2018中考数学满分冲刺讲义:第7讲拆解转化(含答案)
2018济南中考数学解答题详细解析

提示:我们判断四边形ADMQ是平行四 边形首先证明两条对边平行, 用到平行线的判定定理。
式y=1 ������2 − 3x + 4 得D(6,4)。
2
∴DH=4,AH=OH-OA=6-2=4
y
C
MD
P E
Q OA
┌┐ BG H
x
N
(3)如上图所示,过点A,P的直线 与y轴交于点N,过点P作PM⊥CD垂足 为点M,直线MN与x轴交于点Q,试判 断四边形ADMQ的形状,并说明理由。
求tan ∠ACB的值;
首先过点A作AE⊥BC垂足为E如图所示
∵0A=2;0B=4 ∴AB=2
∵点C在y轴的抛物线上,设点C(0,y)
带入抛物线表达式
y=1 ������2 − 3x + 4 得 y=4
2
∴C(0,4)即 0C=4
∵OB=4,OC=4
∴△COA是等腰直角三角形
∴BC=4 2 ∵∠CBA=45。;∠AEB=90。
解:∵点A(2,0),B(4,0)带入
x
抛物线 Y=a������2+bx+4得
a=1
2
b=-3
∴抛物线的表达式为:
y=1
2
������2
−
3x
+
4
y
C
D
E
OA
B
x
(1)求抛物线的表达式和 ∠ACB的正切值
提示:第二问考点是首先要知道
正切的公式tan∠������������������
=
对边 临边
解:如图(2),过点P 作PF⊥CD垂足为F
已知点P的横坐标为m,且点P在抛物线上,
根据表达式y=1 ������2 − 3x + 4 ,将m带入得
中考数学专题复习——化归转化(附答案)

中考复习--化归思想Ⅰ、专题精讲:数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等.本专题专门复习化归思想.所谓化归思想就是化未知为已知、化繁为简、化难为易.如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等.实现这种转化的方法有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等. Ⅱ、典型例题剖析【例1】(嘉峪关,8 分)如图3-1-1,反比例函数y =-8x与一次函数y =-x +2的图象交于A 、B 两点. (1)求 A 、B 两点的坐标; (2)求△AOB 的面积.解:⑴解方程组82y xy x ⎧=-⎪⎨⎪=-+⎩得121242;24x x y y ==-⎧⎧⎨⎨=-=⎩⎩所以A 、B 两点的坐标分别为A (-2,4)B (4,-2 (2)因为直线y =-x +2与y 轴交点D 坐标是(0, 2), 所以11222,24422AOD BOD S S ∆∆=⨯⨯==⨯⨯= 所以246AOB S ∆=+=点拨:两个函数的图象相交,说明交点处的横坐标和纵坐标,既适合于第一个函数,又适合于第二个函数,所以根据题意可以将函数问题转化为方程组的问题,从而求出交点坐标.【例2】(自贡,5分)解方程:22(1)5(1)20x x ---+=解:令y = x —1,则2 y 2—5 y +2=0. 所以y 1=2或y 2=12 ,即x —1=2或x —1=12 .所以x =3或x =32 故原方程的解为x =3或x =32点拨:很显然,此为解关于x -1的一元二次方程.如果把方程展开化简后再求解会非常麻烦,所以可根据方程的特点,含未·知项的都是含有(x —1)所以可将设为y ,这样原方程就可以利用换元法转化为含有y 的一元二次方程,问题就简单化了.【例3】(达川模拟,6分)如图 3-1-2,梯形 ABCD 中,AD ∥BC ,AB =CD ,对角线AC 、BD 相交于O 点,且AC ⊥BD ,AD =3,BC =5,求AC 的长.解:过 D 作DE ⊥AC 交BC 的延长线于E ,则得AD =CE 、AC =DE .所以BE =BC +CE =8. 因为 AC ⊥BD ,所以BD ⊥DE .因为 AB =CD , 所以AC =BD .所以GD =DE . 在Rt △BDE 中,BD 2+DE 2=BE 2所以BD 2BE =4 2 ,即AC =4 2 .点拨:此题是根据梯形对角线互相垂直的特点通过平移对角线将等腰梯形转化为直角三角形和平行四边形,使问题得以解决.【例4】(新泰模拟,5分)已知△ABC 的三边为a ,b ,c ,且222a b c ab ac bc++=++,试判断△ABC 的形状. 解:因为222a b c ab ac bc ++=++,所以222222222a b c ab ac bc++=++,即:222()()()0a b b c a c -+-+-=所以a =b ,a =c , b =c 所以△ABC 为等边三角形.点拨:此题将几何问题转化为代数问题,利用凑完全平方式解决问题.【例5】(临沂,10分)△ABC 中,BC =a ,AC =b ,AB =c .若90C ∠=︒,如图l ,根据勾股定理,则222a b c +=.若△ABC 不是直角三角形,如图2和图3,请你类比勾股定理,试猜想22a b +与c 2的关系,并证明你的结论.证明:过B 作BD ⊥AC ,交AC 的延长线于D .设CD 为x ,则有222BD a x =- 根据勾股定理,得2222()b x a x c++-=.即2222a b bx c ++=. ∵0,0b x >>,∴20bx >,∴222a b c +<.点拨:勾股定理是我们非常熟悉的几何知识,对于直角三角形三边具有:222a b c +=的关系,那么锐角三角形、钝角三角形的三边又是怎样的关系呢?我们可以通过作高这条辅助线,将一般三角形转化为直角三角形来确定三边的关系. Ⅲ、同步跟踪配套试题: (60分 45分钟)一、选择题(每题 3分,共 18分) 1.已知|x +y |+(x -2y )2=0,则( ) 1. 1x A y =-⎧⎨=-⎩ 2 . 1x B y =-⎧⎨=-⎩ 2.1x C y =⎧⎨=⎩ 1.2x D y =⎧⎨=⎩2.一次函数y =kx +b 的图象经过点A (0,-2)和B (-3,6)两点,那么该函数的表达式是( ) 8.26 .23A yx B y x =-+=--8.86 .23C yx D y x =--=--3.设一个三角形的三边长为3,l -2m ,8,则m 的取值范围是( )A .0<m <12B . -5<m - 2C .-2<m <5D .-72 <m <-l4.已知11553x xy y x yx xy y+--=--,则的值为( )A 、72B 、-72C 、27D 、-275.若24(2)16x m x +-+是完全平方式,则m =( )A .6B .4C .0D .4或06.如果表示a 、b 为两个实数的点在数轴上的位置如图3-l -8所示,那么化简||a b - ),A .2aB .2bC .-2aD .-2b 二、填空题(每题2分,共u 分) 7.已知抛物线2yax bx c=++的对称轴为直线x =2,且经过点(5,4)和点(1,4)则该抛物线的解析式为____________.8.用配方法把二次函数 y =x 2+3x +l 写成 y =(x +m )2+n 的形式,则y =____________. 9.若分式293x x -+的值为零,则x =________.10函数y 1x -中自变量x 的取值范围是_______.11如果长度分别为5、3、x 的三条线段能组成一个三角形,那么x 的范围是_______. 12 点(1,6)在双曲线y = kx 上,则k =______.三、解答题(l 题12分,其余每题6分,共30分) 13.解下歹方程(组): (1)2x+123611x x +=--; (2)3x6401(1)x x x x -+-=--(3) x+y=102x-y=-1⎧⎨⎩ (4) 215x y x y -=-⎧⎨-+=⎩14.已知2286250,x y x y ++++=求代数式224442y x x xy yx y--+++2x 的值。
2018年中考数学专题冲刺复习七讲:2018年中考数学专题冲刺复习第四讲数学思想方法

