流水行船问题及答案

合集下载

完整版)流水行船问题及答案

完整版)流水行船问题及答案

完整版)流水行船问题及答案9小时,河水流速为每小时5千米,求汽艇逆水行完全程需要多长时间。

根据公式:顺水速度=船速+水速,逆水速度=船速-水速,我们可以得到:顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:XXX÷30=12小时例1:一艘船在静水中的速度为每小时13千米,水流的速度为每小时3千米。

船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间。

根据公式:顺水速度=船速+水速,逆水速度=船速-水速,我们可以得到:顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时例2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头。

已知船在静水中每小时行驶15千米。

问这船返回甲码头需几小时?根据公式:顺水速度=船速+水速,逆水速度=船速-水速,我们可以得到:顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达。

从乙港返回甲港,逆水13小时到达。

求船在静水中的速度和水流速度。

根据公式:顺水速度=船速+水速,逆水速度=船速-水速,我们可以得到:顺水速度:208÷8=26千米/小时逆水速度:208÷13=16千米/小时船速:(26+16)÷2=21千米/小时水速:(26-16)÷2=2千米/小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?根据公式:顺水速度=船速+水速,逆水速度=船速-水速,我们可以得到:顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时2、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头。

奥数之复习八:行程问题——流水行船问题及答案

奥数之复习八:行程问题——流水行船问题及答案

复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。

从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。

2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。

一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。

结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。

问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。

船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。

问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。

这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。

五年级奥数流水行船问题讲解及练习答案

五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是研究船在流水中的行程问题,因此,又叫行船问题.在小学数学中涉及到的题目,一般是匀速运动的问题。

这类问题的主要特点是,水速在船逆行和顺行中的作用不同。

流水问题有如下两个基本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时。

逆流而上,行完全程需要16小时,求这条河水流速度。

解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,解析:顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时25千米.它在长144千米的河中逆水而行用了8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4。

流水行船问题应用题

流水行船问题应用题

流水行船问题应用题以下是一些涉及流水行船问题的应用题,每个问题都附有答案:1.一艘船顺流而行,每小时可以行驶20公里。

如果船顺流行驶4小时,船行了多远?答案:船顺流行驶80公里。

2.另一艘船逆流而行,每小时可以行驶15公里。

如果船逆流行驶3小时,船行了多远?答案:船逆流行驶了45公里。

3.一艘船顺流行驶8小时,总共行驶了160公里。

每小时船的速度是多少?答案:船的速度是20公里/小时。

4.一艘船逆流行驶5小时,总共行驶了75公里。

每小时船的速度是多少?答案:船的速度是15公里/小时。

5.两艘船同时出发,一艘顺流每小时行驶25公里,另一艘逆流每小时行驶20公里。

如果它们同时出发后2小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。

6.一艘船在静水中的速度是18公里/小时,如果船逆流行驶6小时,总共行驶了72公里。

逆流的速度是多少?答案:逆流的速度是12公里/小时。

7.一艘船逆流行驶9小时,总共行驶了135公里。

逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是24公里/小时。

8.一艘船逆流行驶4小时,总共行驶了60公里。

逆流的速度是15公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是20公里/小时。

9.一艘船逆流行驶7小时,总共行驶了98公里。

逆流的速度是14公里/小时,如果船在静水中行驶,船的速度是多少?答案:船在静水中的速度是21公里/小时。

10.两艘船同时出发,一艘逆流每小时行驶18公里,另一艘顺流每小时行驶24公里。

如果它们同时出发后3小时相遇,两艘船之间的距离是多少?答案:两艘船之间的距离是90公里。

这些问题旨在帮助学生应用流水行船的概念,并计算船在不同条件下的行驶距离和速度。

专题03《流水行船问题》(解析)

专题03《流水行船问题》(解析)

