:
I0 I0 A log d ed I I 0 e d I I
i 1
a i 是在小单元体积中第i种吸光分子对指定频率的光
子的吸收截面,
dni是在小单元体积中第i种吸光分子的数目, m是能 m 吸光的分子的种类。因此: dI ai dni
x
i 1
s
当光束通过厚度为b的吸收层时,产生的总的吸光度等 于在全部吸收层内吸收的总和,对上式积分得到:
i i I0 ln i 1 I s I0 A log 吸光度是指吸光体对光的吸收程度,通常人们用 I
(三) 吸收池 用光学玻璃制成的吸收池,只能用于可见光区。
用熔融石英(氧化硅)制的吸收池,适用于紫外
光区,也可用于可见光区。
盛空白溶液的吸收池与盛试样溶液的吸收池应互相
匹配,即有相同的厚度与相同的透光性。
(四) .检测器
(1)光电管和光电増倍管
图11.12光电管检测示意图 1.照射光 2.阳极
不同的折射率。
用棱镜分光得到的光谱,按波长排列是疏密不 均匀的,短波长区疏,长波长区密,波长不等距。
光栅
光栅是在一个高度抛光的表面上刻出大量平行
等距离的条痕(1200条条痕/mm)它是利用复光通
过条痕反射后,产生衍射与干涉作用,使不同波长
的光有不同的方向而起到色散作用。
光栅的光谱是由紫到红,谱线间距相等,均匀 分布的连续光谱。 有闪耀光栅,全息光栅。
这两种类型半导体材料的紫外-可见光谱具有共同的特征 即存在一个特征吸收边
不同的物质有不同的吸收边。 同一种物质在不同的吸收波段,其吸收系数是不同的, 在强吸收区,吸收系数比较大,随着光子能量的变化 为幂指数变化,指数可能为1/2,1/3,2等 在弱吸收区,吸收系数一般相对比较小。 这两种半导体的紫外-可见光的吸收机理又是不同的。 直接禁带 光的吸收是和电子的直接跃迁有关
紫外吸收光谱:200 ~ 400 nm 可见吸收光谱:400 ~ 800 nm 两者都属电子光谱。
研究各种物质的紫外-可见吸收光谱,可以为研究 它们的内部结构提供重要的信息。而基于上述原 理进行分析的方法,称为紫外-可见光分光光度法。 它具有如下特点: 1. 灵敏度高。可以测定10-7-10-4g· mL-1的微量组分。 2. 准确度较高。其相对误差一般在1%-5%之内。 3. 仪器价格较低,操作简便、快速。 4. 应用范围广。 紫外-可见光分光光度法自19世纪问世以来,已有 100多年历史,由于它具有较高的精度、设备简单, 检测快速可靠、测试范围较广等优点,可用于微量 元素分析、高纯物质测试、环境及生物化学研究等 方面,并在半导体材料研究和开发领域广泛应用。
紫外-可见光分光光度计具有以下特点:
①较高的灵敏度,对一般半导体材料可测到10-3~106mol/L。而且,有一定的准确度,该方法相对误差为2%5%,可满足对微量组分测定的要求。
②操作简单,快速,选择性好,仪器设备简单。 ③应用广泛,可测定大多数无机物质及具有共轭双键的 有机化合物。不仅在半导体材料,而且在化工、医学、 生物等领域中也常用来剖析天然产物的组成和结构,测 定化合物的含量及研究生化过程等。 ④根据半导体中带间跃迁的吸收规律,紫外-可见光分光 光度计还可以研究半导体的带隙及半导体纳米颗粒尺寸 的大小。