2011—2019年新课标全国卷1理科数学分类汇编——9.解析几何

合集下载

2011年高考全国卷理科数学新课标卷及解析

2011年高考全国卷理科数学新课标卷及解析

2019年普通高等学校招生全国统一考试理科数学一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数212ii+-的共轭复数是 (A )35i - (B )35i (C )i - (D )i(2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是(A )3y x = (B) 1y x =+ (C )21y x =-+ (D)2xy -=(3)执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A )120 (B )720 (C )1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A )13(B )12(C )23(D )34(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=(A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示, 则相应的侧视图可以为(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为 (A 2 (B 3 (C )2 (D )3(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40(9)由曲线y x =2y x =-及y 轴所围成的图形的面积为(A )103 (B )4 (C )163(D )6(10)已知a 与b 均为单位向量,其夹角为θ,有下列四个命题12:10,3P a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭22:1,3P a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:10,3P a b πθ⎡⎫->⇔∈⎪⎢⎣⎭4:1,3P a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,P P (B )13,P P (C )23,P P (D )24,P P(11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则(A )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递减 (B )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递减(C )()f x 在0,2π⎛⎫ ⎪⎝⎭单调递增 (D )()f x 在3,44ππ⎛⎫ ⎪⎝⎭单调递增(12)函数11y x =-的图像与函数2sin (24)y x x π=-≤≤的图像所有交点的横坐标之和等于(A )2 (B) 4 (C) 6 (D)8第Ⅱ卷本卷包括必考题和选考题两部分。

