流水行船问题应用题教案(强烈推荐:包括习题及答案-保你百分百满意)---副本

合集下载

流水行船问题及答案

流水行船问题及答案

流水行船问题顺水速度=船速+水速逆水速度=船速-水速例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港到达乙港的距离为240千米,船从甲港到乙港为顺风,求船往返甲港和乙港所需要的时间?顺水速度:13+3=16千米/小时逆水速度:13-3=10千米/小时返甲港所需时间:240÷10=24小时返乙港所需时间:240÷16=15小时1、一艘轮船在静水中航行,每小时行15千米,水流的速度为每小时3千米。

这艘轮船顺水航行270千米到达目的地,用了几个小时?如果按原航道返回,需要几小时?顺水速度:15+3=18千米/小时逆水速度:15-3=12千米/小时到达目的地用时:270÷18=15小时按原航道返回需用时:270÷12=22.5小时例题2:甲乙两码头相距144千米,一只船从甲码头顺水航行8小时到达乙码头,已知船在静水中每小时行驶15千米,问这船返回甲码头需几小时?顺水速度:144÷8=18千米/小时水速:18-15=3千米/小时逆水速度:15-3=12千米/小时返回甲码头需用时:144÷12=12小时1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?顺水速度:560÷20=28千米/小时水速:28-24=4千米/小时逆水速度:24-4=20千米/小时返回甲码头需用时:560÷20=28小时2、两个码头相距360千米,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?顺水速度:360÷9=40千米/小时船速:40-5=35千米/小时逆水速度:35-5=30千米/小时逆水行完全程需用时:360÷30=12小时例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。

五年级奥数流水行船问题讲解及练习答案

五年级奥数流水行船问题讲解及练习答案

流水行船问题讲座流水问题是研究船在流水中的行程问题,所以,又叫行船问题。

在小学数学中波及到的题目,一般是匀速运动的问题。

这种问题的主要特色是,水速在船逆行温顺行中的作用不一样。

流水问题有以下两个基本公式:顺流速度 =船的静水速 +水速( 1)逆水速度 =船的静水速-水速( 2)水速 =顺流速度-船速( 3)静水船速 =顺流速度-水速( 4)水速 =静水速-逆水速度( 5)静水速 =逆水速度 +水速( 6)静水速 =(顺流速度 +逆水速度)÷ 2( 7)水速 =(顺流速度-逆水速度)÷ 2(8)例 1:一艘每小时行25 千米的客轮,在大运河中顺流航行140 千米,水速是每小时 3 千米,需要行几个小时?分析:顺流速度为25+3=28 (千米 /时 ),需要航行 140÷28=5(小时 ).例 2:两个码头相距 352 千米,一船顺流而下,行完整程需要 11 小时 .逆流而上,行完整程需要16 小时,求这条河水流速度。

分析:( 352÷11-352÷16)÷2=5(千米 /小时).例 3:甲、乙两港间的水道长 208 千米,一只船从甲港开往乙港,顺流 8 小时抵达,从乙港返回甲港,逆水 13 小时抵达,求船在静水中的速度和水流速度。

静水速度水流速度顺流速度逆水速度分析:顺流速度: 208÷8=26(千米 /小时),逆水速度: 208÷13=16(千米 /小时),船速:(26+16)÷2=21(千米 /小时),水速:(26— 16)÷2=5(千米 /小时)例 4:一位少年短跑选手,顺风跑 90 米用了 10 秒,在相同的风速下顶风跑 70 米,也用了 10 秒,则在无风时他跑 100 米要用多少秒.分析:本题近似于流水行船问题.依据题意可知,这个短跑选手的顺风速度为 90÷10=9 米/秒,顶风速度为 70÷10=7 米 /秒,那么他在无风时的速度为( 9+7)÷2=8 米/秒.在无风时跑 100 米,需要的时间为100÷8=12.5 秒.例 5:一只小船在静水中的速度为每小时25 千米.它在长144 千米的河中逆水而行用了8小时.求返回原处需用几个小时?分析:船在 144 千米的河中行驶了8 小时,则船的航行速度为144÷8=18(千米 /时)因为船的静水速度是每小时25 千米,所以水流的速度为:25-18=7(千米 / 时)返回时是顺流,船的顺流速度是25+7=32(千米 / 时)所以返回原处需要: 144÷32=4.5(小时)例 6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时 6 千米,顺流下行需要4小时,返回上行需要 7 小时.求:这两个港口之间的距离 ? 分析:(船速 +6)×4=(船速- 6)×7,可得船速 =22,两港之间的距离为:6×7+6×4=66,66÷( 7-4)=22(千米 /时)(22+6)×4=112 千米.例 7:甲、乙两船在静水中速度相同,它们同时自河的两个码头相对开出, 4 小时后相遇.已知水流速度是 6 千米 /时.求:相遇时甲、乙两船航行的距离相差多少千米?分析:在两船的船速相同的状况下,一船顺流,一船逆水,它们的航程差是什么造成的呢?不如设甲船顺流,乙船逆水.甲船的顺流速度 =船速 +水速,乙船的逆水速度 =船速-水速,故:速度差 =(船速 +水速 ) -(船速-水速 )=2×水速,即:每小时甲船比乙船多走 6×2=12(千米 ).4 小时的距离差为12×4=48(千米 )顺流速度-逆水速度速度差 =(船速 +水速) -(船速-水速 )=船速+水速-船速 +水速=2×6=12(千米)12×4=48(千米)例 8:(难度等级※※)乙船顺流航行 2 小时,行了 120 千米,返回原地用了 4 小时 .甲船顺流航行同一段水道,用了 3 小时 .甲船返回原地比去时多用了几小时 ?解:乙船顺流速: 120÷2=60(千米 /小时) .乙船逆水速: 120÷4=30(千米 /小时)。

