A证问题解答

合集下载

2023京东pop售前初级客服认证考试及答案(2)

2023京东pop售前初级客服认证考试及答案(2)

单选题:1 您觉得以下哪种服务需求是客服需要具备的A 快速回复、专业解答、热情接待B 解答能力C 沟通能力正确答案:A本题针对顾客咨询在线客服时,客服应做到快速回答客户,避免时间等待太久导致的流失,为客户解答问题,体现专业度,需要用热情的服务去对待客户,所以本题故选A2 提升咚咚服务满意度,不包含以下的?A 积极心态迎接顾客B 发现及诊断顾客需求C 提供个性化建议D 团队话术更新维护正确答案:D本题考核客服对咚咚服务满意度的提升是否了解,提升购买体验提升之服务6步骤,包含积极心态迎接顾客、发现及诊断顾客需求、提供个性化建议、连带销售及确认、完成销售及庆祝、忠诚度及顾客关系管理,故选D3 咚咚服务满意度是在线会话过程中或结束时,用户对于服务的评价:(非常满意+满意)/()。

A 好评量B 评价量D 接待量正确答案:B本题考核客服对咚咚服务满意度是否了解,咚咚服务满意度是在线会话过程中或结束时,用户对于服务的评价:(非常满意+满意)/评价量,故选B。

4 店铺近30天商品1星差评数10个,店铺近30天有效商品评价数100个,商品评价差评率是多少?A 3%B 5%C 10%D 15%正确答案:C5 商家发布以下哪种信息不属于非法违背交易行为A 诋毁京东品牌形象B 泄露京东的任何商业机密C 发送垃圾信息D 发布店铺活动正确答案:D本题考核客服对咚咚服务违规处理中的非法违背交易行为是否清晰,因诋毁京东品牌形象、泄露京东的任何商业机密、发送垃圾信息均属于非法违背交易行为,而发布店铺活动并不属于非法违背交易行为,故选D6 如商家连续两个月都有不达标的情况,冻结钱包的金额是否支持累加?B 不支持C 部分商家支持D 特定类目支持正确答案:A7 关于POP基础考核指标服务单差评率的解释错误的是?A 目标值是服务单差评率≤10.00%B 指在考核周期内,用户在售后服务处理后进行不满意和非常不满意的评价量占同周期内售后服务单总量的比例C 【(不满意评价量+非常不满意评价量)/同周期售后服务单总量】100%D 考核门槛是在考核周期内,店铺售后服务单量>10单。

美国移民回美证的常见问题及解答

美国移民回美证的常见问题及解答

【导语】根据美国移民法,获得美国绿卡的⼈⼀旦离开美国⼀次性超过半年年,或者累计超过1年,将被取消绿卡⾝份。

但如果确实需要离开美国这么久⼤家可以申请回美证。

下⾯就给⼤家分享下美国移民回美证的常见问题及解答,欢迎阅读!美国移民回美证的常见问题及解答 ⼀、什么是I-327(回美证) I-327是回美证在移民局正式⽂件的官⽅编号。

它是⼀本贴有绿卡持有⼈的照⽚的和护照⼀样⼤⼩的⼩本⼦。

这个⼩本⼦俗名叫“回美证”,顾名思义,是可以保证你可以回到美国的法律⽂件,所以,为了便于理解,也有客⼈把它称为“请假条”。

回美证是⼀份可以证明你没有意愿放弃美国绿卡的法律⽂件,他⼀般允许你在离开美国两(2)年(从签发之⽇开始计算)内,都可以不需要再申请其他签证就可以⼊境美国。

⼆、回美证作⽤ 回美证主要是可以提前防⽌以下两种情况的发⽣: 1、如果绿卡持有⼈在美国以外的地⽅(如中国)⼀次停留或者连续居住了超过⼀年以上,那么,严格法律意义上来讲,你的绿卡已经是因超期⽽⽆效; 2、如果绿卡持有⼈在美国以外的地⽅(如中国)是常住国住半年以上,就算是离开美国的时间少于1年,也会被认为你已经放弃你的绿卡⾝份。

三、常见的申请回美证请假理由 ⼀般⽽⾔,回美证的请假理由包括以下的理由和例⼦: A.需要在外国⼯作,特别是为美国的海外企业⼯作; B.⾝体原因,需要在海外长时间治疗; C.需要在海外长时间照顾亲⼈,⽐如年迈的⽗母。