数学思想方法数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路.因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常用的解题方法与技巧,从而为夺取中考高分搭起灵感和智慧的平台.初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等.由于我们前面各种思想方法均有渗透,故本专题只是侧重如下几个思想方法予以强化.类型之一整体思想例1 (2017广东)已知4a+3b=1,则整式8a+6b﹣3的值为﹣1 .【考点】33:代数式求值.【分析】先求出8a+6b的值,然后整体代入进行计算即可得解.【解答】解:∵4a+3b=1,∴8a+6b=2,8a+6b﹣3=2﹣3=﹣1;故答案为:﹣1.方法归纳:整体思想就是在解决问题时,不是着眼于它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对整体的把握和运用达到解决问题的目的.1.(2017内江)若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2017= .类型之二分类思想例2 (2017浙江义乌)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是x=0或x=4﹣4或4<x<4.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4,当M与D重合时,即x=OM﹣DM=4﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4﹣4或4.故答案为:x=0或x=4﹣4或4.方法归纳:在几何问题中,当图形的形状不完整时,需要根据图形的已知边角及图形特征进行分类画出图形,特别注意涉及等腰三角形与直角三角形的边和角的分类讨论.1.(2017齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.2. (2017绥化)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为.3.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.4. (2017.湖南怀化)如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为cm.类型之三转化思想例3 (2017山东临沂)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π【分析】设AC交⊙O于D,连结BD,先根据圆周角定理得到∠A DB=90°,则可判断△ADB、△BDC都是等腰直角三角形,所以AD=BD=CD=AB=,然后利用.弓形AD的面积等于弓形BD的面积得到阴影部分的面积=S△BTD【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,∴阴影部分的面积=S=××=1.△BTD故选C.【点评】本题考查了切线的性质,等腰直角三角形的性质,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.方法归纳:化归意识是指在解决问题的过程中,对问题进行转化,将“未知”转化为“已知”、将“陌生”转化为“熟知”、将“复杂”转化为“简单”的解题方法,其核心就是将有待解决的问题转化为已有明确解决的问题,以便利用已有的结论来解决问题.1.(2017内蒙古赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD ⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).2.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).3.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25 尺.类型之四数形结合思想例4 (2017•温州)小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B和落水点C恰好在同一直线上,点A至出水管BD的距离为12cm,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm的圆柱型水杯去接水,若水流所在抛物线经过点D和杯子上底面中心E,则点E到洗手盆内侧的距离EH为24﹣8cm.【考点】HE:二次函数的应用.【专题】153:代数几何综合题.【分析】先建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG 于P,根据△ABQ∽△ACG,求得C(20,0),再根据水流所在抛物线经过点D(0,24)和B(12,24),可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得抛物线为y=﹣x2+x+24,最后根据点E的纵坐标为10.2,得出点E的横坐标为6+8,据此可得点E到洗手盆内侧的距离.【解答】解:如图所示,建立直角坐标系,过A作AG⊥OC于G,交BD于Q,过M作MP⊥AG于P,由题可得,AQ=12,PQ=MD=6,故AP=6,AG=36,∴Rt△APM中,MP=8,故DQ=8=OG,∴BQ=12﹣8=4,由BQ∥CG可得,△ABQ∽△ACG,∴=,即=,∴CG=12,OC=12+8=20,∴C(20,0),又∵水流所在抛物线经过点D(0,24)和B(12,24),∴可设抛物线为y=ax2+bx+24,把C(20,0),B(12,24)代入抛物线,可得,解得,∴抛物线为y=﹣x2+x+24,又∵点E的纵坐标为10.2,∴令y=10.2,则10.2=﹣x2+x+24,解得x1=6+8,x2=6﹣8(舍去),∴点E的横坐标为6+8,又∵ON=30,∴EH=30﹣(6+8)=24﹣8.故答案为:24﹣8.【点评】本题以水龙头接水为载体,考查了二次函数的应用以及相似三角形的应用,在运用数学知识解决问题过程中,关注核心内容,经历测量、运算、建模等数学实践活动为主线的问题探究过程,突出考查数学的应用意识和解决问题的能力,蕴含数学建模,引导学生关注生活,利用数学方法解决实际问题.方法归纳:数形结合主要有两种:①由数思形,数形结合,用形解决数的问题;②由形思数,数形结合,用数解决形的问题.1. (2017哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min2. (2017山东临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?3. (2017浙江衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6 .4.(2017宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.=a2﹣abC.(a﹣b)5. (2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S6. (2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.类型之五方程、函数思想例5 (2017浙江湖州)湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W 最大?并求出最大值.(利润=销售总额﹣总成本)【考点】HE:二次函数的应用.【分析】(1)由放养10天的总成本为30.4万元;放养20天的总成本为30.8万元可得答案;(2)①分0≤t≤50、50<t≤100两种情况,结合函数图象利用待定系数法求解可得;②就以上两种情况,根据“利润=销售总额﹣总成本”列出函数解析式,依据一次函数性质和二次函数性质求得最大值即可得.【解答】解:(1)由题意,得:,解得,答:a的值为0.04,b的值为30;(2)①当0≤t≤50时,设y与t的函数解析式为y=k1t+n1,将(0,15)、(50,25)代入,得:,解得:,∴y与t的函数解析式为y=t+15;当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(﹣t+30)﹣=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.方法归纳:在问题中涉及“最大值”或“最小值”时,一般要运用函数思想去解决问题,解决这里问题的关键是建立两个变量之间的函数关系.1.(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.2.(2017江苏盐城)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为.参考答案类型之一整体思想1.(2017内江)若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2017= ﹣2020 .【考点】59:因式分解的应用.【分析】把2x2分解成x2与x2相加,然后把所求代数式整理成用x2﹣x表示的形式,然后代入数据计算求解即可.【解答】解:∵x2﹣2x﹣1=0,∴x2﹣2x=1,2x3﹣7x2+4x﹣2017=2x3﹣4x2﹣3x2+4x﹣2017,=2x(x2﹣2x)﹣3x2+4x﹣2017,=6x﹣3x2﹣2017,=﹣3(x2﹣2x)﹣2017=﹣3﹣2017=﹣2020,故答案为:﹣2020.类型之二分类思想1.(2017齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【考点】S7:相似三角形的性质;KH:等腰三角形的性质.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC==67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.2. (2017绥化)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC的顶角的度数为30°或150°或90°.【考点】KO:含30度角的直角三角形;KH:等腰三角形的性质.