数学反证法与放缩法知识点

合集下载

《反证法和放缩法》 知识清单

《反证法和放缩法》 知识清单

《反证法和放缩法》知识清单一、反证法反证法是一种间接证明的方法。

当我们要证明一个命题成立时,如果直接证明比较困难,那就可以考虑使用反证法。

反证法的基本思路是先假设命题的结论不成立,即提出与命题结论相反的假设。

然后,从这个假设出发,通过一系列正确的逻辑推理,得出矛盾的结果。

这个矛盾可以是与已知条件矛盾、与定理或公理矛盾、或者是自相矛盾。

由于推理过程是正确的,所以产生矛盾的原因只能是假设不成立,从而证明原命题的结论是正确的。

例如,证明“在一个三角形中,至少有一个内角小于或等于60 度”。

我们先假设三角形的三个内角都大于 60 度,那么三个内角之和就会大于 180 度,这与三角形内角和定理(三角形内角和为 180 度)矛盾,所以假设不成立,原命题成立。

反证法的一般步骤可以总结为:1、提出反设:假设命题的结论不成立。

2、推出矛盾:从反设出发,通过推理得出矛盾。

3、肯定结论:由于矛盾的出现,说明反设错误,从而证明原命题的结论正确。

反证法在数学证明中有着广泛的应用,尤其是在证明一些存在性、唯一性、否定性的命题时,往往能起到意想不到的效果。

二、放缩法放缩法是不等式证明中一种常用的方法。

其基本思想是将不等式中的某些项进行放大或缩小,从而使不等式变得更加简单,易于证明。

放缩的依据通常是不等式的基本性质、已知的不等式、函数的单调性等。

比如,要证明不等式\(A < B\),我们可以先将\(A\)适当放大得到\(A' \),使得\(A' < B\)易于证明;或者将\(B\)适当缩小得到\(B' \),使得\(A < B' \)易于证明。