四、回美证怎样办理? 1、申请⽂件 申请回美证,需向移民局提交I-131申请。

⼀般⽽⾔,申请者打算离开美国国境前,需提前递交这个申请。

2、申请地点 此外,需要申请⼈在美国国境内提交I-131申请回美证。

如果本⼈已经离开美国,I-131的申请会被美国移民局拒绝,因为I-131的表格规定,递交该表格的前提是绿卡持有⼈本⼈在递交表格时,其本⼈是在美国国境以内。

扩展阅读:美国新移民搬家技巧 ⾸先,我们要了解⼀下搬家的流程:整理——打包——运输——存储——更改信息。

cisco 思科 实施9800无线局域网控制器许可证 常见问题解答

cisco 思科 实施9800无线局域网控制器许可证 常见问题解答

实施9800无线局域网控制器许可证:常见问题解答目录简介背景信息问:是否需要对 9800 控制器本身进行许可?问:连接到 9800 WLC 的无线接入点需要哪类许可证?问:能否针对连接到同一 Cisco Catalyst 9800 系列控制器的无线接入点使用不同的许可级别?问:Advantage 和 Essential 级别的许可证分别涵盖哪些功能?问:更改许可证级别后是否需要重新启动?问:是否必须对所有连接到 9800 控制器的无线接入点进行许可?问:9800 WLC 是否强制拥有许可证?问:什么是评估许可证?有效期多久?问:在哪里下载 .lic 许可证文件?问:如何获得 9800 控制器的许可?问:如何通过智能卫星进行许可?问:CSSM 许可是如何运作的?问:如何对使用高可用性 (HA) SSO 的控制器进行 CSSM 许可?问:如何对具有 N+1 HA 的控制器进行 CSSM 许可?问:如何在没有联网的情况下离线对 9800 WLC 进行许可?问:如何在 HA SSO 设置中进行离线许可?问:如何在 HA N+1 设置中进行离线许可 (SLR)?问:能否在两个 9800 控制器之间转移许可证?问:如果不对 9800 WLC 进行许可会怎样?问:9800-40、9800-80、9800-L和9800-CL以及EWC(在91XX系列AP上)控制器的许可是否存在任何差异?问:每个 9800 型号可以连接和许可的 AP 数量上限是多少?问:许可证需要多长时间才能“被消耗”并显示为“正在使用”?问:我在9800 WLC上看到“ASR_1000_AdvEnterprise”和“ASR_1000_AdvIpservices”许可证。

我的9800 WLC 是否确实需要 ASR 路由器许可证?问: 硬件 RMA 对 Cisco Catalyst 9800 系列控制器的许可有何影响?问:如何对 9800 WLC 许可执行故障排除?问:什么是智能许可使用策略?简介本文档介绍在9800-CL WLC: 17.2.1映像上收集的9800无线局域网控制器(WLC)上使用的许可模式。

中考数学相似难题压轴题及答案

中考数学相似难题压轴题及答案
甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm。
乙组:如图2,测得学校旗杆的影长为900cm.
丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.
任务要求
(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;
(2)如图3,设太阳光线 与 相切于点 。请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段 的影长;需要时可采用等式 )。
12、如图,已知一个三角形纸片 , 边的长为8, 边上的高为 , 和 都为锐角, 为 一动点(点 与点 不重合),过点 作 ,交 于点 ,在 中,设 的长为 , 上的高为 .
(1)请你用含 的代数式表示 .
(2)将 沿 折叠,使 落在四边形 所在平面,设点 落在平面的点为 , 与四边形 重叠部分的面积为 ,当 为何值时, 最大,最大值为多少?
10、将一个量角器和一个含30度角的直角三角板如图(1)放置,图(2)是由他抽象出的几何图形,其中点B在半圆O的直径DE的延长线上,AB切半圆O于点F,且BC=OD.
(1)求证:DB∥CF.
(2)当OD=2时,若以O、B、F为顶点的三角形与△ABC相似,求OB。
11、问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:
Ⅱb。小明想:不求正方形的边长也能画出正方形。具体作法是:
①在AB边上任取一点G’,如图作正方形G’D’E’F’;
②连结BF'并延长交AC于F;
③作FE∥F’E’交BC于E,FG∥F′G′交AB于G,GD∥G'D’交BC于D,则四边形DEFG即为所求.