2011年—2019历年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编9.三角函数与解三角形

2011年—2019历年高考全国卷(1卷、2卷、3卷)理科数学试题分类汇编9.三角函数与解三角形

2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编9.三角函数与解三角形一、选择题(2019·全国卷Ⅰ,理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③(2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin │x │(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B C D (2019·全国卷Ⅲ,理12)设函数()sin(0)f x x ωω=+>,已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点;②f (x )在(0,2π)有且仅有2个极小值点;③f (x )在(0,)10π单调递增;④ω的取值范围是1229[,)510.其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④(2018·新课标Ⅱ,6)在ABC △中,cos2C =1BC =,5AC =,则AB =( )A .BCD .(2018·新课标Ⅲ,理4)若1sin 3α=,则cos2α=( )A .89B .79C .79-D .89-(2018·新课标Ⅲ,理9)ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C =( )A .2π B .3π C .4π D .6π(2017·新课标Ⅰ,9)已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结正确的是( ) A .把C 1上各点的横坐标伸长到原来2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B .把C 1上各点的横坐标伸长到原来2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D .把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2(2017·新课标Ⅲ,6)设函数()πcos 3f x x ⎛⎫=+⎪⎝⎭,则下列结论错误的是( ). A .()f x 的一个周期为2-πB .()y f x =的图像关于直线83x π=对称 C .()f x +π的一个零点为6x π=D .()f x 在π,2⎛⎫π⎪⎝⎭单调递减 (2016·新课标Ⅰ,12)已知函数)2,0)(sin()(πϕωϕω≤>+=x x f ,4π-=x 为)(x f 的零点,4π=x 为)(x f y =图像的对称轴,且)(x f 在)365,18(ππ单调,则ω的最大值为( )A .11B .9C .7D .5(2016·新课标Ⅱ,7)若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ=-∈ B .()26k x k Z ππ=+∈ C .()212k x k Z ππ=-∈D .()212k x k Z ππ=+∈(2016·新课标Ⅱ,9)若3cos()45πα-=,则sin 2α =( ) A .725B .15C .15-D .725-(2016·新课标Ⅲ,5)若3tan 4α=,则2cos 2sin 2αα+=( ) A.6425 B. 4825 C. 1 D. 1625(2016·新课标Ⅲ,8)在ABC △中,π4B =,BC 边上的高等于13BC ,则cos A =( )A.31010 B. 1010 C.1010- D. 31010- (2015·新课标Ⅰ,2)sin 20cos10cos160sin10-=( )A .32-B .32C .12-D .12(2015·新课标Ⅰ,8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k ππ-+∈Z B .13(2,2),44k k k ππ-+∈Z C .13(,),44k k k -+∈Z D .13(2,2),44k k k -+∈Z(2014·新课标Ⅰ,6)如图,圆O 的半径为1,A 是圆上的定点,P 是圆上的动点,角x 的始边为射线OA ,终边为射线OP ,过点P 作直线OA 的垂线,垂足为M ,将点M 到直线OP 的距离表示为x 的函数()f x ,则y =()f x 在[0,π]上的图像大致为( )(2014·新课标Ⅰ,8)设(0,)2πα∈,(0,)2πβ∈,且1sin tan cos βαβ+=,则( ) A .32παβ-=B .22παβ-=C .32παβ+=D .22παβ+=(2014·新课标Ⅱ,4)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5B .5C .2D .1(2012·新课标Ⅰ,9)已知0ω>,函数()sin()4f x x πω=+在(2π,π)上单调递减,则ω的取值范围是( )A .[12,54] B .[12,34] C .(0,12] D .(0,2](2011·新课标Ⅰ,5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos2θ=( )A .45-B .35-C .35D .45(2011·新课标Ⅰ,11)设函数()sin()cos()(0,)2f x x x πωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则( )A .()f x 在(0,)2π单调递减B .()f x 在3(,)44ππ单调递减C .()f x 在(0,)2π单调递增D .()f x 在3(,)44ππ单调递增二、填空题(2019·全国卷Ⅱ,理15)ABC △的内角,,A B C 的对边分别为,,a b c .若π6,2,3b ac B ===,则ABC △的面积为__________.(2018·新课标Ⅰ,理16)已知函数x x x f 2sin sin 2)(+=,则)(x f 的最小值是 .(2018·新课标Ⅲ,理15)函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. (2018·新课标Ⅱ,理15)已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.(2017·新课标Ⅱ,14)函数()23sin 4f x x x =+-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值是 . (2016·新课标Ⅱ,13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 45A =,1cos 53C =,a = 1,则b = .(2016·新课标Ⅲ,14)函数sin y x x =-的图像可由函数sin y x x =的图像至少向右平移______个单位长度得到.(2015·新课标Ⅰ,16)在平面四边形ABCD 中,75A B C ∠=∠=∠=,2BC =,则AB 的取值范围是 .(2014·新课标Ⅰ,16)已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 . (2014·新课标Ⅱ,14)函数()sin(2)2sin cos()f x x x ϕϕϕ=+-+的最大值为_________.(2013·新课标Ⅰ,15)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=__________.(2013·新课标Ⅱ,15)设θ为第二象限角,若1tan()42πθ+=,则sin cos θθ+=_________.(2011·新课标Ⅰ,16)在ABC 中,60,B AC ==2AB BC +的最大值为 .三、解答题(2019·全国卷Ⅰ,理17)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设22(sin sin )sin sin sin B C A B C -=-.(1)求A ;(22b c +=,求sin C .(2019·全国卷Ⅲ,理18)△ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,已知sin =sin 2A Ca b A +. (1)求B ;(2)若△ABC 为锐角三角形,且c =1,求△ABC 面积的取值范围.(2018·新课标Ⅰ,理17)在平面四边形ABCD 中,o ADC 90=∠,oA 45=∠,2=AB ,5=BD .(1)求ADB ∠cos ;(2)若22=DC ,求BC .(2017·新课标Ⅰ,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知△ABC 的面积为23sin a A(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长(2017·新课标Ⅱ,17)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin 2BA C +=. (1)求cosB ;(2)若6a c += , ABC ∆面积为2,求.b .(2017·新课标Ⅲ,17)ABC △的内角,,A B C 的对边分别为,,a b c ,已知sin 0A A +=,a =2b =.(1)求c ;(2)设D 为BC 边上一点,且 AD AC ⊥,求ABD △的面积.(2016·新课标Ⅰ,17)ABC ∆内角C B A ,,的对边分别为c b a ,,,已知c A b B a C =+)cos cos (cos 2. (Ⅰ)求C ;(Ⅱ)若7=c ,ABC ∆的面积为233,求ABC ∆周长.(2015·新课标Ⅱ,17)在∆ABC 中,D 是BC 上的点,AD 平分∠BAC ,∆ABD 面积是∆ADC 面积的2倍.(Ⅰ)求 sin sin B C ∠∠;(Ⅱ) 若AD =1,DC ,求BD 和AC 的长.(2013·新课标Ⅰ,17)如图,在△ABC 中,∠ABC =90°,AB BC =1,P 为△ABC 内一点,∠BPC=90°.(1)若PB =12,求P A ;(2)若∠APB =150°,求tan ∠PBA .(2013·新课标Ⅱ,17)在△ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知a=bcosC+csinB . (Ⅰ)求B ;(Ⅱ)若b=2,求△ABC 面积的最大值.(2012·新课标Ⅰ,17)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,cos sin 0a C C b c --=.(1)求A ;(2)若2a =,△ABC b ,c .2011年—2019年全国卷(Ⅰ、Ⅱ、Ⅲ卷)理科数学试题分类汇编9.三角函数与解三角形(逐题解析版)一、选择题(2019·全国卷Ⅰ,理11)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是( ) A .①②④B .②④C .①④D .①③【答案】C 解析:因为()sin sin()sin sin ()f x x x x x f x -=-+-=+=,所以()f x 是偶函数,①正确;因为52,(,)632ππππ∈,而52()()63f f ππ<,所以②错误, 画出函数()f x 在[],ππ-上的图像,很容易知道()f x 有3零点,所以③错误, 结合函数图像,可知()f x 的最大值为2,④正确,故答案选C. (2019·全国卷Ⅱ,理9)下列函数中,以2π为周期且在区间(4π,2π)单调递增的是( )A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=c os│x │D .f (x )= sin │x │【答案】A 解析:f (x )=sin|x |不是周期函数,可排除D 选项; f (x )=cos|x |的周期为2π,可排除C 选项;f (x )=|sin2x |在处取得最大值,不可能在区间(,)单调递增,可排除B .方法2:对于A ,如图,以()1cos4cos22x f x x +==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递增;A 对.对于B ,如图,以()1cos4sin 22x f x x -==12T π=,且在区间,42ππ⎛⎫⎪⎝⎭单调递减;B 错. 对于C ,()cos cos f x x x ==,2T π=,C 错对于D ,()()()sin 0sin sin 0x x f x x x x ≥⎧⎪==⎨-≤⎪⎩,如图,不是周期函数, D 错;故选A.(2019·全国卷Ⅱ,理10)已知(0)2πα∈,,2sin 2cos21αα=+,则sin α=( )A .15B .5 C .3 D .25【答案】B 解析:24sin cos 2cos ααα=()cos 2sin cos 0ααα⇒-= ,0,2πα⎛⎫∈ ⎪⎝⎭,1tan 2α∴=,5sin α=.(2019·全国卷Ⅲ,理12)设函数()sin()(0)5f x x πωω=+>,已知f (x )在[0,2π]有且仅有5个零点,下述四个结论:①f (x )在(0,2π)有且仅有3个极大值点;②f (x )在(0,2π)有且仅有2个极小值点;③f (x )在(0,)10π单调递增;④ω的取值范围是1229[,)510.其中所有正确结论的编号是( ) A .①④B .②③C .①②③D .①③④【答案】D【基本解法】令05wx π+=,得05x wπ=-<,令52wx ππ+=,得3010x wπ=>, 设()f x 的正零点从小到大一次为()i x i Z +∈由图可知(1)正确; 极小值个数 可能是2个或3个,故(2)错误令555wx ππ+=,解得5245x πω=令665wx ππ+=,解得6295x πω=,解不等式562x x π≤<,得1229510ω≤<,(4)正确 010x π<<时,(,)55105w wx ππππ+∈+29(,)(0,)5101052ππππ⊆⨯+⊆故()f x 在(0,)10π单调递增 ,故(3)正确。