【分析】分两种情况;①BC为腰,②BC为底,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD=30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:①BC为腰,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,②BC为底,如图3,∵AD⊥BC于点D,AD=BC,∴AD=BD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC的顶角度数为30°或150°或90°.故答案为:30°或150°或90°.3.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.4. (2017.湖南怀化)如图,在菱形ABCD中,∠ABC=120°,AB=10cm,点P是这个菱形内部或边上的一点.若以P,B,C为顶点的三角形是等腰三角形,则P,A(P,A两点不重合)两点间的最短距离为10﹣10 cm.【考点】L8:菱形的性质;KH:等腰三角形的性质.【分析】分三种情形讨论①若以边BC为底.②若以边PB为底.③若以边PC为底.分别求出PD的最小值,即可判断.【解答】解:连接BD,在菱形ABCD中,∵∠ABC=120°,AB=BC=AD=CD=10,∴∠A=∠C=60°,∴△ABD,△BCD都是等边三角形,①若以边BC为底,则BC垂直平分线上(在菱形的边及其内部)的点满足题意,此时就转化为了“直线外一点与直线上所有点连线的线段中垂线段最短”,即当点P与点D重合时,PA最小,最小值PA=10;②若以边PB为底,∠PCB为顶角时,以点C为圆心,BC长为半径作圆,与AC 相交于一点,则弧BD(除点B外)上的所有点都满足△PBC是等腰三角形,当点P在AC上时,AP最小,最小值为10﹣10;③若以边PC为底,∠PBC为顶角,以点B为圆心,BC为半径作圆,则弧AC上的点A与点D均满足△PBC为等腰三角形,当点P与点A重合时,PA最小,显然不满足题意,故此种情况不存在;综上所述,PD的最小值为10﹣10(cm);故答案为:10﹣1.类型之三转化思想1.(2017内蒙古赤峰)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD ⊥AM垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).【考点】ME :切线的判定与性质;MO :扇形面积的计算.【分析】(1)由已知条件得到△BOC 是等边三角形,根据等边三角形的性质得到∠1=∠2=60°,由角平分线的性质得到∠1=∠3,根据平行线的性质得到∠OAM=90°,于是得到结论;(2)根据等边三角形的性质得到∠OAC=60°,根据三角形的内角和得到∠CAD=30°,根据勾股定理得到AD=2,于是得到结论.【解答】解:(1)∵∠B=60°, ∴△BOC 是等边三角形, ∴∠1=∠2=60°, ∵OC 平分∠AOB , ∴∠1=∠3, ∴∠2=∠3, ∴OA ∥BD ,∴∠BDM=90°,∴∠OAM=90°, ∴AM 是⊙O 的切线; (2)∵∠3=60°,OA=OC , ∴△AOC 是等边三角形, ∴∠OAC=60°, ∵∠OAM=90°, ∴∠CAD=30°, ∵CD=2, ∴AC=2CD=4,∴AD=2,∴S 阴影=S 梯形OADC ﹣S 扇形OAC =(4+2)×2﹣=6﹣.2.如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【考点】MO:扇形面积的计算;M5:圆周角定理.【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE ⊥AO ,∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×2=π﹣.3. 我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是 25 尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出. 【解答】解:如图,一条直角边(即枯木的高)长20尺, 另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.类型之四数形结合思想1. (2017哈尔滨)周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是()A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【考点】E6:函数的图象.【分析】根据特殊点的实际意义即可求出答案.【解答】解:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选:D.2. (2017山东临沂)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?【分析】(1)根据函数图象可以分别设出各段的函数解析式,然后根据函数图象中的数据求出相应的函数解析式;(2)根据题意对x进行取值进行讨论,从而可以求得该用户二、三月份的用水量各是多少m3.【解答】解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.【点评】本题考查一次函数的应用,解答此类问题的关键是明确题意,求出相应的函数解析式,利用数形结合的思想和分类讨论的数学思想解答.3. (2017浙江衢州)如图,从边长为(a+3)的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠无缝隙),则拼成的长方形的另一边长是a+6 .【考点】4G:平方差公式的几何背景.【分析】根据拼成的长方形的面积等于大正方形的面积减去小正方形的面积列式整理即可得解.【解答】解:拼成的长方形的面积=(a+3)2﹣32,=(a+3+3)(a+3﹣3),=a(a+6),∵拼成的长方形一边长为a,∴另一边长是a+6.故答案为:a+6.4.(2017宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.=a2﹣abC.(a﹣b)【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选D.【点评】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.5. (2017•温州)四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.12S B.10S C.9S D.8S【考点】KR:勾股定理的证明.【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a ﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=9b2=9S,故选C.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.6. (2017浙江衢州)“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【考点】FH:一次函数的应用;FA:待定系数法求一次函数解析式.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80>30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80>30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.类型之五方程、函数思想1.(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L8:菱形的性质.【分析】(1)根据平行四边形ABCD的性质,判定△BOE≌△DOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BE⊥EF,设BE=x,则 DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.2.(2017江苏盐城)如图,曲线l是由函数y=在第一象限内的图象绕坐标原点O逆时针旋转45°得到的,过点A(﹣4,4),B(2,2)的直线与曲线l相交于点M、N,则△OMN的面积为8 .【考点】R7:坐标与图形变化﹣旋转;G5:反比例函数系数k 的几何意义.【分析】由题意A (﹣4,4),B (2,2),可知OA ⊥OB ,建立如图新的坐标系(OB 为x′轴,OA 为y′轴,利用方程组求出M 、N 的坐标,根据S △OMN =S △OBM ﹣S △OBN 计算即可.【解答】解:∵A (﹣4,4),B (2,2), ∴OA ⊥OB ,建立如图新的坐标系(OB 为x′轴,OA 为y′轴.在新的坐标系中,A (0,8),B (4,0),∴直线AB 解析式为y′=﹣2x′+8,由,解得或,∴M (1.6),N (3,2),∴S △OMN =S △OBM ﹣S △OBN =•4•6﹣•4•2=8,故答案为8。
中考数学一轮复习第七章专题拓展7.7新定义问题试卷部分课件

事实上,当点C是EF的中点时,对所有r≥1的☉C,线段EF上的所有点都是☉C的关联点. 综上所述,r≥1.