2020年数学中考复习专题:《三角形综合》(后附解析)

2020年数学中考复习专题:《三角形综合》(后附解析)

中考复习冲刺:《三角形综合》1.如图,在三角形ABC 中,AB =8,BC =16,AC =12.点P 从点A 出发以2个单位长度/秒的速度沿A →>B →C →A 的方向运动,点Q 从点B 沿B →C →A 的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t = 秒时,P 是AB 的中点.(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得BP =2BQ . (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.2.如图,在△ABC 中,BC =7cm ,AC =24cm ,AB =25cm ,P 点在BC 上,从B 点到C 点运动(不包括C 点),点P 运动的速度为2cm /s ;Q 点在AC 上从C 点运动到A 点(不包括A 点),速度为5cm /s .若点P 、Q 分别从B 、C 同时运动,请解答下面的问题,并写出探索主要过程:(1)经过多少时间后,P 、Q 两点的距离为5cm ?(2)经过多少时间后,S △PCQ 的面积为15cm 2?(3)用含t 的代数式表示△PCQ 的面积,并用配方法说明t 为何值时△PCQ 的面积最大,最大面积是多少?3.定义:如果一个三角形的一个内角等于另一个内角的两倍,则称这样的三角形为“倍角三角形”.(1)如图1,△ABC中,AB=AC,∠A=36°,求证:△ABC是倍角三角形;(2)若△ABC是倍角三角形,∠A>∠B>∠C,∠B=30°,AC=4 2 ,求△ABC面积;(3)如图2,△ABC的外角平分线AD与CB的延长线相交于点D,延长CA到点E,使得AE=AB,若AB+AC=BD,请你找出图中的倍角三角形,并进行证明.4.如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB 平移至线段CD,使点A的对应点C在y轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD 之间的一个等量关系,并说明理由.5.如图1,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE.(1)求证:S△ABD =S△ACE;(2)如图2,AM是△ACE的中线,MA的延长线交BD于N,求证:MN⊥BD.6.已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.7.定义:如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“和美三角形”,这条边称为“和美边”,这条中线称为“和美中线”.理解:(1)请你在图①中画一个以AB为和美边的和美三角形,使第三个顶点C落在格点上;(2)如图②,在Rt△ABC中,∠C=90°,tan A=.求证:△ABC是“和美三角形”.运用:(3)已知,等腰△ABC是“和美三角形”,AB=AC=20,求底边BC的长(画图解答).8.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC =α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC =7,AD=2.请直接写出线段BE的长为.9.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.10.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM =EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=,直接写出A、M两点之间的距离.11.如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C 不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q 不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.(1)当∠BQD=30°时,求AP的长;(2)证明:在运动过程中,点D是线段PQ的中点;(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.12.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;=30,∠CAF=∠ABD,求线段BP的长.(ⅱ)如图2,若AB=10,S△ABC13.