2011年高考数学试题分类汇编5——解析几何

2011年高考数学试题分类汇编5——解析几何

五、解析几何一、选择题1.(重庆理8)在圆06222=--+y x y x 内,过点E (0,1)的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为A .25B .210 C. D .220【答案】B2.(浙江理8)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线221:14y C x -=有公共的焦点,1C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则A .2132a =B .213a =C .212b =D .22b =【答案】C3.(四川理10)在抛物线25(0)y x ax a ==-≠上取横坐标为14x =-,22x =的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线顶点的坐标为A .(2,9)--B .(0,5)-C .(2,9)-D .(1,6)-【答案】C【解析】由已知的割线的坐标(4,114),(2,21),2a a K a ---=-,设直线方程为(2)y a x b =-+,则223651(2)b a =+-又2564(2,9)(2)y x ax b a y a x b ⎧=+-⇒=-⇒=⇒--⎨=-+⎩4.(陕西理2)设抛物线的顶点在原点,准线方程为2x =-,则抛物线的方程是A .28y x =-B .28y x =C .24y x =- D .24y x = 【答案】B5.(山东理8)已知双曲线22221(0b 0)x y a a b -=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为 A .22154x y -= B .22145x y -= C .22136x y -= D .22163x y -=【答案】A6.(全国新课标理7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,||AB 为C 的实轴长的2倍,C 的离心率为 (A(B(C ) 2 (D ) 3 【答案】B7.(全国大纲理10)已知抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.则cos AFB ∠=A .45 B .35 C .35-D .45-【答案】D8.(江西理9)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是A .(3-,3) B .(3-,0)∪(0,3)C .[,]D .(-∞,)∪(,+∞)【答案】B9.(湖南理5)设双曲线()222109x y a a -=>的渐近线方程为320x y ±=,则a 的值为A .4B .3C .2D .1【答案】C10.(湖北理4)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .n=0B .n=1C . n=2D .n ≥3【答案】C11.(福建理7)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足1122::PF F F PF =4:3:2,则曲线r 的离心率等于A .1322或B .23或2C .12或2D .2332或 【答案】A 12.(北京理8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为A .{}9,10,11B .{}9,10,12C .{}9,11,12D .{}10,11,12【答案】C13.(安徽理2)双曲线8222=-y x 的实轴长是(A )2 (B ) 22 (C ) 4 (D )42【答案】C14.(辽宁理3)已知F 是抛物线y2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为(A )34 (B )1 (C )54 (D )74【答案】C二、填空题15.(湖北理14)如图,直角坐标系xOy 所在的平面为α,直角坐标系''x Oy (其中'y 轴一与y 轴重合)所在的平面为β,'45xOx ∠=︒。

2011—2018年新课标全国卷1理科数学分类汇编——9.解析几何

2011—2018年新课标全国卷1理科数学分类汇编——9.解析几何

9.解析几何(含解析)一、选择题【2018,8】设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN⋅= A .5B .6C .7D .8【2018,11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=A .32B .3C .D .4【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(66-C .(,33-D .(33- 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72 B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3 二、填空题【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=错误!未找到引用源。

9.解析几何——2011—2017年新课标全国卷理科数学分类真题解析(含答案)

9.解析几何——2011—2017年新课标全国卷理科数学分类真题解析(含答案)

=6.
椭圆的性质,容易排除点 P1(1,1)不在椭圆上,从而求出椭圆方程;(2)利用直线与椭圆 优解 依题意,抛物线 C:y2=8x 的焦点 F(2,0),准线 x=-2,因为 M 是 C 上一点,FM 的延
的方程得出根与系数的关系,从而使问题得解,在解题中要注意斜率不存在的情形.
长线交 y 轴于点 N,M 为 FN 的中点,则点 M 的横坐标为 1,所以|FN|=2|MF|=2[1-(-2)]=6.
第 1页 共 28页 ◎ 第 2页 共 28页
……○…………内…………○…………装…………○…………订…………○…………线…………○……… ※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※
……○…………外…………○…………装…………○…………订…………○…………线…………○………
9-2
的斜率为 k,则 l1:y=k(x-1),l2:y=- (x-1),由
消去 y 得 k2x2-(2k2+4)x+k2=0,
(2)设直线 P2A 与直线 P2B 的斜率分别为 k1,k2. 如果 l 与 x 轴垂直,设 l:x=t,由题设知 t≠0,且|t|<2,得 A,B 的坐标分别为(t,
),(t,- ).
的距离 d=
,因为∠MAN=60°,圆的半径为 b,所以 b·sin 60°= ,即
,所
2018 课标Ⅱ卷(全国甲卷)
以 e=
.
2018 课标Ⅲ卷(全国丙卷)
20.已知椭圆 C: + =1(a>b>0),四点 P1(1,1),P2(0,1),P3(-1, ),P4(1, )中恰有三点在
2017 课标Ⅰ卷(全国乙卷) 10.已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交

2011-2017全国1卷分类汇编 解析几何

2011-2017全国1卷分类汇编 解析几何

2011-2017全国卷分类汇编——解析几何【2011年全国】(21)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交与A 、B 两点,点P 满足0.OA OB OP ++=(Ⅰ)证明:点P 在C 上;(Ⅱ)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.【2012年全国】(20)(本小题满分12分)设抛物线2:2(0)C x py p =>的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于,B D 两点。