6.(2018北京东城一模,28)给出如下定义:对于☉O的弦MN和☉O外一点P(M,O,N三点不共线,且 P,O在直线MN的异侧),当∠MPN+∠MON=180°时,称点 P是线段MN关于点O的关联点.图1是 点P为线段MN关于点O的关联点的示意图.
已知点D 12 ,,E12 (0,-2),F(2 ,0). 3
(1)当☉O的半径为1时,
①在点D,E,F中,☉O的关联点是
;
②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是☉O的关联点,求m
的取值范围;
(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.
当 3 ≤t≤1时3, ≤m≤1.
4
4
∴ 3 ≤m≤1.
③当4 m>1时,由题意知,边界值t≥m.
∴不存在满足 3 ≤≤m≤1时,满足3 ≤t≤1.
44
4
5.(2013北京,25,8分)对于平面直角坐标系xOy中的点P和☉C,给出如下定义:若☉C上存在两个 点A,B,使得∠APB=60°,则称P为☉C的关联点.
在平面直角坐标系xOy中,☉O的半径为1.
(1)如图2,M
2,N,
2
2 2
.在A(212,0, ),B22(1,1),C( ,0)三点中,是线2段MN关于点O的关联
点的是
;
(2)如图3,M(0,1),N
23,点, D12 是 线段 MN关于点O的关联点.
图3 (iii)当OP>3时,如图4.
【人教版】2018年秋季七年级数学下册:全一册名师讲义(27套,含答案)

第九章 9.1.1不等式及其解集知识点1:不等式的概念用符号“<”(或“≤”)“>”(或“≥”)“≠”连接而成的数学式子,叫做不等式. 知识点2:不等式的解一般地,能够使不等式成立的未知数的值,叫做这个不等式的解.如x=-2、x=-1、x=- 都是不等式x-1<1的解.注意:一元一次不等式的解与一元一次方程的解是有区别的,一元一次方程的解只有唯一一个,而一元一次不等式的解可能不止一个.知识点3:不等式的解集1.不等式的解的全体称为这个不等式的解集.如x<是不等式x-1<1的解集.2.解不等式:求不等式解集的过程,叫做解不等式.3.不等式解集的表示方法:一般来说,表示不等式解集有“不等式法”和“数轴法”两种,“不等式法”简便易行,“数轴法”直观明确,在不加要求的前提下,一般用“不等式法”,有时一些题目中也要求“并在数轴上表示”.(1)不等式法:一般地,一个含有未知数的不等式的解有无数多个,其解集是一个范围,这个范围可以用最简单的不等式来表示.如不等式x-2≤6的解集为x≤8.这种表示方法叫做不等式法.(2)数轴法:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无数个解.注意:只要能使不等式成立的未知数的值都是不等式的解,不等式的解一般有无数个,这无数个未知数的值组成不等式的解集,因此不等式的解集一般是一个范围,而不是一个具体的值,但如果一个范围不包括所有未知数的值,那么这个范围也不是不等式的解集.知识点4:一元一次不等式含有一个未知数,并且未知数的次数为1的不等式叫做一元一次不等式.注意:一元一次不等式必须是经过化简后含有一个未知数,且未知数的次数是一.考点:用不等式表示实际问题中的数量关系【例】某市自来水公司按如下标准收取水费:若每户每月用水不超过10 m3,则每立方米收费1.6元;若每户用水超过10 m3,则超过的部分每立方米收费3元.小明家某月的水费不少于25元,他家这个月的用水量最少是多少?只列出不等式.解:设他家这个月的用水量为x m3,则1.6×10+3(x-10)≥25.点拨:设他家这个月的用水量为x m3,则由“小明家某月的水费不少于25元”知,他家这个月的用水量超过了10 m3,其中10 m3收费1.6×10元,其余部分收费3(x-10)元,所以小明家这个月共交水费[1.6×10+3(x-10)]元.第九章 9.1.2不等式的性质知识点1:不等式的性质1不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.即如果a>b,那么a±c>b±c.知识点2:不等式的性质2不等式的两边都乘(或除以)同一个正数,不等号的方向不变.即如果a>b,c>0,那么ac>bc .知识点3:不等式的性质3不等式的两边都乘(或除以)同一个负数,不等号的方向改变.即如果a>b,c<0,那么ac<bc.考点1:用不等式的性质解决实际问题【例1】如图所示,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A.a>c>bB.b>a>cC.a>b>cD.c>a>b答案:C点拨:由图可知3b<2a,可知b<a;由图可知2c=b,推出c<b,从而得出a,b,c的大小关系为:a>b>c.考点2:应用不等式的基本性质求字母的取值范围【例2】若关于x的不等式(1-a)x>2可化为x<,试确定a的取值范围.解:∵不等式(1-a)x>2可化为x<.根据不等式的性质可知:1-a<0,∴a>1.∴a的取值范围为a>1.点拨:把不等式x>2化为x<时,就是把不等式两边同时除以了1-a,我们发现不等号方向发生了变化,说明这个不等式两边同时除以了一个负数,由此我们可以列出不等式1-a<0,进而求出a的范围.考点3:将不等式化成x>a或x<a的形式【例3】根据不等式的性质,把下列各不等式化成x>a或x<a的形式.(1)10<12-x;(2)6x+4<2x;(3)2x+5>5x-4;(4)4-3x<4x-3;(5)+1>4;(6)-+1>.解:(1)不等式两边都减去12得-x>-2,由不等式的性质3,得x<2.(2)对不等式两边同时减去2x+4得4x<-4,由不等式的性质2,得x<-1.(3)对2x+5>5x-4两边同时减去2x,得3x-4<5,再由不等式的性质1,不等式两边同时加上4,得3x<9,即x<3.(4)4-3x<4x-3,得7x>7(由不等式的性质1,两边同时加上3x+3),再由不等式的性质2,两边同除以7,得x>1.(5)由+1>4,两边同时减去1,得>3,两边同乘3,得x>9.(6)对-+1>两边同时乘6,得-4x+6>3x-3,再对不等式两边同时加上4x+3,得7x<9,故x<.点拨:根据不等式的性质,我们可以对不等式进行等价变形,把不等式化成x>a或x<a 的形式.第九章 9.2.1一元一次不等式(一)知识点:解一元一次不等式的方法和步骤1.利用不等式的性质,我们可以把一个较复杂的一元一次不等式逐步转化为x>a(x≥a)或x<a(x≤a)的形式,这个过程叫做解一元一次不等式.