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=110°时,∠EDC=°,∠DEC=°;点D从B向C的运动过程中,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由.(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数,若不可以,请说明理由.14.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,过点C作CG⊥AD于点G,过点B作FB⊥CB于点B,交CG的延长线于点F,连接DF交AB于点E.(1)求证:△ACD≌△CBF;(2)求证:AB垂直平分DF;(3)连接AF,试判断△ACF的形状,并说明理由.15.【阅读理解】截长补短法,是初中数学几何题中一种辅助线的添加方法.截长就是在长边上截取一条线段与某一短边相等,补短是通过在一条短边上延长一条线段与另一短边相等,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,连接AE,根据∠BAC+∠BDC=180°,可证∠ABD =∠ACE易证得△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而探寻线段DA、DB、DC之间的数量关系.根据上述解题思路,请直接写出DA、DB、DC之间的数量关系是;【拓展延伸】(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC.若点D是边BC下方一点,∠BDC =90°,探索线段DA、DB、DC之间的数量关系,并说明理由;【知识应用】(3)如图3,两块斜边长都为14cm的三角板,把斜边重叠摆放在一起,则两块三角板的直角顶点之间的距离PQ的长分别为cm.16.如图,△ABC中,∠ABC=90°,AB=BC,D在边AC上,AE⊥BD于E.(1)如图1,作CF⊥BD于F,求证:CF﹣AE=EF;(2)如图2,若BC=CD,求证:BD=2AE;(3)如图3,作BM⊥BE,且BM=BE,AE=2,EN=4,连接CM交BE于N,请直接写出△BCM的面积为.17.已知△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,M为CE中点.(1)如图1,若D点在BA延长线上,直接写出BM与DM的数量关系与位置关系不必证明.(2)如图2,当C,E,D在同直线上,连BE,探究BE与AB的的数量关系,并加以证明.(3)在(2)的条件下,若AB=AE=2.求BD的长.18.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为.②∠APC的度数为.(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为.19.(1)已知:如图1,△ABC为等边三角形,点D为BC边上的一动点(点D不与B、C 重合),以AD为边作等边△ADE,连接CE.求证:①BD=CE,②∠DCE=120°;(2)如图2,在△ABC中,∠BAC=90°,AC=AB,点D为BC上的一动点(点D不与B、C重合),以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE,类比题(1),请你猜想:①∠DCE的度数;②线段BD、CD、DE之间的关系,并说明理由;(3)如图3,在(2)的条件下,若D点在BC的延长线上运动,以AD为边作等腰Rt△ADE,∠DAE=90°(顶点A、D、E按逆时针方向排列),连接CE.①则题(2)的结论还成立吗?请直接写出,不需论证;②连结BE,若BE=10,BC=6,直接写出AE的长.20.思维启迪:(1)如图①,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,他出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC=4,AE=DE=,∠ACB=∠AED=90°,将△ADE 绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图②,当△ADE在起始位置时,求证:PC⊥PE,PC=PE.②如图③,当α=90°时,点D落在AB边上,PC与PE的数量关系和位置关系分别为.③当α=135°时,直接写出PC的值.参考答案1.解:(1)∵AB=8,点P的运动速度为2个单位长度/秒,∴当P为AB中点时,即4÷2=2(秒);故答案为:2.(2)由题意可得:当BP=2BQ时,P,Q分别在AB,BC上,∵点Q的运动速度为个单位长度/秒,∴点Q只能在BC上运动,∴BP=8﹣2t,BQ=t,则8﹣2t=2×t,解得t=,当点P运动到BC和AC上时,不存在BP=2BQ;(3)当点P为靠近点A的三等分点时,如图1,AB+BC+CP=8+16+8=32,此时t=32÷2=16,∵BC+CQ=16+4=20,∴a=20÷16=,当点P为靠近点C的三等分点时,如图2,AB +BC +CP =8+16+4=28,此时t =28÷2=14,∵BC +CQ =16+8=24,∴a =24÷14=.