六年级《流水行船问题》奥数教案

六年级《流水行船问题》奥数教案

(六年级)备课教员:第9讲流水行船问题一、教学目标: 1. 在实际情境中理解顺水速度、逆水速度、静水速度及水速等数量的含义,掌握各数量间的关系。

2.掌握流水行船问题的解题方法,提高解题能力和思维的灵活性。

3. 初步养成独立思考、自主探究、合作交流的学习方式。

二、教学重点:顺水速度、逆水速度、静水速度及水速等数量间的关系,流水行船问题的解题方法。

三、教学难点:顺水速度、逆水速度、静水速度及水速等数量间的关系。

四、教学准备:PPT五、教学过程:第一课时(50分钟)一、导入(5分)师:这是龙舟比赛中的情景。

如果他们划船的速度一样,一个在顺水中划,一个在逆水中划,哪个会更快一点?生:在顺水中。

师:是的。

相信同学们应该看过。

我们知道池塘里面的水是不流动的,如果把船放在池塘里,船会动吗?生:不会。

师:是的。

这个时候要我们去划,船才会动,这时候船的速度我们称为船在静水中的速度。

也称为船速(划速)。

但如果把一条船放在流水中,那么船是不是就会顺着水流动。

其实这时候船的速度就是水流的速度。

这个时候如果我们再去划动的话,船会行的更快一点,这时候船的速度就等于水流的速度加上船在静水中的速度。

同样的道理,船在逆水中的速度等于什么?生:……师:是的,这类问题也是我们数学路程问题中的一类,今天我们就来学习这方面的知识。

板书:流水行船问题二、探索发现授课(40分)(一)例题一:(13分)一只渔船顺水行30千米,用了5小时,水流的速度是每小时1千米。

此船在静水中的速度是多少?师:同学们先看题目,题目中要我们求什么?生:船在静水中的速度。

师:前面我们推导了一些公式,船在静水中的速度可以怎么求?生:……师:很好,题目中告诉我们船是顺水行驶,那么船在静水中的速度等于什么呢?生:……师:题目中告诉我们渔船顺水行30千米,用了5小时,那么我们可以求出什么?生:……师:是的,根据速度=路程÷时间,我们求出速度,而这个速度是什么速度?生:……师:是的,顺水时的速度求出来了,题目中又告诉我们水流的速度,接下来同学们会做了吗?生:会了。

流水行船问题应用题教学说课强烈包括习题及答案保你百分百满意副本

流水行船问题应用题教学说课强烈包括习题及答案保你百分百满意副本

数学学科教师辅导教案学员编号:年级:课时数:学员姓名:辅导科目:学科教师:授课类型 T:流水行船问题应用题 T:诱导公式(2) T:作业★★★★★★★★★★★★★★★星级1、掌握流水行船的基本概念教学目的2、能够准确处理流水行船中相遇和追及的速度关系2013年03月30授课日期及时段日12:50——14:50教学内容专题:流水行船问题应用题★教学目标1、掌握流水行船的基本概念2、能够准确处理流水行船中相遇和追及的速度关系【解读:知识梳理环节要注意“诱导公式过程的推导”的讲解.】知识梳理10min.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:船速,-顺水速度=水速船速=顺水速度-水速。