步骤为:(1)去分母(根据不等式的性质2或性质3);(2)去括号(根据整式的运算法则);(3)移项(根据不等式的性质1);(4)合并同类项(根据合并同类项的法则);(5)系数化为1(根据不等式的性质2或性质3).2.解一元一次不等式与解一元一次方程的区别与联系:联系:两者都通过去分母、去括号、移项、合并同类项、系数化为1等过程求出答案.区别:(1)解一元一次不等式的依据是不等式的基本性质,解一元一次方程的依据是等式的基本性质.移项时不改变不等号的方向,但在去分母及未知数系数化为1这两步,当不等式两边都乘(或除以)同一个负数时,不等号的方向必须改变,而方程在去分母和未知数系数化为1时,等号不变.(2)一元一次不等式的解集一般包含无限多个数,而一元一次方程的解一般只包含一个数.(3)一元一次不等式的解集,在数轴上一般用无限多个点的集合表示,一元一次方程的解在数轴上一般用一个点表示.考点1:不等式的特殊解【例1】求不等式->+的正整数解.解:去分母,得3(2-3x)-3(x-5)>2(-4x+1)+8,去括号,得6-9x-3x+15>-8x+2+8,移项,合并同类项,得-4x>-11,系数化为1,得x<.因为小于的正整数有1,2两个,所以这个不等式的正整数解是1,2.点拨:求不等式的特殊解时,应先求出不等式的解集,然后在解集中确定符合要求的特殊解.考点2:方程(组)解的讨论【例2】若关于x的方程x-=的解是非负数,求m的取值范围.解:解关于x的方程x-=,去分母,得2x-=2-x,去括号,得2x-x+m=2-x,移项、合并同类项,得2x=2-m,系数化为1,得x=.因为x≥0,所以≥0,即2-m≥0,所以m ≤2.点拨:首先解方程,用含m的代数式表示出x,再根据解是非负数得x≥0,从而列出关于m的不等式,求出其取值范围.第九章 9.2.2一元一次不等式(二)知识点:应用不等式解决实际问题解不等式应用题通常采用解方程应用题的解题过程,即在审题过程中寻找能体现全题的不等关系,建立不等式,然后准确地解不等式.有些问题,往往是先求出取值范围,然后取符合范围的解,其关键还是建立不等式模型.注意:解决不等式应用题的关键是建立不等式模型,列不等式时我们要注意不等号是否取到等号.考点:利用不等式的特殊解来设计方案【例】某物流公司要将300 t物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20 t,B型车每辆可装15 t,在每辆车不超载的条件下,把300 t物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?解:设还需调用B型车x辆,根据题意,得20×5+15x≥300,解得x≥13 .由于x是车的数量,应为整数,所以x的最小值为14.答:至少需要14辆B型车.点拨:本题有一个不等关系,那就是A、B两种型号的车总共装运的物资的吨数必须不少于300 t,根据这个不等关系,列出一个一元一次不等式,求出调用B型车辆数的范围,最后根据车的辆数必须为整数,讨论出B型车至少需要的辆数.第九章 9.3一元一次不等式组知识点1:一元一次不等式组的概念一般地,由几个含有同一未知数的一元一次不等式所组成的一组不等式叫做一元一次不等式组.;(3)组成不等式组的不等一元一次不等式组的解集表示(a<b)(a<b)(a<b)(a<b)通常是利用数轴来确定的一元一次不等式组的解法当一个不等式组含有三个或三个以上的不等式时不等式组(a<b<c)b<x<c.考点1:一元一次不等式组的正整数解【例1】解不等式组并求它的正整数解.解:解不等式①,得x>-;解不等式②,得x≤4.所以不等式组的解集为-<x≤4.所以这个不等式组的正整数解为1,2,3,4.点拨:先求出组成不等式组的每一个不等式的解集,然后寻找出这些解集的公共部分,这个公共部分就是这个不等式组的解集,最后在不等式组的解集中找出满足要求的解.考点2:方程组的解与不等式组的解集【例2】已知关于x、y的方程组的解是一对正数.(1)试确定m的取值范围;(2)化简|3m-1|+|m-2|.解:(1)①+②,得2x=6m-2,即x=3m-1.①-②,得4y=-2m+4,即y=.∵方程组的解为一对正数,∴解得<m<2.∴m的取值范围为<m<2.(2)∵<m<2,∴3m-1>0,m-2<0,∴|3m-1|+|m-2|=(3m-1)+(2-m)=2m+1.点拨:由于这个方程组的解是一对正数,我们可先用含m的代数式表示出这个二元一次方程组的解,然后利用这组解是一对正数列出不等式组,从而求出m的取值范围.考点3:字母系数的取值范围。
2018年中考数学解题技巧总复习---全部考点解析及强化训练汇总全书(共计235页)

况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用
特例法解选择题时,特例取得愈简单、愈特殊愈好.
例 2 (•常州)已知 a、b、c、d 都是正实数,且 a c ,给出下列四个不 bd
等式:
① a c ;② c a ;③ d b ;④ b d 。
ab cd cd ab
Hale Waihona Puke 故选 A。点评:本题考查了不等式的性质,用特殊值法来解,更为简单.
对应训练
2.(•南充)如图,平面直角坐标系中,⊙O 的半径长为 1,点 P(a,0),⊙P 的半
径长为 2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( )
A.3
B.1
C.1,3
D.±1,±3
对应训练
3. (•临沂)如图,若点 M 是 x 轴正半轴上任意一点,过点 M 作 PQ∥y 轴,
2018 年中考数学总复习--全部考点解析及强化训练汇总全书
中考数学专题讲座一:选择题解题方法
一、中考专题诠释 选择题是各地中考必考题型之一,年各地命题设置上,选择题的数目稳定在 8~
14 题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖
面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际 问题的能力的培养. 二、解题策略与解法精讲
1 D.△POQ 的面积是 2 (|k1|+|k2|)
考点四:逆推代入法
将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设
条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,
若能据题意确定代入顺序,则能较大提高解题速度.