2022-2023学年专题卷小升初数学行程问题精选真题汇编强化训练(提高)专题03流水行船问题考试时间:100分钟;试卷满分:100分一.选择题(共5小题,满分5分,每小题1分)1.(1分)轮船往返于一条河的两个码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多B.减少C.不变D.增多、减少都有可能【思路点拨】已知一艘轮船往返于甲、乙两个码头之间,假设去时顺水,则航行速度=船速+水速,返回逆水,则航行速度=船速﹣水速,求出往返时间进行比较即可.【规范解答】解:设路程为s,总时间为t,船速为v,水流速度为v1所以t=s÷(v+v1)+s÷(v﹣v1),={s(v﹣v1)+s(v+v1)}÷(v+v1)(v﹣v1),=2sv÷(v2﹣v12);所以t=2sv÷(v2﹣v12)由题可知:v1增大,所以t变大.故选:A.【考点评析】此题属于流水问题,根据顺水速度=船速+水速,逆水速度=船速﹣水速,据此解决问题.2.(1分)甲、乙两地相距280千米,一艘轮船从甲地到乙地是顺水航行,船在静水中的速度是每小时行17千米,水速是每小时3千米,这艘轮船在甲、乙两地往返一次。

共需()小时。

A.33B.36C.34D.以上都错【思路点拨】顺水航行需要的时间=距离÷(船速+水速),逆水速度=静水速度﹣水流的速度。

据此分别求出顺水和逆水行驶的时间,再相加即可。

【规范解答】解:从甲地到乙地顺水一趟的时间:280÷(17+3)=280÷20=14(时)从乙地到甲地逆水一趟的时间:280÷(17﹣3)=280÷14=20(时)往返一次共用时间:14+20=34(小时)故选:C。

【考点评析】本题是一道有关简单的流水行船问题(奥数)的题目;在此类题目中,顺水速度=静水速度+水流的速度,逆水速度=静水速度﹣水流的速度。

流水行船问题面试题及答案

流水行船问题面试题及答案

流水行船问题面试题及答案一、单选题1. 在静水中,船的速度是每小时5公里,水流速度是每小时2公里。

当船顺流而下时,船的实际速度是多少公里每小时?A. 3公里B. 7公里C. 5公里D. 2公里答案:B2. 一艘船在静水中的速度是每小时10公里,水流速度是每小时3公里。

当船逆流而上时,船的实际速度是多少公里每小时?A. 7公里B. 10公里C. 13公里D. 3公里答案:A二、多选题1. 以下哪些因素会影响船在河流中的实际速度?A. 船在静水中的速度B. 水流的速度C. 船的载重量D. 船的发动机功率答案:A、B三、判断题1. 船在静水中的速度和水流速度相加,就是船顺流而下时的实际速度。

答案:正确2. 船在静水中的速度和水流速度相减,就是船逆流而上时的实际速度。

答案:正确四、计算题1. 一艘船在静水中的速度是每小时8公里,水流速度是每小时4公里。

船顺流而下行驶了2小时,逆流而上行驶了3小时。

求船总共行驶了多少公里?答案:船顺流而下时的速度是8+4=12公里/小时,行驶了2小时,所以顺流行驶了12*2=24公里。

逆流而上时的速度是8-4=4公里/小时,行驶了3小时,所以逆流行驶了4*3=12公里。

总共行驶了24+12=36公里。

2. 一艘船在静水中的速度是每小时6公里,水流速度是每小时2公里。

船顺流而下行驶了3小时,逆流而上行驶了4小时。

求船总共行驶了多少公里?答案:船顺流而下时的速度是6+2=8公里/小时,行驶了3小时,所以顺流行驶了8*3=24公里。

逆流而上时的速度是6-2=4公里/小时,行驶了4小时,所以逆流行驶了4*4=16公里。

总共行驶了24+16=40公里。

五、简答题1. 请解释为什么船在逆流而上时的速度会比在静水中的速度慢?答案:当船逆流而上时,水流的方向与船行驶的方向相反,因此水流会对船产生阻力,减缓船的速度。

船的实际速度是船在静水中的速度减去水流速度。

2. 在计算船在河流中行驶的总距离时,为什么需要考虑顺流和逆流的速度?答案:因为顺流和逆流时船的速度不同,所以行驶相同时间的距离也会不同。

(完整版)流水行船问题及答案

(完整版)流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速2÷+=逆水速度)(顺水速度船速2-÷=逆水速度)(顺水速度水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