(Ⅰ)若90BFD ∠=,ABD ∆的面积为求p 的值及圆F 的方程;(Ⅱ)若,,A B F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。

【2013年全国】(20)(本小题满分12分)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并与圆N 内切,圆心P 的轨迹为曲线 C(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB|.【2014年全国】20. (本小题满分12分) 已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2015年全国】(20)(本小题满分12分)在直角坐标系xoy 中,曲线C :y =24x 与直线y kx a =+(a >0)交与M ,N 两点, (Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由。

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学数学分类汇编---解析几何

2019年全国高考理科数学分类汇编——解析几何1.(2019北京理科)已知椭圆2222 1x y a b+=(a >b >0)的离心率为12,则A. a 2=2b 2B. 3a 2=4b 2C. a =2bD. 3a =4b【答案】B 【解析】 【分析】由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式. 【详解】椭圆的离心率2221,2c e c a b a ===-,化简得2234a b =, 故选B.【点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识、基本运算能力的考查.2.(2019北京理科)数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A. ① B. ②C. ①②D. ①②③【答案】C 【解析】 【分析】将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围. 【详解】由221x y x y+=+得,221y x y x -=-,2222||3341,10,2443x x x y x ⎛⎫-=-- ⎪⎝⎭厔, 所以x 可为的整数有0,-1,1,从而曲线22:1C x y x y +=+恰好经过(0,1),(0,-1),(1,0),(1,1), (-1,0),(-1,1)六个整点,结论①正确.由221x y x y +=+得,222212x y x y +++…,解得222x y +≤,所以曲线C 上任意一点到. 结论②正确.如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122ABCD S =⨯⨯+⨯=,很明显“心形”区域的面积大于2ABCD S ,即“心形”区域的面积大于3,说法③错误.故选C.【点睛】本题考查曲线与方程、曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识、基本运算能力及分析问题解决问题的能力考查,渗透“美育思想”.3.(2019北京理科)已知抛物线C :x 2=−2py 经过点(2,−1).(Ⅰ)求抛物线C 的方程及其准线方程;(Ⅱ)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =−1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.【答案】(Ⅰ) 24x y =-,1y =;(Ⅱ)见解析. 【解析】 【分析】(Ⅰ)由题意结合点的坐标可得抛物线方程,进一步可得准线方程;(Ⅱ)联立准线方程和抛物线方程,结合韦达定理可得圆心坐标和圆的半径,从而确定圆的方程,最后令x =0即可证得题中的结论.【详解】(Ⅰ)将点()2,1-代入抛物线方程:()2221p =⨯-可得:2p =,故抛物线方程为:24x y =-,其准线方程为:1y =. (Ⅱ)很明显直线l 的斜率存在,焦点坐标为()0,1-,设直线方程为1y kx =-,与抛物线方程24x y =-联立可得:2440x kx +-=. 故:12124,4x x k x x +=-=-设221212,,,44x x M x N x ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,则12,44OM ON x x k k =-=-,直线OM方程为14x y x =-,与1y =-联立可得:14,1A x ⎛⎫- ⎪⎝⎭,同理可得24,1B x ⎛⎫- ⎪⎝⎭, 易知以AB 为直径的圆的圆心坐标为:1222,1x x ⎛⎫+- ⎪⎝⎭,圆的半径为:1222x x -, 且:()1212122222x x k x x x x ++==,12222x x -==则圆的方程为:()()()2222141x k y k -++=+,令0x =整理可得:2230y y +-=,解得:123,1y y =-=,即以AB 为直径的圆经过y 轴上的两个定点()()0,3,0,1-.【点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的方程的求解及其应用等知识,意在考查学生的转化能力和计算求解能力.4.(2019全国1卷理科)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足.的,称为黄金分割比例),著名的“断臂维纳斯”便是.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm【答案】B 【解析】 【分析】理解黄金分割比例的含义,应用比例式列方程求解.【详解】设人体脖子下端至腿根的长为x cm ,肚脐至腿根的长为y cm ,则262611052x x y +==+,得42.07, 5.15x cmy cm ≈≈.又其腿长为105cm ,头顶至脖子下端的长度为26cm ,所以其身高约为42.07+5.15+105+26=178.22,接近175cm .故选B . 【点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.5.(2019全国1卷理科)已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A. 2212x y +=B. 22132x y +=C. 22143x y +=D.22154x y += 【答案】B【解析】 【分析】可以运用下面方法求解:如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在12AF F △和12BF F △中,由余弦定理得2221222144222cos 4,422cos 9n n AF F n n n BF F n ⎧+-⋅⋅⋅∠=⎨+-⋅⋅⋅∠=⎩,又2121,A F F B F F ∠∠互补,2121c o s c o s 0A F F B F F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得223611n n +=,解得2n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B . 【详解】如图,由已知可设2F B n =,则212,3AF n BF AB n ===,由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.在1A F B △中,由余弦定理推论得22214991cos 2233n n n F AB n n +-∠==⋅⋅.在12AF F △中,由余弦定理得2214422243n n n n +-⋅⋅⋅=,解得n =.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22132x y +=,故选B .【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.6.(2019全国1卷理科)已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】2. 【解析】 【分析】通过向量关系得到1F A AB =和1OA F A ⊥,得到1AOB AOF ∠=∠,结合双曲线的渐近线可得21,BOF AOF ∠=∠02160,BOF AOF BOA ∠=∠=∠=从而由0tan 60ba==可求离心率. 