全国2018年中考数学真题分类汇编第7讲分式方程无答案word格式

第7讲分式方程知识点1 分式方程的解知识点2 分式方程的解法知识点3 分式方程的增根知识点4 分式方程的实际应用知识点1 分式方程的解(2018株洲)5、关于的分式方程解为,则常数的值为A、B、C、D、(2018张家界)2.若关于的分式方程的解为,则的值为( )知识点2 分式方程的解法(2018德州)8.分式方程的解为( D )A. B. C. D.无解(2018龙东)(2018荆州)5.解分式方程时,去分母可得()A. B. C.D.(2018成都)8.分式方程的解是( A )A.x=1 B. C. D.(2018兰州)(2018哈尔滨)(2018海南)(2018黄石)13、分式方程的解为________________(2018铜仁)(2018甘肃)(2018湘潭)11.(3分)分式方程=1的解为x=2 .(2018无锡)(2018常德)10.分式方程的解为.(2018眉山)15.已知关于x的分式方程-2=有一个正数解,则k的取值范围为 .(2018广州)13.方程的解是__x= 2__.知识点3 分式方程的增根(2018潍坊)14.当时,解分式方程会出现增根.(2018达州)13.若关于的分式方程无解,则的值为 . (2018齐齐哈尔)知识点4 分式方程的实际应用(2018临沂)10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场,一汽贸公司经销某品牌新能源汽车,去年销售总额为5000万元,今年1-5月份.每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年整年的少20%。
今年1-5月份每辆车的销售价格是多少万元?设今年1-5月份每辆车的销售价格为万元根据题意.列方程正确的是()A. B.C. D.(2018黔东南、黔南、黔西南)8.施工队要铺设米的管道,因在中考期间需停工天,每天要比原计划多施工米才能按时完成任务.设原计划每天施工米,所列方程正确的是()A. B.C. D.(2018淄博)10.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为万平方米,则下面所列方程中正确的是()A. B.C. D.(2018通辽)(2018昆明)(2018怀化)(2018毕节)13.某商厦进货员预测一种应季衬衫国畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为元,则所列方程正确的是( )A. B.C. D.(2018衡阳)8.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为()A. B. C. D.(2018新疆建设兵团)(2018宿迁)15.为了改善生态环境,防止水土流失,红旗村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数是原计划的2倍,结果提前4天完成任务,则原计划每天种树的棵数是▲ .(2018嘉兴、舟山)答案:(2018遂宁)A、B两市相距200千米,甲车从A市到B市,乙车从B市到A市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早米小时到达目的地。
中考数学习题精选:整式(含参考答案)

中考数学满分冲刺讲义: 一、选择题1.(2018北京市朝阳区初二期末)下列计算正确的是A .235a a a ⋅=B .325()a a =C .22(3)6a a = D .2841a a a ÷= 答案:A2.(2018北京市东城区初二期末)下列运算正确的是A. 532b b b ÷=B.527()b b =C. 248b b b = D .2-22a a b a ab =+()解:A 3.(2018北京市海淀区八年级期末)下列计算正确的是A .325a a a +=B .325a a a ⋅=C .236(2)6a a =D .623a a a ÷=答案:B4.(2018北京市师达中学八年级第一学期第二次月考)5. (2018北京西城区二模)下列运算中,正确的是A .22456x x x +=B .326x x x ⋅=C . 236()x x =D .33()xy xy =答案: C6.(2018北京东城区二模) 6. 如果23510a a +-=,那么代数式()()()5323+232a a a a +--的值是A. 6B. 2C. - 2D. - 6 答案A7.(2018北京朝阳区二模)6.已知a a 252=-,代数式)1(2)2(2++-a a 的值为 (A )-11 (B )-1 (C ) 1 (D )11答案:D8.(2018北京石景山区初三毕业考试)下列各式计算正确的是A .23525a a a +=B .23a a a ⋅=C .623a a a ÷= D .235()a a =答案:B9. (2018北京市大兴区检测)下列运算正确的是 A. 236(2)6=a a B. 325⋅=a a aC. 224246+=a a aD. 222(2)4+=+a b a b答案B10.(2018北京延庆区初一第一学期期末)4.下列计算中,正确的是A .22254a b a b a b -=B .a b ab +=C .33624a a -=D .235235b b b += 答案:A11.(2018北京平谷区初一第一学期期末)下列运算正确的是A .4x -x =3xB .6y 2-y 2=5C .b 4+b 3=b 7D .325a b ab +=答案A12.(2018北京朝阳区七年级第一学期期末)下列计算正确的是A .2233x x -=B .22232a a a --=-C .3(1)31a a -=-D .2(1)22x x -+=--答案:D13.(2018北京丰台区初一第一学期期末) 下列运算正确的是 A .33323a a a =- B .34-=-m m C .022=-ab b aD .2532x x x =+答案:A14.(2018北京朝阳区七年级第一学期期末)李老师用长为6a 的铁丝做了一个长方形教具,其中一边长为b -a ,则另一边的长为A .7a b -B .2a b -C .4a b -D .82a b - 答案:C15.(2018北京东城区初一第一学期期末)下列运算正确的是A . 43m m -=B . 33323a a a -=-C . 220a b ab -=D . 2yx xy xy -= 答案:B16.(2018北京海淀区七年级第一学期期末) 下列结论正确的是( )A. 23ab -和2b a 是同类项B.π2不是单项式 C. a 比a -大 D. 2是方程214x +=的解 答案:A17.(2018北京怀柔区初一第一学期期末)如图,正方形的边长为a ,圆的直径是d ,用字母表示图中阴影部分的面积为A .22a d π- B .22a d π- C .2212a d π-D .22()2da π-答 案D18.(2018北京怀柔区初一第一学期期末)如果23(2)0a b ++-=,那么代数式2017()a b +的值为A .5B .-5C .1D .-1 答 案D19.(2018北京延庆区初一第一学期期末)元旦,是公历新一年的第一天.“元旦”一词最早出现于《晋书》:“颛帝以孟夏正月为元,其实正朔元旦之春 ”.中国古代曾以腊月、十月等的月首为元旦.1949年中华人民共和国以公历1月1日为元旦,因此元旦在中国也被称为“阳历年”.为庆祝元旦,人民商场举行促销活动,促销的方法是“消费超过100元时,所购买的商品按原价打8折后,再减少20元”.若某商品的原价为x 元(x >100),则购买该商品实际付款的金额(单位:元)是A . 80%x -20B .80%(x -20)C . 20%x -20D .20%(x -20)答案:A二、填空题20.(2018北京房山区二模)10. 若代数式26x x b -+可化为2()5x a +-,则a b +的值为 .答案:121.(2018北京顺义区初一第一学期期末)13.多项式32232421x y x y xy y +-+-是 次 项式.答案:四次五项式22.(2018北京顺义区初一第一学期期末)16.如果23x y -=,那么代数式142x y -+的值为 . 答案:-523.(2018北京顺义区初一第一学期期末)18.如果21(1)0x y +++=,那么代数式20172018x y -的值是 .答案:-224.(2018北京石景山区初一第一学期期末)若710x y -与415m x y -是同类项,则m 的值为 . 