由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。

典例精讲27min.一艘每小时2千米的客轮,在大运河中顺水航14千米,水速是每小千米,需要行几个小时解析:顺水速度为(千米/时),需要航行(小时).525?3?28140?28?例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

第17讲 流水行船问题 (讲义)-2023-2024学年五年级数学人教版

第17讲 流水行船问题 (讲义)-2023-2024学年五年级数学人教版

第17讲流水行船问题专题概述在解决流水行船问题时,除了船本身的前进速度外,还受到流水的推送或顶逆,因此要考虑船本身的速度和水速,算出船实际运行的速度,结合时间、路程等条件,可巧妙解决此类问题。

常见的题型有:(1)已知船本身的速度、水速,求顺水或逆水速度;(2)已知顺水或逆水速度、路程、时间三个条件中的两个条件,求另外一个;(3)根据追及时间=路程差÷速度差,求追及时间;(4)根据路程=速度和×时间,求相遇时间。

典型例题1一军舰在甲、乙两岛间巡查,从甲岛到乙岛顺水航行需要8小时,从乙岛返回甲岛逆水航行需要13 小时。

已知水的速度是每小时5千米,求甲、乙两港之间的距离。

分析设船在静水中的速度为x千米/时,则顺水速度=x+5,逆水速度=x-5,根据甲乙两港之间的距离=顺水速度×顺航时间=逆水速度×逆航时间,即(x+5)×8=(x-5)×13。

解出x=21。

甲、乙两港之间的距离=(21+5)×8=208(千米)。

解设船在静水中的速度为x 千米/时,根据题意列方程:(x+5)×8=(x-5)×13,解得x=21。

(21+5)×8=208(千米)答:甲、乙两港之间的距离是208千米。

思维训练11.A、B 两个码头相距240千米。

一艘轮船逆水行完全程要15小时,已知这段航程的水流速度是每小时4千米。

这艘轮船在A、B 两码头行驶一个来回要用多少小时?2.一条大河,河中间(主航道)的水流速度是每小时8千米,沿岸边的水流速度是每小时6千米。

一条船在河中间顺流而下,6.5 小时行驶了260千米。

这条船沿岸边返回原地需要多少小时?典型例题2有个楚国人坐船开往上游时,不慎把剑掉入江中,等他发现并命船夫调过船头时,剑与船相距2千米,假设水流速度是每小时2千米,船在静水中的行驶速度是每小时4千米,那么他追上剑需要多少时间?分析水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。

初中物理流水行船教案

初中物理流水行船教案

流水行船问题一直是初中物理中的一个重要知识点。

本节课,我们将学习在流水行船问题中如何求解船的速度、水速以及船行驶的距离等问题。

通过本节课的学习,学生能够掌握流水行船问题的基本原理和解决方法,提高解决实际问题的能力。

一、教学目标1. 理解流水行船问题的基本概念,掌握船在静水中的速度、水速、船逆水行驶的速度、船顺水行驶的速度等概念。

2. 学会运用物理公式和数学知识解决流水行船问题,提高解决实际问题的能力。

3. 培养学生的逻辑思维能力和团队合作能力。

二、教学内容1. 流水行船问题的基本概念。

2. 流水行船问题的解决方法。

3. 流水行船问题的实际应用。

三、教学过程1. 导入:通过一个实际的流水行船问题,引导学生思考如何解决这个问题,从而引出本节课的主题。

2. 教学内容讲解:讲解流水行船问题的基本概念,如船在静水中的速度、水速、船逆水行驶的速度、船顺水行驶的速度等。

然后讲解流水行船问题的解决方法,如如何求解船的速度、水速以及船行驶的距离等问题。

3. 实例分析:通过具体的实例,让学生学会如何运用物理公式和数学知识解决流水行船问题。

4. 课堂练习:布置一些流水行船问题的练习题,让学生巩固所学知识,提高解题能力。

5. 总结:对本节课的内容进行总结,强调重点知识点,提醒学生注意流水行船问题的解决方法。

四、教学评价1. 学生对流水行船问题的基本概念的理解程度。

2. 学生运用物理公式和数学知识解决流水行船问题的能力。

3. 学生对流水行船问题实际应用的掌握程度。

五、教学资源1. PPT课件。

2. 流水行船问题的练习题。

3. 教学视频或动画,用于形象地展示流水行船问题。

六、教学建议1. 在讲解流水行船问题的基本概念时,可以通过举例和实物演示等方式,让学生更好地理解。

2. 在讲解流水行船问题的解决方法时,要注意引导学生运用物理公式和数学知识进行计算,培养学生的解题能力。

3. 在课堂练习环节,可以组织学生进行小组讨论,培养学生的团队合作能力。

流水行船教案模板(共5篇)