综上可得:a 的值为或.2.解:(1)连接PQ ,设经过ts 后,P 、Q 两点的距离为5cm ,ts 后,PC =7﹣2tcm ,CQ =5tcm ,根据勾股定理可知PC 2+CQ 2=PQ 2,代入数据(7﹣2t )2+(5t )2=(5)2; 解得t =1或t =﹣(不合题意舍去);(2)设经过ts 后,S △PCQ 的面积为15cm 2 ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =15解得t 1=2,t 2=1.5,经过2或1.5s 后,S △PCQ 的面积为15cm 2.(3)设经过ts 后,△PCQ 的面积最大,ts 后,PC =7﹣2tcm ,CQ =5tcm ,S △PCQ =×PC ×CQ =×(7﹣2t )×5t =×(﹣2t 2+7t ).=﹣5.∴当t=s时,△PCQ的面积最大,最大值为cm2.3.(1)证明:∵AB=AC,∴∠B=∠C,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=∠C=72°,∴∠A=2∠C,即△ABC是倍角三角形,(2)解:∵∠A>∠B>∠C,∠B=30°,①当∠B=2∠C,得∠C=15°,过C作CH⊥直线AB,垂足为H,可得∠CAH=45°,∴AH=CH=AC=4.∴BH=,∴AB=BH﹣AH=﹣4,∴S=.②当∠A=2∠B或∠A=2∠C时,与∠A>∠B>∠C矛盾,故不存在.综上所述,△ABC面积为.(3)△ADC和△ABC是倍角三角形,证明如下:∵AD平分∠BAE,∴∠BAD=∠EAD,∵AB=AE,AD=AD,∴△ABD≌△AED(SAS),∴∠ADE=∠ADB,BD=DE.又∵AB +AC =BD ,∴AE +AC =BD ,即CE =BD .∴CE =DE .∴∠C =∠BDE =2∠ADC .∴△ADC 是倍角三角形.∵△ABD ≌△AED ,∴∠E =∠ABD ,∴∠E =180°﹣∠ABC ,∵∠E =180°﹣2∠C ,∴∠ABC =2∠C .∴△ABC 是倍角三角形.4.解:(1)∵点A (﹣4,﹣1)、B (﹣2,1),C (k ,0),将线段AB 平移至线段CD , ∴点B 向上平移一个单位,向右平移(k +4)个单位到点D ,∴D (k +2,2);(2)如图1,过点B 作BE ⊥x 轴于点E ,过点D 作DF ⊥x 轴于点F ,∵A (﹣4,﹣1)、B (﹣2,1),C (k ,0),D (k +2,2),∴BE =1,CE =k +2,DF =2,EF =k +4,CF =2,∵S 四边形BEFD =S △BEC +S △DCF +S △BCD , ∴=+,解得:k =2.(3)∠BPD =∠BCD +∠A ;理由如下:过点P 作PE ∥AB ,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA=∠ABC,∠PDC=∠ADC,∴∠BPD=∠ABC+∠ADC=∠BCD+∠A.5.证明:(1)过B作BM⊥DA于M,过C作CN⊥EA交EA的延长线于N,如图,∵∠BAC=∠DAE=90°,∴∠BAD+∠CAE=180°,∵∠CAN+∠CAE=180°,∴∠BAD=∠CAN∵sin∠BAD=,sin∠CAN=,又∵AB=AC,∴BM=CN,∵DA=AE,S△ABD =DN×BM,S△ACE=AE×CN,∴S△ADB =S△ACE.(2)延长AM到Q使AM=QM,连接CQ、EQ,如图,∵AM是△ACE中线,∴CM=EM,∴四边形ACQE是平行四边形,∴AC=EQ=AB,AE=CQ=AD,AC∥EQ,∴∠CAE+∠AEQ=180°,∵∠BAD+∠CAE=180°,∴∠BAD=∠AEQ,∵在△BAD和△QEA中∴△BAD≌△QEA,∴∠BDA=∠EAM,∵∠DAE=90°,∴∠NAD+∠QAE=90°,∴∠BDA+∠NAD=90°,∴∠DNA=180°﹣90°=90°,∴MN⊥BD.6.(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC =∠AEH ,∵AD =AE ,∴△ACD ≌△EHA ,∴CD =AH ,EH =AC =BC ,∵CB =CA ,∴BD =CH ,∵∠EHF =∠BCF =90°,∠EFH =∠BFC ,EH =BC ,∴△EHF ≌△BCF ,∴FH =CF ,∴BD =CH =2CF .(3)如图3中,同法可证BD =2CM .∵AC =3CM ,设CM =a ,则AC =CB =3a ,BD =2a , ∴==.7.解:(1)如图①中,△ABC 1,△ABC 2即为所求.