答案:225.(2018北京怀柔区初一第一学期期末)单项式343x y 的系数是 ,次数是 . 答案:43,26.(2018北京怀柔区初一第一学期期末)如果2a -b =-2,ab =-1,那么代数式3ab -4a +2b-5的值是_________. 答案:-427.(2018北京海淀区七年级第一学期期末)小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元则小何共花费 元.(用含a ,b 的代数式表示)答案: 410a b +;28.(2018北京西城区九年级统一测试)化简:()()42(1)a a a a +--+=__________. 答案: 8a -.29.(2018北京昌平区初一第一学期期末) 234x y -的系数是 ,次数是 . 答案: -4,530.(2018北京昌平区初一第一学期期末)写出32m n - 的一个同类项 . 答案:答案不唯一,如m 3n 等.31.(2018北京东城区初一第一学期期末)单项式﹣xy 2的系数是 ;次数是_________.答案:1-32,32.(2018北京东城区初一第一学期期末)已知代数式2x ﹣y 的值是12,则代数式﹣6x +3y ﹣1的值是 . 答案:33.(2018北京东城区初一第一学期期末)13.写出一个与32x y -是同类项的单项式为______.答案:3x y (答案不唯一)34 .(2018北京房山区一模)如图,正方形ABCD ,根据图形,写出一个正确的等式:__________. 答案()2222a b a ab b+=++35. (2018北京市朝阳区综合练习(一))赋予式子“ab ”一个实际意义: . 答案答案不惟一,如:边长分别为a ,b 的矩形面积36.(2018北京平谷区中考统一练习)计算:23222333m n ++++⨯⨯⨯个个= .答案23n m +37.(2018北京平谷区中考统一练习)已知:24a a +=,则代数式()()()2122a a a a +-+-的值是 .答案8;38.(2018北京东城区初一第一学期期末)14. 如图:(图中长度单位:m ),阴影部分的面积是______2m答案:2+420x x +39.(2018北京东城区初一第一学期期末)19.按下列图示的程序计算,若开始输入的值为x =﹣6,则最后输出的结果是 .答案:12040.(2018北京丰台区初一第一学期期末)写出一个系数为32-且次数为3的单项式 .答案:答案不唯一,如332a -41.(2018北京门头沟区七年级第一学期期末)两个单项式满足下列条件:① 互为同类项;②次数都是3.任意写出两个满足上述条件的单项式 ,将这两个单项式合并同类项得_______________. 答案:略42.(2018北京平谷区初一第一学期期末)已知622x y 和-313m n x y是同类项,则m-n 的值是答案:043.(2018北京西城区七年级第一学期期末)已知222x x +=,则多项式2243x x +-的值为 . 答案:144.(2018北京西城区七年级第一学期期末)16.右图是一所住宅的建筑平面图(图中长度单位:m ),这所住宅的建筑面积为 m. .答案:2218x x ++45.(2018北京延庆区初一第一学期期末)13.写出-21x 2y 3的一个同类项 .答案:ax 2y 3三、解答题46.(2018北京交大附中初一第一学期期末)先化简,再求值:22113122()()223233x x y x y x y --+-+=-=,其中,47.(2018北京朝阳区七年级第一学期期末)21.已知2250x y --=,求223(2)(6)4x xy x xy y ----的值.解:223(2)(6)4x xy x xy y ----223664x xy x xy y =--+- 224x y =-.因为2250x y --=, 所以225x y -=. 所以原式=10.48.(2018北京昌平区初一第一学期期末)24. 化简求值:22(2)33(31)(93)x x x x -⨯+---+,其中13x =-.解:原式= -6x + 9x 2 - 3 - 9x 2 + x - 3…………………… 3分 = -5x - 6. ………………………… 4分当13x =-时,原式=15()63-⨯--………………………… 5分=133-.………………………… 6分49.(2018北京东城区初一第一学期期末)先化简,再求值:(5a 2+2a ﹣1)﹣4(3﹣8a +2a 2),其中a =﹣1.解:原式=5a 2+2a ﹣1﹣12+32a ﹣8a 2=﹣3a 2+34a ﹣13. ………3分 当a =﹣1时,原式=﹣3﹣34﹣13=﹣50. ………4分50.(2018北京丰台区初一第一学期期末)先化简,再求值:()[]xy y x xy xy y x ---+2223275,其中1-=x ,32-=y .解:原式=()xy y x xy xy y x -+-+224675=y x y x 2245+ =y x 29. ……3分当1-=x ,32-=y 时, 原式=()⎪⎭⎫⎝⎛-⨯-⨯32192= – 6.……4分51.(2018北京海淀区七年级第一学期期末)已知37=3a b --,求代数式2(21)5(4)3a b a b b +-+--的值.答案.解: 2(21)5(4)3a b a b b +-+--=4225203a b a b b +-+--=9212a b --…………………………………..2分37=3a b --Q ∴原式=9212a b -- =3(37)2a b -- =3(3)2⨯-- =92--=11-…………………………………..4分52.(2018北京怀柔区初一第一学期期末)21.先化简,再求值:22(22)(21)x x x ---+,其中12x =-. 解:原式=224421x x x ---- ……………………………………1分=2265x x --………………………………………………………3分 当x=12-时, 原式=2112()6()522⨯--⨯-- 1352=+-32=-………………………… 4分53.(2018北京门头沟区七年级第一学期期末)23.先化简,再求值:已知210a -=,求()()225+212a a a a --+的值.答案 解:()()225212a a a a +--+2252122a a a a =+---……………………………………………………………2分 231a =-…………………………………………………………………………3分 又∵210a -=∴21a =………………………………………………………………………………4分 ∴ 原式2313112a =-=⨯-=……………………………………………………5分54.(2018北京平谷区初一第一学期期末)22.化简)()(223212a a a a +-+-- 答案 解:=2a 2-a -1+6-2a+2a 2 ……………………………………………………… 3 =4a 2-3a +5 ………………………………………………………… 5 55.(2018北京平谷区初一第一学期期末)23.先化简,再求值:若2=x ,1-=y ,求)332()1(22222-----xy y x xy y x 的值. 答案 )332()1(22222-----xy y x xy y x3322222222++---=xy y x xy y x ............................................. 2 12+=xy (4)当2=x ,1-=y 时,原式=3 (5)56.(2018北京石景山区初一第一学期期末)23.先化简,再求值:22173)6()3x xy x xy ---(,其中13,3x y =-=. 答案.解:原式222736x xy x xy +=-- ……………………………… 2分 2x xy =-. ………………………………… 3分当13,3x y =-=时, 原式21(3)(3)3=---⨯10.= ………………………………… 5分57.(2018北京顺义区初一第一学期期末)27.王老师给同学们出了一道化简的题目:222(2)3(2)x y x x y x +--,小亮同学的做法如下:222222(2)3(2)432x y x x y x x y x x y x x y x +--=+--=-.请你指出小亮的做法正确吗?如果不正确,请指出错在哪?并将正确的化简过程写下来. 