【详解】如图,由1,F A AB =得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22//,2.BF OA BF OA =由120F B F B =,得121,,F B F B OA F A ⊥⊥则1OB OF =有1AOB AOF ∠=∠,又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠又21BOF AOB AOF π∠+∠+∠=,得02160,BOF AOF BOA ∠=∠=∠=.又渐近线OB 的斜率为0tan 60ba==所以该双曲线的离心率为2c e a ====. 【点睛】本题考查平面向量结合双曲线的渐进线和离心率,渗透了逻辑推理、直观想象和数学运算素养.采取几何法,利用数形结合思想解题.7.(2019全国1卷理科)已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2【解析】 【分析】(1)设直线l :3y =x m 2+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得121x x =+;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果.【详解】(1)设直线l 方程为:3y =x m 2+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+=联立2323y x m y x⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系.8.(2019全国2卷理科)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p = A. 2 B. 3 C. 4 D. 8【答案】D 【解析】 【分析】利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,即可解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,故选D .【详解】因为抛物线22(0)y px p =>的焦点(,0)2p是椭圆2231x y p p +=的一个焦点,所以23()2pp p -=,解得8p =,故选D .【点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.9.(2019全国2卷理科)设F 为双曲线C :22221x y a b-=(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P 、Q 两点.若|PQ |=|OF |,则C 的离心率为A.B.C. 2D.【答案】A 【解析】【分析】准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 关系,可求双曲线的离心率.【详解】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,又||PQ OF c ==,||,2cPA PA ∴=∴为以OF 为直径的圆的半径,A ∴为圆心||2cOA =.,22c c P ⎛⎫∴ ⎪⎝⎭,又P 点在圆222x y a +=上,22244c c a ∴+=,即22222,22c c a e a=∴==.e ∴=A .【点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.10.(2019全国2卷理科)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C . (1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G . (i )证明:PQG 是直角三角形;(ii )求PQG 面积的最大值.【答案】(1)详见解析(2)详见解析 【解析】 【分析】(1)分别求出直线AM 与BM 的斜率,由已知直线AM 与BM 的斜率之积为−12,可以得到等式,化简可以求出曲线C 的方程,注意直线AM 与BM 有斜率的条件;(2)(i )设出直线PQ 的方程,与椭圆方程联立,求出P ,Q 两点的坐标,进而求出点E 的坐标,求出直线QE 的方程,与椭圆方程联立,利用根与系数关系求出G 的坐标,再求出直线PG 的斜率,计算PQ PG k k 的值,就可以证明出PQG 是直角三角形;(ii )由(i )可知,,P Q G 三点坐标,PQG 是直角三角形,求出,PQ PG 的长,利用面积公式求出PQG 的面积,利用导数求出面积的最大值. 【详解】(1)直线AM 的斜率为(2)2y x x ≠-+,直线BM 的斜率为(2)2y x x ≠-,由题意可知:22124,(2)222y y x y x x x ⋅=-⇒+=≠±+-,所以曲线C 是以坐标原点为中心,焦点在x 轴上,不包括左右两顶点的椭圆,其方程为()221,242x yx +=≠±;(2)(i )设直线PQ 的方程为y kx =,由题意可知0k >,直线PQ 的方程与椭圆方程2224x y +=联立,即22,2 4.x y kx x y y ⎧=⎪=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩,点P 在第一象限,所以P Q ,因此点E的坐标为直线QE 的斜率为2QE k k =,可得直线QE方程:2k y x =2222 4.k y x x y ⎧=⎪⎨⎪+=⎩,消去y得,22222128(2)021k k x k ++=+(*),设点11(,)G x y ,显然Q和1x 是方程(*)的解所以有222112128212k k x x k +-+=⇒=+,代入直线QE 方程中,得31y =G的坐标为23,直线PG 的斜率为; 3322222(2)1642(2)PGk k k k k k k -+===-+-+, 因为1()1,PQ PG k k k k=⋅-=-所以PQ PG ⊥,因此PQG 是直角三角形; (ii )由(i)可知:P Q ,G的坐标为23,PQ ==,PG ==,34218()2252PQGk k S k k ∆+==++ 42'4228(1)(1)(232)(252)k k k k S k k -+-++=++,因为0k >,所以当01k <<时,'0S >,函数()S k 单调递增,当1k >时,'0S <,函数()S k 单调递减,因此当1k =时,函数()S k 有最大值,最大值为16 (1)9 S=.【点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了利用导数求函数最大值问题.11.(2019全国3卷理科)双曲线C:22 42x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.B. C. 12xxD.【答案】A【解析】【分析】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.详解】由2,,a b c===.,2PPO PF x=∴=,又P在C的一条渐近线上,不妨设为在2y x=上,11224PFO PS OF y∴=⋅==△,故选A.【点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.12.(2019全国3卷理科)设12F F,为椭圆22:+13620x yC=的两个焦点,M为C上一点且在第一象限.若12MF F△为等腰三角形,则M 的坐标为___________.【答案】(【【解析】 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△,又12014,42MF F S y =⨯=∴=△,解得0y =, 22013620x ∴+=,解得03x =(03x =-舍去),M \的坐标为(.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.13.(2019全国3卷理科)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或. 【解析】 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d t d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =。