常见的放缩技巧有:1、舍去或加上一些项,如:\(\frac{1}{n(n + 1)}<\frac{1}{n^2}\)。

2、将分子或分母放大(或缩小),如:\(\frac{1}{n} <\frac{1}{n 1}\)(\(n > 1\))。

3、利用基本不等式进行放缩,例如:若\(a, b\)均为正数,则\(a + b \geq 2\sqrt{ab}\)。

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》

《证明不等式的基本方法反证法与放缩法》证明不等式的基本方法包括反证法和放缩法。

反证法是一种常用的证明不等式的方法,它的思路是假设不等式不成立,然后通过推理推出一个矛盾的结论,从而证明原不等式的成立。

放缩法是通过对不等式进行变形、放缩,将原不等式转化为一个更易证明的形式。

首先介绍反证法。

对于一个要证明的不等式,我们可以假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

然后通过对这个假设的推理,得出一个与已知条件相矛盾的结论,从而证明假设是错误的,进而证明原不等式的成立。

具体步骤如下:1.假设不等式不成立,即假设存在一些满足条件的变量使得不等式不成立。

2.根据已知条件和假设,对变量进行推理,得出结论。

3.利用这个结论推出与已知条件矛盾的结论。

4.由此可以得出假设是错误的,从而证明原不等式的成立。

举个例子来说明反证法的应用:对于不等式x+y>0,假设不等式不成立,即存在一些满足条件的x和y使得x+y≤0。

然后我们通过推理可以得到y≤-x,即y的取值范围在x的左侧。

然而,根据已知条件,对于任意的x和y,x+y的和都大于0,与假设矛盾。

因此,假设错误,原不等式成立。

接下来介绍放缩法。

放缩法是通过对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

放缩法的关键在于找到合适的放缩因子和放缩方法。

具体步骤如下:1.根据不等式的特点,选择合适的放缩因子和放缩方法。

2.对不等式进行变形和放缩,将原不等式转化为一个更易证明的形式。

3.对新形式的不等式进行证明。

4.如果新形式的不等式成立,根据不等式的等价性,原不等式也成立。

举个例子来说明放缩法的应用:对于不等式(x + y)(y + z)(z + x) ≥ 8xyz,我们可以使用放缩法进行证明。

我们选择放缩因子2和放缩方法(x + y) ≥ 2√xy,可以得到(2√xy)(2√yz)(2√xz) ≥ 8xyz。

化简后得到(√xy)(√yz)(√xz) ≥ xyz,即x·y·z ≥ xyz,显然成立。

反证法与放缩法

反证法与放缩法
解析 三个自然数的奇偶情况有 “三偶、三奇、二偶一
奇、二奇一偶”4种,而自然数a、 b、c 中恰有一个为偶 数只包含“二奇一偶”的情况,故反面的情况有3种,只 有D项符合.
答案 D
题型一
反证法证明不等式
【例1】 已知:a+b+c>0,ab+bc+ca>0,abc>0. 求证:a>0,b>0,c>0. [思维启迪] 利用反证法求证.
解析
a b c S> + + + a+b+c+d a+b+c+d a+b+c+d
d =1. a+b+c+d
答案 B
3.否定“自然数a、b、c中恰有一个为偶数”时正确的反设
为 A.a、b、c都是奇数 B.a、b、c都是偶数 C.a、b、c中至少有两个偶数 ( ).
D.a、b、c中至少有两个偶数或都是奇数
n+n+1 [思维启迪] 利用 n < nn+1< 放缩, 进而求证. 2
2
证明
∵Sn> 12+ 22+…+ n2
nn+1 =1+2+…+n= . 2 1+2 2+3 n+n+1 且 Sn< + +…+ 2 2 2 2n+1 3 5 = + +…+ 2 2 2 2n+1 n+1 1 3 5 <2+2+2+…+ 2 = 2 nn+1 n+12 ∴ <Sn< . 2 2
列{an+1}是以a1+1=2为首项,2为公比的等比数列.
∴an+1=2n,即an=2n-1(n∈N+).
(2)证明
1 2n-1 1-2n 1 an ∵ = = < , 1 2 an+1 2n+1-1 2-2n
a1 a2 an n ∴a +a +…+ <2. a 2 3 n+1 2k-1 1 ak 1 1 1 ∵ = = - = - k ak+1 2k+1-1 2 22k+1-1 2 3· 2 +2k-2 1 1 1 ≥ - 2k,k=1,2,3,…,n. 2 3 a1 a2 a3 an n 1 1 1 n 1 ∴a +a +a +…+ ≥2-3+32n>2-3. an+1 2 3 4

《反证法和放缩法》 知识清单

《反证法和放缩法》 知识清单

《反证法和放缩法》知识清单一、反证法反证法是一种间接证明的方法。

当我们要证明一个命题成立时,如果直接证明比较困难,就可以考虑使用反证法。

反证法的基本步骤:1、提出反设:首先假设要证明的命题不成立,也就是提出与原命题相反的假设。

2、推出矛盾:从反设出发,通过一系列的推理,得出与已知条件、定理、公理或者明显事实相矛盾的结果。

3、否定反设:由于推出了矛盾,所以说明反设是错误的,从而肯定原命题成立。

例如,要证明“在一个三角形中,最多只能有一个直角”。

我们先假设在一个三角形中可以有两个直角。

那么三角形的三个内角之和就会大于 180 度,这与三角形内角和定理(三角形的内角和等于 180 度)相矛盾。

所以假设不成立,即在一个三角形中最多只能有一个直角。

反证法在数学中的应用非常广泛,尤其是在证明一些存在性、唯一性的命题时,往往能起到意想不到的效果。

反证法的关键在于能够准确地提出反设,并通过合理的推理导出矛盾。

在导出矛盾的过程中,需要对所学的数学知识有扎实的掌握和灵活的运用。

二、放缩法放缩法是一种用于证明不等式的重要方法。

放缩的基本思路是:将不等式中的某些项进行放大或缩小,使得不等式的关系更加明显,从而达到证明的目的。

常见的放缩技巧:1、舍去或加上一些项:例如,在证明不等式时,如果某些项对证明结果影响不大,可以舍去,以达到放缩的效果。

2、放大或缩小分式的分子或分母:比如,将分式的分子放大或分母缩小,从而使分式的值变大;反之,将分子缩小或分母放大,分式的值变小。

3、利用基本不等式进行放缩:常见的基本不等式如均值不等式等,可以为放缩提供依据。

例如,要证明“当 n 为正整数时,1 + 1/2 + 1/3 +… + 1/n <2”。

我们可以这样进行放缩:1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 +… + 1/n< 1 + 1/2 +(1/4 + 1/4)+(1/8 + 1/8 + 1/8 + 1/8)+… +(1/2^k + 1/2^k +… + 1/2^k)= 1 + 1/2 + 1/2 + 1/2 +… + 1/2可以发现,这样的放缩使得式子变得更加简洁,便于证明不等式。