小学数学专题之流水行船问题 例题+练习 带答案

小学数学专题之流水行船问题 例题+练习 带答案

小学数学专题之流水行船问题例题讲解:例题1:一条轮船往返于A、B两地之间,由A地到B地是顺水航行,由B地到A地是逆水航行。

已知船在静水中的速度是每小时20千米,由A地到B地用了6小时,由B地到A地所用的时间是由A地到B地所用时间的1.5倍,求水流速度。

解答:设水流速度为每小时x千米,则船由A地到B地行驶的路程为[(20+x)×6]千米,船由B地到A地行驶的路程为[(20—x)×6×1.5]千米。

列方程为(20+x)×6=(20—x)×6×1.5x=4练习1:1、水流速度是每小时15千米。

现在有船顺水而行,8小时行320千米。

若逆水行320千米需几小时?解答:32小时2、水流速度每小时5千米。

现在有一船逆水在120千米的河中航行需6小时,顺水航行需几小时?解答:4小时3、一船从A地顺流到B地,航行速度是每小时32千米,水流速度是每小时4千米,2.5天可以到达。

次船从B地返回到A地需多少小时?解答:80小时例题2:有一船行驶于120千米长的河中,逆行需10小时,顺行要6小时,求船速和水速。

解答:逆流速:120÷10=12(千米/时)顺流速:120÷6=12(千米/时)船速:(20+12)÷2=16(千米/时)水速:(20—12)÷2=4(千米/时)答:船速是每小时行16千米,水速是每小时行4千米。

练习2:1、有只大木船在长江中航行。

逆流而上5小时行5千米,顺流而下1小时行5千米。

求这只木船每小时划船速度和河水的流速各是多少?解答:船速:3千米/小时水速:2千米/小时2、有一船完成360千米的水程运输任务。

顺流而下30小时到达,但逆流而上则需60小时。

求河水流速和静水中划行的速度?解答:船速:9千米/时水速:3千米/时3、一海轮在海中航行。

顺风每小时行45千米,逆风每小时行31千米。

求这艘海轮每小时的划速和风速各是多少?解答:轮速:38千米/时风速:7千米/时例题3:轮船以同一速度往返于两码头之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流水行船问题顺水速度=船速+水速
逆水速度=船速-水速
例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲
港到达乙港的距离为240千米,船从
甲港到乙港为顺风,求船往返甲港和
乙港所需要的时间?
顺水速度:13+3=16千米/小时
逆水速度:13-3=10千米/小时
返甲港所需时间:240÷10=24小时
返乙港所需时间:240÷16=15小时
1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?
顺水速度:15+3=18千米/小时
逆水速度:15-3=12千米/小时
到达目的地用时:270÷18=15小时
按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时
水速:18-15=3千米/小时
逆水速度:15-3=12千米/小时
返回甲码头需用时:144÷12=12小时
1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?
顺水速度:560÷20=28千米/小时
水速:28-24=4千米/小时
逆水速度:24-4=20千米/小时
返回甲码头需用时:560÷20=28小时
2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?
顺水速度:360÷9=40千米/小时
船速:40-5=35千米/小时
逆水速度:35-5=30千米/小时
逆水行完全程需用时:360÷30=12小时
例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

顺水速度:208÷8=26千米/小时
逆水速度:208÷13=16千米/小时
船速:(26+16)÷2=21千米/小时
水速:(26-16)÷2=2千米/小时
1、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,逆水12个小时行完全程,求船在静水中的速度和水流速度。

顺水速度:360÷9=40千米/小时
逆水速度:360÷12=30千米/小时
船速:(40+30)÷2=35千米/小时
水速:(40-30)÷2=5千米/小时
2、两个码头相距418千米,一艘客船顺流而下行完全程需要11小时,逆流而上行完全程需要19小时,求这条河的水流速度。

顺水速度:418÷11=38千米/小时
逆水速度:418÷19=22千米/小时
水速:(38-22)÷2=3千米/小时。

相关文档
最新文档