(2)证明:如图②,根据定义Rt △ABC 中,和美中线一定是较长直角边上的中线. 理由:取AC 的中点D ,连结BD ,设AC =2x ,则CD =AD =x ,∵,∴,∴,在Rt△BCD中,∴BD=AC,∴△ABC是“和美三角形:.(3)分两种情况:如图③,当腰上的中线BD=AC时,则AB=BD,过B作BE⊥AD于E,∵AB=AC=20,∴BD=20,,∴CE=10+5=15,∴Rt△BDE中,BE2=BD2﹣DE2=375,∴Rt△BCE中,;如图④,当底边上的中线AD=BC时,则AD⊥BC,且AD=2BD,设BD=x,则x2+(2x)2=202,∴x2=80,又∵x>0,∴,∴.综上所述,底边BC的长为或.8.解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.故答案为:等边,30°;【问题解决】解:∵∠DBC<∠ABC,∴60°<α≤120°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3﹣1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=,∴BE=BD+DE=7+,故答案为:7+或7﹣.9.解:(1)作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵AB⊥BC,∴∠ABO+∠CBH=90°,∴∠ABO=∠BCH,在△ABO和△BCH中,,∴△ABO≌△BCH,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,在△PBA和△QBC中,,∴△PBA≌△QBC,∴PA=CQ;(3)∵△BPQ是等腰直角三角形,∴∠BQP=45°,当C、P,Q三点共线时,∠BQC=135°,由(2)可知,△PBA≌△QBC,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P点坐标为(1,0).10.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=AC=.11.(1)解:设AP=x,则BQ=x,∵∠BQD=30°,∠C=60°,∴∠QPC=90°,∴QC=2PC,即x+6=2(6﹣x),解得x=2,即AP=2.(2)证明:如图,过P点作PF∥BC,交AB于F,∵PF∥BC,∴∠PFA=∠FPA=∠A=60°,∴PF=AP=AF,∴PF=BQ,又∵∠BDQ=∠PDF,∠DBQ=∠DFP,∴△DQB≌△DPF,∴DQ=DP即D为PQ中点,(3)运动过程中线段ED的长不发生变化,是定值为3,理由:∵PF=AP=AF,PE⊥AF,∴,又∵△DQB≌△DPF,∴,∴.12.(1)证明:∵AC平分钝角∠BAE,BD平分∠ABC,∴∠BAE=2∠BAD,∠ABC=2∠ABD,∴∠BAE+∠ABC=2(∠BAD+∠ABD)=2×90°=180°,∴AE∥BC;(2)解:(ⅰ)BF=(2+)CF;理由如下:∵∠BAD+∠ABD=90°,∴BD⊥AC,∴∠CBD+∠BCD=90°,∵∠ABD=∠CBD,∴∠BAD=∠BCD,∴AB=BC,过点A作AH⊥BC于H,如图1所示:∵∠ABC=45°,AF⊥AB,∴△ABH、△BAF是等腰直角三角形,∴AH=BH=HF,BC=AB=BH,BF=AB=×BH=2BH,∴CF=BF﹣BC=2BH﹣BH=(2﹣)BH,∴BH==(1+)CF,∴BF=2(1+)CF=(2+)CF;(ⅱ)当点F在点C的左侧时,如图2所示:同(ⅰ)得:∠BAD=∠BCD,∴AB=BC=10,∵∠CAF=∠ABD,∠BAD+∠ABD=90°,∴∠BCD+∠CAF=90°,∴∠AFC=90°,∴AF⊥BC,=BC•AF=×10×AF=30,则S△ABC∴AF=6,∴BF==8,∴CF=BC﹣BF=10﹣8=2,∴AC==2,=AC•BD=×2×BD=30,∵S△ABC∴BD=3,作PG⊥AB于G,则PG=PF,在Rt△BPG和Rt△BPF中,,∴Rt△BPG≌Rt△BPF(HL),∴BG=BF=8,∴AG=AB﹣BG=2,∵AB=CB,BD⊥AC,∴AD=CD=AC=,设AP=x,则PG=PF=6﹣x,在Rt△APG中,由勾股定理得:22+(6﹣x)2=x2,解得:x=,∴AP=,∴PD===,∴BP=BD﹣PD=3﹣=;当点F在点C的右侧时,则∠CAF=∠ACF',∵BD⊥AC,∴∠APD=∠AP'D,∴AP=AP',PD=P'D=,∴BP=+2×=;综上所述,线段BP的长为或.13.