第1章 1.5.3 反证法和放缩法

第1章 1.5.3 反证法和放缩法

上一页
返回首页
下一页
[小组合作型] 利用反证法证明否定性命题
已知a,b,c∈(0,1),求证:(1-a)b,(1-b)c,(1-c)a不能同时 大于14.
【精彩点拨】 当直接证明命题较困难时,可根据“正难则反”,利用反 证法加以证明.凡涉及否定性、唯一性命题或含“至多”“至少”等语句的不等 式时,常可考虑反证法.
上一页
返回首页
下一页
∴a2+b2<1+ab<2. ∴(a+b)2=a2+b2+2ab<2+2ab<4. 而由假设a+b>2,得(a+b)2>4,出现矛盾,故假设不成立,原结论成立, 即a+b≤2.
上一页
返回首页
下一页
[探究共研型] 反证法与放缩法的特点
探究1 反证法的一般步骤是什么?
【提示】 证明的步骤是:(1)作出否定结论的假设;(2)从否定结论进行推 理,导出矛盾;(3)否定假设,肯定结论.
上一页
返回首页
下一页
【自主解答】 (1)由于f(x)=x2+px+q, ∴f(1)+f(3)-2f(2) =(1+p+q)+(9+3p+q)-2(4+2p+q)=2. (2)假设|f(1)|,|f(2)|,|f(3)|都小于12, 则有|f(1)|+2|f(2)|+|f(3)|<2.(*) 又|f(1)|+2|f(2)|+|f(3)|
【答案】 C
上一页
返回首页
下一页
一页
【证明】 假设 a, b, c成等差数列,则 a+ c=2 b,即a+c+2 ac =4b,
而b2=ac,即b= ac, ∴a+c+2 ac=4 ac, ∴( a- c)2=0,即 a= c, 从而a=b=c,与a,b,c不成等差数列矛盾,故 a , b , c 不成等差数 列.