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何附答案详解

2019年高考数学试题分类汇编解析几何一、选择题.1、(2019年高考全国I 卷理科10)双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40°C .1sin50︒D .1cos50︒答案:C解析:由题可知,130tan ︒=-a b 即,50tan ︒=a b 则有︒︒=50cos 50sin 2222a b ,即︒︒=-50cos 50sin 22222a a c 所以︒︒=-50cos 50sin 1222e ,︒=50cos 12e ,故选D 2、(2019年高考全国I 卷理科10,文科12)已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=答案:B解析:设x B F =||2,则x B F B F AF AB B F 3||3||||||||2221==+== 由椭圆定义得x a B F B F 42||||21==+,故,23||,2||12aB F a B F ==a AF a AF a AF =-==||2||,||212在21F AF ∆和21F BF ∆中,由余弦定理得a c a a c a F AF 1224cos 22221=⨯⨯-+=∠ a a c a a c a F BF 2222212221249441cos -=⨯⨯-+=∠ 21F AF ∠、21F BF ∠互补得a a a 122=-,解得32=a ,22=b ,方程为12322=+y x 。

故选B 3、(2019年高考全国II 卷理科8,文科9)若抛物线y 2=2px (p >0)的焦点是椭圆2231x y pp+=的一个焦点,则p=A .2B .3C .4D .8 答案:D解析:易知抛物线的焦点为)0,2(p,故椭圆焦点在x 轴上 由p p p b a c 23222=-=-=,则p p 2)2(2=,解得p=8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.解析几何(含解析)一、选择题【2019,10】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【2018.8】抛物线C :y 2=4x 焦点为F ,过点(–2,0)且斜率为23直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8【2018.11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |=A .32B .3C .D .4【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(33-B .(66-C .(,33-D .(33- 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =( )A .72B .52C .3D .2【2013,4】已知双曲线C :2222=1x y a b-(a >0,b >0)C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||AB =,则C 的实轴长为( )AB .C .4D .8【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A B C .2 D .3【2019,16】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 .【2019,19】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.【2018.19】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF ,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值.【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA ,MA AB MB BA ⋅=⋅,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值.9.解析几何(解析版)一、选择题【2019,10】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y += B .22132x y += C .22143x y += D .22154x y += 【答案】:B 解答:由椭圆C 的焦点为)0,1(1-F ,)0,1(2F 可知1=c ,又 ||2||22B F AF =,||||1BF AB =,可设m BF =||2,则m AF 2||2=,m AB BF 3||||1==,根据椭圆的定义可知a m m BF BF 23||||21=+=+,得a m 21=,所以a BF 21||2=,a AF =||2,可知),0(b A -,根据相似可得)21,23(b B 代入椭圆的标准方程12222=+b y a x ,得32=a ,2222=-=c a b ,∴椭圆C 的方程为12322=+y x . 【2018.8】抛物线C :y 2=4x 焦点为F ,过点(–2,0)且斜率为23直线与C 交于M ,N 两点,则FM FN ⋅= A .5B .6C .7D .8【解答】解:抛物线C :y 2=4x 的焦点为F (1,0),过点(﹣2,0)且斜率为的直线为:3y=2x +4, 联立直线与抛物线C :y 2=4x ,消去x 可得:y 2﹣6y +8=0, 解得y 1=2,y 2=4,不妨M (1,2),N (4,4),,.则•=(0,2)•(3,4)=8.故选:D .【2018.11】已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN △为直角三角形,则|MN |= A .32B .3C .23D .4【解答】解:双曲线C :﹣y 2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F (2,0)的直线为:y=,则:解得M (,),解得:N (),则|MN |==3.故选:B .【2017,10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16 B .14 C .12 D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴,易知11cos 22⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩AF GF AK AK AF P P GP Pθ(几何关系)(抛物线特性),cos AF P AF θ⋅+=∴,同理1cos P AF θ=-,1cos P BF θ=+,∴22221cos sin P PAB θθ==-, 又DE 与AB 垂直,即DE 的倾斜角为π2θ+, 2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,而24y x =,即2P =. ∴22112sin cos AB DE P θθ⎛⎫+=+ ⎪⎝⎭2222sin cos 4sin cos θθθθ+=224sin cos θθ=241sin 24=θ 21616sin 2θ=≥,当且仅当π4θ=取等号,即AB DE +最小值为16,故选A ;【法二】依题意知:22sin PAB θ=,2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭,由柯西不等式知: 2222211(11)22816sin cos sin cos AB DE P P P θθθθ+⎛⎫+=+≥⋅== ⎪+⎝⎭,当且仅当π4θ=取等号,故选A ; 【2016,10】以抛物线C 的顶点为圆心的圆交C 于B A ,两点,交C 的准线于E D ,两点,已知24=AB ,52=DE ,则C 的焦点到准线的距离为( )A .2B .4C .6D .8【解析】以开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,如图:设(0,22A x ,52p D ⎛- ⎝,点(0,22A x 在抛物线22y px =上,∴082px =……①;点52p D ⎛- ⎝在圆222x y r +=上,∴2252p r ⎛⎫+= ⎪⎝⎭……②;点(0,22A x 在圆222x y r +=上,∴2208x r +=……③;联立①②③解得:4p =,焦点到准线的距离为4p =.故选B . F【2016,5】已知方程132222=--+nm y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .)3,1(-B .)3,1(-C .)3,0(D .)3,0(【解析】222213x y m n m n-=+-表示双曲线,则()()2230m n m n +->,∴223m n m -<<由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距,∴焦距2224c m =⋅=,解得1m = ∴13n -<<,故选A .