流水行船教案模板(共5篇)

流水行船教案模板(共5篇)第1篇:行船问题教案课题名称:行船问题教学重点与难点:1:理解水流速度,船速,顺水速度,逆水速度的概念2:掌握水流速度,船速,顺水速度,逆水速度之间的数量关系教学内容:知识点1:基本概念(一)船在静水中的速度叫(二)船从上游顺水而行的速度叫(三)江河流动的速度叫做(四)船从下游逆水而行的速度叫做知识点2:基本公式顺流速度=船速+水速逆水速度=船速-水速变形公式:通过两个方程,把它们相加减借着两个方程组成的方程组可得:船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2例题1:甲乙两码头相距360千米,一艘汽艇从甲码头顺水而行到乙码头需要9小时,返回时所用的时间比去时多用1/3,求水流速度是多少千米/时?(基本行船问题求速度)练习:1、甲乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度?2、甲乙两港间水路长252千米,一只船从甲港开往乙港,顺水9小时到达,从乙港返回甲港,逆水14小时到达,求船在静水中的速度和水流速度?3、一只船在河中航行,顺流而行时每小时20千米,已知此船顺水航行3小时和逆水航行5小时所行的路程相等,则船速和水速各是多少?4、一只船在河中航行,水速为每小时2千米,它在静水中航行12千米,则顺水航行每小时航行多少千米?逆水每小时航行多少千米?顺水航行140千米用多少小时?5、甲乙两港相距208千米,一艘船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,问船在静水中的速度和水流速度各是多少?6、一艘轮船顺流80千米,逆流45千米共用9小时;顺流60千米、逆流90千米共用13小时。

求轮船在静水中的速度?例题2:一艘小船逆水而行,到A地时随身带的一个重要的水壶掉入水中随波而下。

半小时后船行到B地,发现丢失了水壶,立即返回寻找,终于在距离A地5千米的地方追上水壶,然后又用了10分钟返回到A地。

六年级下册数学教案流水行船问题应用题人教版

六年级下册数学教案流水行船问题应用题人教版

六年级下册数学教案流水行船问题应用题人教版我今天要为大家带来的是六年级下册数学教案,关于流水行船问题应用题的讲解。

一、教学内容我们今天的内容主要来自于人教版六年级下册数学第97页至98页,涉及到行程问题中的流水行船问题。

这类问题主要研究物体在流水中的运动情况,以及如何计算行程。

二、教学目标通过本节课的学习,我希望同学们能够掌握流水行船问题的解题思路和方法,提高解决实际问题的能力。

三、教学难点与重点重点是让同学们理解并掌握流水行船问题的解题思路,能够独立解决问题。

难点是对于一些特殊情况,如何正确地应用公式进行计算。

四、教具与学具准备我已经准备好了PPT和相关的练习题,同学们需要准备的是自己的笔记本和笔。

五、教学过程我会通过一个实际的情景引入,例如:一艘船在静水中速度为30公里/小时,水流速度为5公里/小时,船从A地出发,顺流而行,到达B地需要2小时,问A、B两地相距多少公里?接着,我会讲解流水行船问题的解题思路,即:船的实际速度等于船在静水中的速度加上水流的速度(顺流而行),或者减去水流的速度(逆流而行)。

然后,我会给出一些练习题,让同学们自己尝试解决。

在同学们解答的过程中,我会进行逐一讲解,解答同学们的疑惑。

六、板书设计1. 流水行船问题的定义和特点2. 流水行船问题的解题思路和步骤3. 流水行船问题的公式七、作业设计1. 一艘船在静水中速度为40公里/小时,水流速度为10公里/小时,船从A地出发,顺流而行,到达B地需要3小时,问A、B两地相距多少公里?答案:A、B两地相距120公里。

2. 一艘船在静水中速度为50公里/小时,水流速度为5公里/小时,船从A地出发,逆流而行,到达B地需要4小时,问A、B两地相距多少公里?答案:A、B两地相距180公里。