最新人教版高中数学选修4-5《反证法与放缩法》教材梳理

最新人教版高中数学选修4-5《反证法与放缩法》教材梳理

庖丁巧解牛知识·巧学 一、反证法1.反证法的意义:先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法.反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾.具体地说,反证法不直接证明命题“若p 则q”,而是先肯定命题的条件p ,并否定命题的结论q ,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的. 记忆要诀用反证法证明命题“若p 则q”的过程可以用下图表示.2.利用反证法证明不等式,一般有下面几个步骤: 第一步,分清欲证不等式所涉及到的条件和结论; 第二步,作出与所证不等式结论相反的假定;第三步,从条件和假定出发,应用正确的推理方法,推出矛盾结果;第四步,断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原先要证的不等式成立.辨析比较3通常在什么情况下用反证法?有些不等式,从正面证如果说不清楚,可以考虑反证法.即先否定结论,然后依据已知条件以及有关的定义、定理、公理,逐步导出与定义、定理、公理或已知条件等相矛盾或自相矛盾的结论,从而肯定原有结论是正确的. 学法一得凡是含“至少”“唯一”或含有否定词的命题,大多适宜用反证法.不等式的证明,方法灵活多样,它可以和很多内容相结合.高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本难点着重培养大家数学式的变形能力、逻辑思维能力以及分析问题和解决问题的能力. 二、放缩法1.放缩法的意义:所谓放缩法,即是把要证的不等式一边适当地放大(或缩小),使之得出明显的不等量关系后,再应用不等量大、小的传递性,从而使不等式得到证明的方法.也就是说:欲证A≥B ,可通过适当地放大或缩小,借助一个或多个中间量使得B≤B 1,B 1≤B 2,…,B 1≤A ,或A≥A 1,A 1≥A 2,…,A i ≥B ,再利用传递性,达到欲证的目的.这种方法是证明不等式中的常用方法,尤其在今后学习高等数学时用处更为广泛. 2.放缩法的理论依据主要有:①不等式的传递性;②等量加不等量为不等量;③同分子(分母)异分母(分子)的两个分式大小的比较.3.放缩法经常采用的技巧有: ①舍去一些正项(或负项),②在和或积中换大(或换小)某些项,③扩大(或缩小)分式的分子(或分母)等.如:nn n n n n n n n 111)1(11)1(11112--=-<<+=+- 11121111+-=+-<<++=-+k k kk k k k k k .误区警示用放缩法证明不等式,关键是放、缩适当,放得过大或过小都不能达到证题目的. 典题·热题知识点一:反证法证明不等式 例1 设a 3+b 3=2,求证a+b≤2.思路分析:要证的不等式与所给的条件之间的联系不明显,而且待证式比已知式次数低,直接由条件推出结论的线索不够清晰,于是考虑用反证法. 证明:假设a+b>2,则有a>2-b ,从而 a 3>8-12b+6b 2-b 3,a 3+b 3>6b 2-12b+8=6(b-1)2+2.所以a 3+b 3>2,这与题设条件a 3+b 3=2矛盾,所以,原不等式a+b≤2成立. 误区警示不能根据已知等式找出几组数值,代入待证不等式中进行验证,验证成立也不能算是证明成功了.例2 设二次函数f(x)=x 2+px+q,求证:|f(1)|,|f(2)|,|f(3)|中至少有一个不小于21. 思路分析:要证明几个代数式中,至少有一个满足某个不等式时,需要考虑的情形较多,一一列举直接证明不容易,通常采用反证法进行. 证明:假设|f(1)|,|f(2)|,|f(3)|都小于21,则 |f(1)|+2|f(2)|+|f(3)|<2. ①另一方面,由绝对值不等式的性质,有 |f(1)|+2|f(2)|+|f(3)|≥|f(1)-2f(2)+f(3)|=|(1+p+q)-2(4+2p+q)+(9+3p+q)|=2. ②①②两式的结果矛盾,所以假设不成立,原来的结论正确. 方法归纳一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及临时假定矛盾等各种情况. 例3 设0<a,b,c<1,求证:(1-a)b,(1-b)c,(1-c)a 不可能同时大于41. 思路分析:题目中出现了“不可能同时大于……”字样,而且三个式子的地位相同,结合0<(1-a)a≤[2)1(a a +-]2=41,可得到方向相矛盾的两个不等式,适于用反证法. 证明:设(1-a)b>41,(1-b)c>41,(1-c)a>41,则三式相乘:(1-a)b·(1-b)c·(1-c)a>641.①又∵0<a,b,c<1,∴0<(1-a)a≤[2)1(a a +-]2=41.同理:(1-b)b≤41,(1-c)c≤41,以上三式相乘:(1-a)a·(1-b)b·(1-c)c≤641,与①矛盾.∴原式成立.巧解提示凡涉及到证明不等式为否定性命题、唯一性命题或是含“至多”“至少”等字句时,可考虑使用反证法.知识点二:放缩法证明不等式例4 当n>2时,求证:log n (n-1)log n (n+1)<1.思路分析:不等式左边含有不确定字母n ,两个对数式底数相同,真数中没有常数项,而右边为常数1,应考虑应用基本不等式逐步放缩证明,采用放缩法证明较好. 证明:∵n>2,∴log n (n-1)>0,log n (n+1)>0.∴log n (n-1)log n (n+1)<[2)1(log )1(log ++-n n n n ]2=[2)1(log 2-n n ]2<[2log 2n n ]2=1.