【2015,5】已知00(,)M x y 是双曲线C :2212x y -=上的一点,12,F F 是C 的两个焦点,若120MF MF ⋅<,则0y 的取值范围是( )A .(B .(C .(D .( 解析:从120MF MF ⋅<入手考虑,120MF MF ⋅=可得到以12FF 为直径的圆与C 的交点1234,,,M M M M (不妨设12,M M 在左支上,34,M M 在右支上),此时1112M F M F ⊥,1112M F M F -=-12F F =112111201211||22M F F S M F M F y F F ∆=⋅=⋅解得0||y =,则M 在双曲线的12M M 或34M M 上运动,0y ∈(,故选A .. 【2014,4】已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为A B .3 C D .3m【解析】:由C :223(0)x my m m -=>,得22133x y m -=,233,c m c =+=设)F,一条渐近线y x =,即0x =,则点F 到C 的一条渐近线的距离d =A.【2013,4】已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x解析:选C ,∵52c e a ==,∴22222254c a b e a a +===,∴a 2=4b 2,1=2b a ±,∴渐近线方程为12b y x x a =±±.【2013,10】已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A .22=14536x y + B .22=13627x y + C .22=12718x y + D .22=1189x y + 解析:选D ,设A (x 1,y 1),B (x 2,y 2),∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②①-②,得1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为(1,-1),∴y 1+y 2=-2,x 1+x 2=2,而1212y y x x --=k AB =011=312-(-)-,∴221=2b a .又∵a 2-b 2=9,∴a 2=18,b 2=9.∴椭圆E 的方程为22=1189x y +.故选D. 【2012,4】设1F 、2F 是椭圆E :2222x y a b +(0a b >>)的左、右焦点,P 为直线32ax =上一点,21F PF ∆是底角为30°的等腰三角形,则E 的离心率为( )A .12 B .23 C .34 D .45【解析】如图所示,21F PF ∆是等腰三角形,212130F F P F PF ∠=∠=︒,212||||2F P F F c ==,260PF Q ∠=︒,230F PQ ∠=︒,2||F Q c =,又23||2aF Q c =-, 所以32a c c -=,解得34c a =,因此34c e a ==,故选择C .【2012,8】等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A ,B 两点,||43AB =,则C 的实轴长为( )A .2B .22C .4D .8【解析】设等轴双曲线C 的方程为22221x y a a-=,即222x y a -=(0a >),抛物线216y x =的准线方程为4x =-,联立方程2224x y a x ⎧-=⎨=-⎩,解得2216y a =-,因为||43AB =,所以222||(2||)448AB y y ===,从而212y =, 所以21612a -=,24a =,2a =,因此C 的实轴长为24a =,故选择C .【2011,7】设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB 为C 的实轴长的2倍,则C 的离心率为( )A 2B 3C .2D .3解析:通径|AB|=222b a a=得2222222b a a c a =⇒-=,选B 二、填空题【2019,16】已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________. 【答案】:2解答:由112,0F A AB F B F B =⋅=知A 是1BF 的中点,12F B F B ⊥,又O 是12,F F 的中点,所以OA 为中位线且1OA BF ⊥,所以1OB OF =,因此1FOA BOA ∠=∠,又根据两渐近线对称,12FOA F OB ∠=∠,所以260F OB ∠=︒,221()1tan 602be a=+=+︒=.【2017,15】已知双曲线C :22221x y a b-=(a >0,b >0)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A与双曲线C 的一条渐近线交于M 、N 两点.若∠MAN =60°,则C 的离心率为________.【解析】如图,OA a =,AN AM b ==, ∵60MAN ∠=︒,∴3AP =,222234OP OA PA a b =-=-,∴2232tan 34AP OP a b θ==-,又∵tan b a θ=,∴223234b a a b=-,解得223a b =,∴22123113b e a =+=+=;【法二】如上图可知(,0)A a 到渐进线0bx ay -=的距离为22abd AP ca b ===+,1,60,cos cos302ab AP AMN a c AN AM b AMN AN b c e∠==∠=∴=====又,23e ∴=; 【法三】如图在等边三角形AMN ∆中3,,2AP b FH b == 由OAP OFH ∆∆知32323ba a e cbc =⇒==;【法四】如图,由等面积法可得,在三角形OAN 中,132322ab c c b e a =⇒==; 【法五】因为,AM b OA a ==且渐进线bxy a=可得三角形OAN 为 双曲线三角线(即三边分别为,,a b c ),有几何意义易得30MAP MOA ∠=∠=2323tan ,133b b MOA e a a ⎛⎫∴∠===+= ⎪⎝⎭;【2015,14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 解析:由椭圆的性质可知,圆只能经过短轴顶点和右顶点三个点(0,2),(0,2),(4,0)-; (方法一)设圆的半径为r ,则有222(4)2r r -+=,可得52r =,故所求圆的标准方程为22325()24x y -+=. (方法二)设圆的标准方程为222()(0)x a y r a -+=>,代入点(0,2),(4,0),解方程组可得35,22a r ==半径为r ,故所求圆的标准方程为22325()24x y -+=.(方法三)设圆的一般方程为220x y Dx Ey F ++++=,代入点(0,2),(0,2),(4,0)-,解方程组可得3,0,4D E F =-==-,化为标准方程为22325()24x y -+=. 【2014,10】已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则||QF =A .72B .52C .3D .2 【解析】选C ,过Q 作QM ⊥直线L 于M ,∵4FP FQ =∴34PQ PF =,又344QM PQ PF ==,∴3QM =,由抛物线定义知3QF QM == 【2011,14】在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点12,F F 在x 轴上,离心率为2.过1F 的直线L 交C 于,A B 两点,且2ABF 的周长为16,那么C 的方程为 .解析:由22416c a a ⎧=⎪⎨⎪=⎩得a=4.c=22,从而b=8,221168x y ∴+=为所求. 三、解答题 【2019,19】已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【解析】:设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --=,得78t =-.所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||3AB =.【2018.19】设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0). (1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠. 解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A的坐标为(1,2或(1,)2-. 所以AM的方程为y x =+y x =. (2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得2222(21)4220k x k x k +-+-=. 所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠.综上,OMA OMB ∠=∠.