答案:去括号时应用分配率出错. ………………………………………………… 2分 正确化简结果如下:原式224236x y x x y x =+-+ ……………………………………………… 4分 28x y x =+ ……………………………………………………………… 5分 58.2018北京西城区七年级第一学期期末).先化简,再求值:2223()2()3x xy x y xy ---+,其中1x =-,3y =.答案: 解:2223()2()x xy x y xy ---+=22233223x xy x y xy --++ ............................................................................. 2分 =222x y + ............................................................................................................. 3分 当1x =-,3y =时,原式=22(1)23-+⨯ ............................................................................................. 4分 =19.5分59.(2018北京西城区七年级第一学期期末附加题)输液时间与输液速率问题静脉输液是用来给病人注射液体和药品的.在医院里,静脉输液是护士护理中最重要的一项工作,护士需要依据输液速率D ,即每分钟输入多少滴液体,来计算输完点滴注射液的时间t (单位:分钟).他们使用的公式是:dVt D=,其中,V 是点滴注射液的容积,以毫升(ml )为单位,d 是点滴系数,即每毫升(ml )液体的滴数.(1)一瓶点滴注射液的容积为360毫升,点滴系数是每毫升25 滴,如果护士给病人注射的输液速率为每分钟50滴,那么输完这瓶点滴注射液需要多少分钟?(2)如果遇到的病人年龄比较大时,护士会把输液速率缩小为原来的12,准确地描述,在V和 d 保持不变的条件下, 输完这瓶点滴注射液的时间将会发生怎样的变化? 答案:(1)由D = 50, d = 25, 360V =, dVt D=, ∴ 2536050t ⨯=. ........................................................................... 3分 ∴ t =180. ............................................................................. 4分答:输完点滴注射液的时间是180分钟.(2)设输的速率为D 1滴/分,点滴注射的时间为t 1分钟,则11dV t D =........................................................................................... 5分 输液速率缩小为112D 2,点滴注射的时间延长到t 2分钟, 则21112212dV dV t t D D ===, .................................................................... 6分 答:在d 和V 保持不变的条件下,D 将缩小到原来的12时,点输完滴注射的时间延长为原来的2倍. ..................................................................................... 7分60.(2018北京延庆区初一第一学期期末)先化简,再求值:222(22)(21)x x x x +----,其中12x =-. 答案 18.解:原式=2224421x x x x +--++ ……………………3分=263x x +-………………………………………4分 当12x =-时, 原式=211()6()322-+⨯-- 1334=--234=-………………… 5分 61.(2018北京房山区二模)已知2212x x --=. 求代数式2(1)(4)(2)(2)x x x x x -+-+-+的值.答案. 原式=2222144x x x x x -++-+-=2363x x --.……………………………………………………………………3′ ∵2212x x --=∴原式=2363x x --23(21)x x =--6=.………………………………………4′62.(2018北京市朝阳区初二期末)已知0a b +=,求代数式(4)(2)(2)a a b a b a b +-+-的值.解: (4)(2)(2)a a b a b a b +-+-2224(4)a ab a b =+--…………………………………………………2分 244ab b =+. …………………………………………………………………3分∵0a b +=,∴原式4()0b a b =+=.………………………………………………………5分63.(2018北京市东城区初二期末))已知2+2x x =,求()()()()22311x x x x x +-+++-的值【解析】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7讲、拆解转化(讲义)
1. 在平面直角坐标系中,直线3
14
y x =-+交y 轴于点B ,交x 轴于点A ,抛物
线212y x bx c =-++经过点B ,与直线3
14
y x =-+交于点C (4,-2).
(1)求抛物线的解析式;
(2)如图,横坐标为m 的点M 在直线BC 上方的抛物线上,过点M 作ME ∥y 轴交直线BC 于点E ,以ME 为直径的圆交直线BC 于另一点D ,当点E 在x 轴上时,求△DEM 的周长;
(3)将△AOB 绕坐标平面内的某一点按顺时针方向旋转90°,得到△A 1O 1B 1,点A ,O ,B 的对应点分别是A 1,O 1,B 1,若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的坐标.
2. 如图,已知抛物线211(1)444
b
y x b x =
-++(b 是实数且b >2)与x 轴的正半轴交于点A ,B (点A 在点B 的左侧),与y 轴的正半轴交于点C .
(1)点B 的坐标为________,点C 的坐标为________(用含b 的代数式表示).
(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明 理由.
(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO ,△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.
3. 如图,已知二次函数y =x 2+(1-m )x -
m (其中0<m <1)的图象与x 轴交于A ,
B两点(点A在点B的左侧),与y轴交于点C,P为对称轴l上一点,且PA=PC.
(1)∠ABC的度数为________.
(2)求点P的坐标(用含m的代数式表示).
(3)在坐标轴上是否存在点Q(与原点O不重合),使得以Q,B,C为顶点的三角形与△PAC相似,且线段PQ的长度最小?若存在,求出所有满足条件的点Q的坐标;若不存在,请说明理由.
4.已知抛物线y=ax2+bx+c,其中2a=b>0>c,且a+b+c=0.
(1)直接写出关于x的一元二次方程ax2+bx+c=0的一个根;
(2)证明:抛物线y=ax2+bx+c的顶点A在第三象限;
(3)直线y=x+m与x,y轴分别相交于B,C两点,与抛物线y=ax2+bx+c相交于A,D两点.设抛物线y=ax2+bx+c的对称轴与x轴相交于点E.如果在对称轴左侧的抛物线上存在点F,使得△ADF与△BOC相似,并且
S△ADF=1
2
S△ADE,求此时抛物线的表达式.
【参考答案】
1. (1)抛物线的解析式为215
124
y x x =-++;
(2)△DEM 的周长为
6415
; (3)A 1的坐标为(712-
,29288)或(34,3196
). 2. (1)(b ,0);(0,
4
b ); (2)存在,点P 的坐标为(
165,165
);
(3)存在,点Q 的坐标为(1,2+)或(1,4). 3. (1)45°;
(2)P (
12m -,12
m
-); (3)存在,点Q 的坐标为(25-,0)或(0,2
5
).
4. (1)x =1;
(2)证明略;
(3)此时抛物线的解析式为y =x 2+2x -3.。