∴n>2时,log n (n-1)log n (n+1)<1. 方法归纳在用放缩法证明不等式A≤B 时,我们找一个(或多个)中间量C 作比较,即若能断定A≤C 与C≤B 同时成立,那么A≤B 显然正确.所谓的“放”即把A 放大到C ,再把C 放大到B;反之,所谓的“缩”即由B 缩到C ,再把C 缩到A.同时在放缩时必须时刻注意放缩的跨度,放不能过头,缩不能不及. 例5 若n 是正整数,求证22221312111n ++++ <2. 思路分析:左边不能直接通分,而且项数不定,分析此式的形式特点,借助k k k k k111)1(112--=-<进行变形,可以通过适当地放缩,使不等式简化,从而得出证明. 证明:∵kk k k k 111)1(112--=-<,k=2,3,4…,n. ∴n n n∙-++∙+∙+<++++)1(13212111113121112222 ..212)111()3121()2111(11<-=--++-+-+=nn n 巧解提示实际上,我们在证明22221312111n++++ <2的过程中,已经得到一个更强的结论n n 1213121112222-<++++ ,这恰恰在一定程度上体现了放缩法的基本思想.例6 设a 、b 、c 是三角形的边长,求证cb a cb ac b a c b a -++-++-+≥3.思路分析:根据不等式的对称性,三个字母地位相同,不妨设出大小顺序,结合三角形三边之间的关系,进而应用放缩法选择适当的式子放缩变形,以达到证明目的. 证明:由不等式的对称性,不妨设a≥b≥c ,则b+c-a≤c+a -b≤a+b -c, 且2c-a-b≤0,2a-b-c≥0.∴c b a c b a c b a c b a -++-++-+-3=a c b a -+-1+b a c b -+-1+c b a c-+-1=ba c ba cb ac a c b b a c c b a c b a b a c b a c c a b a c b c b a -+--+-+--+-+--≥-+--=-+--=-+--222222=0,∴cb a cb ac b a c b a -++-++-+≥3.方法归纳本题中为什么要将b+c-a 与a+b-c 都放缩为c+a-b 呢?这是因为2c-a-b≤0,2a-b-c≥0,而2b-a-c 无法判断符号,因此ba c ca b -+--2无法放缩.所以在运用放缩法时要注意放缩能否实现及放缩的跨度. 问题·探究 交流讨论探究问题 有人说反证法很难,根本想不通;有人说反证法不难,看课本中的例题用起来很简单,那如何体会反证法的难与易呢? 探究过程:学生甲:反证法太难了,都是逆向思维,根本想不到.学生乙:其实反证法不难,在生活中不也经常使用吗?先假设怎样怎样,然后就会出现什么样的事情,最后发现那不可能,出现了笑话,说明假设的不对.学生丙:反证法不难,只要见到含有否定形式的命题,如含有“至多”“至少”“不可能”等时就用反证法.学生甲:那要找不到矛盾呢?学生乙:只要按照正确的推理总会找到矛盾的,可以和已知矛盾,也可以和常识矛盾,也可以和假设本身矛盾等等,反正只要找到矛盾就可以. 学生甲:那反证法有什么好处呀?学生丙:反证法比直接证明多了一个条件,那就是假设,当然容易证明了.老师:反证法也不是万能的,一般证明还是先用直接证法,当要证的结论和条件之间的联系不明显,直接由条件推出结论的线索不够清晰时,还有就是从正面证明需要分成多种情形进行分类讨论,而且从反面进行证明,只要研究一种或很少的几种情形时用反证法较好.还有,平时应该拥有较为扎实的基本功,在推理中才能较快地找到矛盾,也就是要多积累素材. 探究结论:反证法作为一种证明方法,其实也不是很新,很早就接触了,说来并不算难,只要多积累一下这方面的知识技巧就可以较为熟练的应用了.思想方法探究问题反证法证题,可以说是一个难点,就是感觉难懂难用.因为以前我们的证明,所采用的方法均为直接证法,由已知到结论,顺理成章.而对于属于间接证法的反证法,许多同学正是难以走出直接证法的局限,从而不能深刻或正确理解反证法思想.怎样才能更好地理解反证法呢?探究过程:其实,反证法作为证明方法的一种,有时起着直接证法不可替代的作用.在生活中的应用也非常广泛,只是我们没有注意罢了.下面看两则故事,体会一下,对我们正确理解反证法很有帮助.故事一:南方某风水先生到北方看风水,恰逢天降大雪.乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨.”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎.”实际上,小牧童正是巧妙地运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的荒唐结论.风水先生当然不会承认这个事实了.那么,显然,他说的就是谬论了.这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还治其人之身”的反证法迎刃而解了.如果说这则故事还尚不能让我们明白反证法的思路的话,不妨再看看故事二.故事二:王戎小时候,爱和小朋友在路上玩耍.一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动.等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的.”这是很著名的“道旁苦李”的故事.实质上王戎的论述,也正是运用了反证法,我们不妨把这则故事改编成像几何题目中的“已知、求证、证明”,再和反证法的步骤进行对比,大家就明白了.探究结论:反证法的应用广泛,只要善于观察和总结,从生活中体会反证法的思想,就不会感觉反证法难懂难用了.。