八、课后反思及拓展延伸通过本节课的学习,同学们应该已经掌握了流水行船问题的解题方法。

在课后,同学们可以尝试解决更复杂的问题,例如:多艘船在同一河流中行驶,或者船在顺流和逆流中的速度不同等情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学学科教师辅导教案
学员编号:年级:课时数:
学员姓名:辅导科目:学科教师:
授课类型T:流水行船问题应用题T:诱导公式(2)T:作业
星级★★★★★★★★★★★★★★★
教学目的1、掌握流水行船的基本概念
2、能够准确处理流水行船中相遇和追及的速度关系
授课日期及时段2013年03月30日12:50——14:50
教学内容
专题:流水行船问题应用题★
教学目标
1、掌握流水行船的基本概念
2、能够准确处理流水行船中相遇和追及的速度关系
【解读:知识梳理环节要注意“诱导公式过程的推导”的讲解.】
知识梳理10 min.
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。

流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:
顺水速度=船速+水速,(1)
逆水速度=船速-水速.(2)
这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

根据加减法互为逆运算的关系,由公式(l)可以得到:
水速=顺水速度-船速,
船速=顺水速度-水速。

由公式(2)可以得到:
水速=船速-逆水速度,
船速=逆水速度+水速。

这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。

另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:
船速=(顺水速度+逆水速度)÷2,
水速=(顺水速度-逆水速度)÷2。

典例精讲27 min.
例1:一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?
解析:
顺水速度为25328
÷=(小时).
+=(千米/时),需要航行140285
例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。

解析:(352÷11-352÷16)÷2=5(千米/小时).
例3:
解析
顺水速度:208÷8=26(千米/小时),逆水速度:208÷13=16(千米/小时),船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)
例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用秒.
解析:本题类似于流水行船问题.
根据题意可知,这个短跑选手的顺风速度为90109
÷=米/秒,那么他在
÷=米/秒,逆风速度为70107
无风时的速度为(97)28
+÷=米/秒.
在无风时跑100米,需要的时间为100812.5
÷=秒.
甲船的静水速度的2倍,那么乙船往返两港需要多少小时?
解析:先求出甲船往返航行的时间分别是:10535270+÷=()(小时),10535235-÷=()(小时)
.再求出甲船逆水速度每小时560708÷=(千米),顺水速度每小时5603516÷=(千米),因此甲船在静水中的
速度是每小时168212+÷=()(千米),水流的速度是每小时16824-÷=()(千米)
,乙船在静水中的速度是每小时12224⨯=(千米),所以乙船往返一次所需要的时间是56024÷+( 456024448
+÷-=)()(小时).
例11:(难度等级 ※※)一条小河流过A ,B, C 三镇.A,B 两镇之间有汽船来往,汽船在静水中的速度为每小时11
千米.B,C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A,C 两镇水路相距50千米,水流
速度为每小时1.5千米.某人从A 镇上船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,
共用8小时.那么A,B 两镇间的距离是多少千米?
解析:如下画出示意图
有A →B 段顺水的速度为11+1.5=12.5千米/小时,有B →C 段顺水的速度为3.5+1.5=5千米/小时.而从A →C 全程的行驶时间为8-1=7小时.设AB 长x 千米,有
50712.55
x x -+=,解得x =25.所以A,B 两镇间的距离是25千米.
例12:(难度等级 ※※)河水是流动的,在 B 点处流入静止的湖中,一游泳者在河中顺流从 A 点到 B 点,然
后穿过湖到C 点,共用 3 小时;若他由 C 到 B 再到 A ,共需 6 小时.如果湖水也是流动的,速度等
于河水速度,从 B 流向 C ,那么,这名游泳者从 A 到 B 再到 C 只需 2.5小时;问在这样的条件下,
他由C 到 B 再到 A ,共需多少小时?
解析:设人在静水中的速度为 x ,水速为 y ,人在静水中从 B 点游到 C 点需要 t 小时.
根据题意,有 6(6)3(3)x t y x t y --=+- ,即2(3)3x t y =-
,同样,有 2.5 2.53(3)x y x t y +=+- ,即(21)x t y =-;所以,22133
t t -=-,即 1.5t =,所以 2x y =;(2) 2.5(2)7.5x y y y +⨯÷-= (小时),所以在这样的条件下,他由 C 到 B 再到 A 共需 7.5 小时.
巩固练习:
1, 光明号渔船顺水而下行200千米要10小时,逆水而上行120千米也要10小时.那么,在静水中航行320千米
需要多少小时?。

相关文档
最新文档