【2017,20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1),P 4(1中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P ,又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点,将()23011P P ⎛- ⎝⎭,,代入椭圆方程得:222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b =, ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,, 221121A A P A P B y y k k m m m----+=+==-,得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶,()()1122A x y B x y ,,,, 联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-=, 122814kb x x k -+=+,21224414b x x k -⋅=+,则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-= 222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠,21b k ⇒=--,此时64k ∆=-, 存在k 使得0∆>成立.∴直线l 的方程为21y kx k =--,当2x =时,1y =-,所以l 过定点()21-,. 【2016,20】设圆015222=-++x y x 的圆心为A ,直线l 过点)0,1(B 且与x 轴不重合,l 交圆A 于D C ,两点,过B 作AC 的平行线交AD 于点E . (Ⅰ)证明EB EA +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于N M ,两点,过B 且与l 垂直的直线与圆A 交于Q P ,两点,求四边形MPNQ 面积的取值范围.【解析】:⑴ 圆A 整理为()22116x y ++=,BE AC ∥,则C EBD =∠∠,由EBD D ∴=∠∠,则EB ED =,AE ∴+()22121|||34M N m MN y y m +=-=+根据椭圆定义为一个椭圆,方程为22143x y +=,(0y ≠);⑵ 221:143x y C +=;设:1l x my =+,因为PQ l ⊥,设():1PQ y m x =--,联立l与椭圆圆心A 到所以||PQ =()2212111||||2234MPNQm S MN PQ m +⎡∴=⋅=⋅==⎣+ 【2015,20】在直角坐标系xOy 中,曲线C :24x y =与直线l :y kx a =+(0a >)交于,M N 两点.(Ⅰ)当0k =时,分别求C 在点M 和N 处的切线方程;(Ⅱ)在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由. 解:(Ⅰ)当0k =时,点)M a 和()N a -,2xy '=,故x =,切线方程为y a x -=-0y a --=;同理,x =-处的导数值为y a x -=+0y a ++=.(Ⅱ)在y 轴上存在点P ,使得当k 变动时,总有OPM OPN ∠=∠.证明如下: 设(0,)P b 为符合题意的点,1122(,),(,)M x y N x y ,直线,PM PN 的斜率分别为12,k k .直线l 与曲线C 的方程联立可得2440x kx a --=,则12124,4x x k x x a +==-.1212121212122()()()y b y b kx x a b x x k a b k k x x x x a--+-+++=+==,当b a =-时,120k k +=,则直线,PM PN 的倾斜角互补,故OPM OPN ∠=∠,即(0,)P a -符合题意.【2014,20】已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为32,F 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【解析】:(Ⅰ) 设(),0F c ,由条件知2233c =,得3c = 又32c a =, 所以a=2,2221b a c =-= ,故E 的方程2214x y +=. …….6分 (Ⅱ)依题意当l x ⊥轴不合题意,故设直线l :2y kx =-,设()()1122,,,P x y Q x y将2y kx =-代入2214x y +=,得()221416120k x kx +-+=, 当216(43)0k ∆=->,即234k >时,21,28243k k x ±-=从而222122143114k k PQ k x k +-=+-=+,又点O 到直线PQ 的距离21d k =+,所以∆OPQ的面积22143214OPQk S d PQ k ∆-==+ 243k t -=,则0t >,244144OPQ t S t t t∆==≤++, 当且仅当2t =,7k =0∆>, 所以当∆OPQ 的面积最大时,l 的方程为:72y x =- 或72y x =-. ……12分 【2013,20】已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为23的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. 若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=23.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP RQM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M 相切得2=11k +,解得k =24±. 当k =2时,将22y x =+代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=462-±. 所以|AB |=221181||7k x x +-=.当24k =-时,由图形的对称性可知|AB |=187.综上,|AB |=23或|AB |=187.【2012,20】设抛物线C :py x 22=(0>p )的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,F A 为半径的圆F 交l 于B ,D 两点.(1)若∠BFD =90°,△ABD 的面积为24,求p 的值及圆F 的方程;(2)若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值. 【解析】(1)若∠BFD =90°,则△BFD 为等腰直角三角形,且|BD|=2p ,圆F 的半径||2r FA p ==,又根据抛物线的定义可得点A 到准线l 的距离||2d FA p ==.因为△ABD 的面积为24, 所以1||422BD d ⋅⋅=,即122422p p ⋅⋅=, 所以24p =,由0>p ,解得2p =. 从而抛物线C 的方程为24x y =,圆F 的圆心F (0,1),半径||22r FA ==, 因此圆F 的方程为22(1)8x y +-=. (2)若A ,B ,F 三点在同一直线m 上, 则AB 为圆F 的直径,∠ADB=90°, 根据抛物线的定义,得1||||||2AD FA AB ==,所以30ABD ∠=︒,从而直线m 的斜率为33或33-. 当直线m 的斜率为33时,直线m 的方程为332py x =+,原点O 到直线m 的距离1p d =.依题意设直线n的方程为y x b =+,联立22y x b x py⎧=+⎪⎨⎪=⎩,得220x px pb --=, 因为直线n 与C 只有一个公共点,所以24803p pb ∆=+=,从而6pb =-. 所以直线n的方程为6py x =-,原点O 到直线n的距离2pd =因此坐标原点到m ,n 距离的比值为12236p dpd ==.当直线m的斜率为3-时,由图形的对称性可知,坐标原点到m ,n 距离的比值也为3. 【2011,20】在平面直角坐标系xOy 中,已知点A(0,-1),B 点在直线y = -3上,M 点满足//MB OA ,MA AB MB BA ⋅=⋅,M 点的轨迹为曲线C .(Ⅰ)求C 的方程;(Ⅱ)P 为C 上的动点,l 为C 在P 点处得切线,求O 点到l 距离的最小值. 解:(I )设(),M x y ,由已知得(),3B x -,()0,1A -. 所以(),1,MA x y =---,()0,3,MB y =--,(),2AB x =-.再由题意可知()0MA MB AB +⋅=,即()(),4,2,20x y x ---⋅=. 所以曲线C 的方程为2124y x =-. (II )设()00,P x y 为曲线21:24C y x =-上一点,因为12y x '=,所以l 的斜率为012x . 因此直线l 的方程为()00012y y x x x -=-,即2000220x x y y x -+-=. 则O 点到l的距离d =. 又200124y x =-,所以2014122x d +⎫==≥ 当00x =时取等号,所以O 点到l 的距离的最小值为2.。

相关文档
最新文档