反证法与放缩法

反证法与放缩法

【解题探究】典例(2)中待证结论的反设是什么?
提示:反设是|f(1)|,|f(2)|,|f(3)|都小于 1 .
2
【证明】(1)由于f(x)=x2+px+q,
所以f(1)+f(3)-2f(2) =(1+p+q)+(9+3p+q)-2(4+2p+q)=2.
1 (2)假设|f(1)|,|f(2)|,|f(3)|都小于 , 2
__________________.
【解析】反证法对结论的否定是全面否定,
∠BAP<∠CAP的对立面是∠BAP=∠CAP或
∠BAP>∠CAP. 答案:∠BAP=∠CAP或∠BAP>∠CAP.
【知识探究】 探究点 反证法与放缩法
1.用反证法证明时,导出矛盾有哪几种可能?
提示:①与原命题的条件矛盾;
【变式训练】1.(2016·泰安高二检测)用反证法证明
命题“如果a>b,那么 3 a>3 b ”时,假设的内容是(
A. 3 a 3 b成立 B. 3 a<3 b成立 C. 3 a 3 b或 3 a<3 b成立 D. 3 a 3 b且 3 a<3 b成立
)
【解析】选C.结论
3
3
a>3 b
【方法技巧】
1.用反证法证明的一般步骤 (1)假设命题的结论不成立,即假设结论的反面成立.
(2)从这个假设出发,经过推理论证,得出矛盾.
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.
2.否定性不等式的证法及关注点
当待证不等式的结论为否定性命题时,常采用反证法来
证明,对结论的否定要全面不能遗漏,最后的结论可以 与已知的定义、定理、已知条件、假设矛盾.

证明不等式的基本方法—反证法与放缩法

证明不等式的基本方法—反证法与放缩法

- 1 – “学海无涯苦作舟,书山有路勤为径”§4.2.3证明不等式的基本方法—反证法与放缩法【学习目标】能熟练运用反证法与放缩法来证明不等式。

【新知探究】1.反证法的一般步骤:反设——推理——导出矛盾(得出结论);2.放缩法:欲证A B ≥,可通过适当放大或缩小,借助一个或多个中间量使得112,...B B B B A ≤≤≤≤(或112,...A A A A B ≥≥≥≥),要注意放缩的适度, 常用的方法是:①舍去或加上一些项;②将分子或分母放大(或缩小).≤-≥-211;(1)nn n ≥+211(1)nn n ≤-【自我检测】1.设a,b 是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a 2+b 2>2;⑤ab>1,其中能推出:“a 、b 中至少有一个实数大于1”的条件是____________. 2.1A =++++)n N *∈的大小关系是 .【典型例题】例1. 已知,0,>y x 且,2>+y x 求证:xyy x ++1,1中至少一个小于2。

变式训练:若a,b,c 都是小于1的正数,求证:41)1(,)1(,)1(不可能同时大于a c c b b a ---- 2 – “天下事,必作于细”例2. 已知实数a,b,c ,,0>++c b a ,0>++ca bc ab ,0>abc 求证:.0,0,0>>>c b a变式训练:课本P29页,习题2.3第4题 例3. 已知,,,+∈R c b a 求证.21<+++++++++++<ca d d db c c ac b b db a a变式训练:设00>>y x 、,yy xx B yx y x A +++=+++=11,1,则A 、B 大小关系为________。

例4.求证:)(2131211222N n n∈<+⋅⋅⋅+++例5.已知q px x x f ++=2)(,求证:|)3(||)2(||)1(|f f f ,,中至少有一个不少于21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学反证法与放缩法知识点
数学反证法与放缩法知识点
有些不等式无法利用题设的已知条件直接证明,我们可以用间接的方法——反证法去证明,即通过否定原结论——导出矛盾——从
而达到肯定原结论的目的`。

放缩法的定义:
把原不等式放大或缩小成一个恰好可以化简的形式,比较常用的方法是把分母或分子适当放大或缩小(减去或加上一个正数)使不
等式简化易证。

反证法证题的步骤:
若A成立,求证B成立。

共分三步:
(1)提出与结论相反的假设;如负数的反面是非负数,正数的
反面是非正数即0和负数;
(2)从假设出发,经过推理,得出矛盾;(必须由假设出发进
行推理否则不是反证法或证错);
(3)由矛盾判定假设不正确,从而肯定命题的结论正确.矛盾:与定义、公理、定理、公式、性质等一切已有的结论矛盾甚至自相
矛盾。

反证法是一种间接证明命题的基本方法。

在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明。

放缩法的意义:
放缩法理论依据是不等式的传递性:若,a<b,b<c,则a<c.放缩法的操作:
若求证P<Q,先证P<P1<P2<…<Pn,再证恰有Pn<,高考;Q.
需注意:(1)只有同方向才可以放缩,反方向不可。

(2)不能放(缩)得太大(小),否则不会有最后的Pn<Q.。

相关文档
最新文档