解:(1)∵∠ADB+∠ADE+∠EDC=180°,且∠ADE=40°,∠BDA=110°,∴∠EDC=30°,∵∠AED=∠EDC+∠ACB=30°+40°=70°∴∠EDC=180°﹣∠AED=110°,故答案为:30,110,∵∠BDA+∠B+∠BAD=180°,∴∠BDA=140°﹣∠BAD∵点D从B向C的运动过程中,∠BAD逐渐变大∴∠BDA逐渐变小,故答案为:小(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠ADC=∠B+∠BAD,∠ADC=∠ADE+∠CDE,∠B=∠ADE=40°,∴∠BAD=∠CDE,且AB=CD=2,∠B=∠C=40°,∴△ABD≌△DCE(ASA)(3)若AD=DE时,∵AD=DE,∠ADE=40°∴∠DEA=∠DAE=70°∵∠DEA=∠C+∠EDC∴∠EDC=30°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣30°=110°若AE=DE时,∵AE=DE,∠ADE=40°∴∠ADE=∠DAE=40°,∴∠AED=100°∵∠DEA=∠C+∠EDC∴∠EDC=60°∴∠BDA=180°﹣∠ADE﹣∠EDC=180°﹣40°﹣60°=80°综上所述:当∠BDA=80°或110°时,△ADE的形状可以是等腰三角形14.证明:(1)∵CG⊥AD,∴∠AGC=90°,∴∠GCA+∠CAD=90°,∵∠GCA+∠FCB=90°,∴∠CAD=∠FCB,∵FB⊥BC,∴∠CBF=90°,∵Rt△ABC是等腰三角形,∠ACB=90°,∴AC=BC,∠CBF=∠ACB,在△ACD和△CBF中,∴△ACD≌△CBF(ASA);(2)∵△ACD≌△CBF,∴CD=BF,∵D为BC的中点,∴CD=BD,∴BD=BF,∵△ABC是等腰直角三角形,∠ACB=90°,∴∠DBE=45°,∵∠CBF=90°,∴∠DBE=∠FBE=45°,在△DBE和△FBE中,∴△DBE≌△FBE(SAS),∴DE=FE,∠DEB=∠FEB=90°,∴AB垂直平分DF;(3)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:△CBF≌△ACD,∴CF=AD,由(2)知:AB垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.15.解:(1)如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,故答案为:DA=DC+DB;(2)DA=DB+DC,如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;(3)如图3,连接PQ,∵MN=14,∠QMN=30°,∴QN=MN=7,∴MQ===7,由(2)知PQ=QN+QM=7+7,∴PQ==,故答案为:.16.(1)证明:∵CF⊥BD于点F,AE⊥BD,∴∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,又∵∠ABC=90°,∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∴CF﹣AE=BE﹣BF=EF;(2)证明:如图1,过点C作CF⊥BD于点F,∵BC=CD,∴BF=DF,由(1)得AE=BF,∴AE=DF,∴BD=2AE;(3)解:如图2,过点C作CG⊥MB,交MB的延长线于点G,过点C作CH⊥BE,交BE于点H,∵BM⊥BE,CH⊥BE,CG⊥MB,∴∠NBG=∠CHB=∠CGB=90°,∴四边形BGCH为矩形,∴BG=HC,BH=GC,由(1)得△AEB≌△BHC,∴AE=BH,BE=CH,∵BM=BE,∴BM=CH,∵∠MBN=∠CHN=90°,∠MNB=∠CNH,∴△BMN≌△HCN(AAS),∴BM=CH,BN=HN,∵AE=BH=2,∴BN=1,∴BE=BM=BN+EN=1+4=5,∴=.故答案为:5.17.解:(1)BM=DM,BM⊥DM;如图1,连接AM,∵△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,∴∠CAE=90°,∵M为CE中点.∴CM=AM,∵BM=BM,BC=BA,∴△BCM≌△BAM(SSS),∴∠CBM=∠MBA=45°,同理可得∠MDA=45°,∴∠BMD=90°,∴BM=DM,BM⊥DM;(2)如图2,延长BM到N,使BM=MN,连EN,DN,BD,BE,∵∠CMB=∠EMN,CM=ME,∴△CBM≌△ENM(SAS),∴BC=EN,∠BCM=∠MEN,∴EN=AB,∵∠CBA=∠ADE=90°,∴∠BCM+∠BAD=180°,∵∠NED+∠MEN=180°,∴∠NED=∠BAD,又∵AD=DE,∴△END≌△ABD(SAS),∴DB=DN,∠NDE=∠BDA,∴∠NDE+∠BDE=90°,∴∠NDB=90°,∴DB⊥DN,∴DM⊥BN,∴BE=EN=BC=AB;(3)如图3,连BE,BD交AE于N,在(2)的条件下,CM=ME,DM⊥BM,∴BE=BC=AE=AB=2,DE=DA=2,∴BD为AE的垂直平分线,∴EN=DN=AN=,∴BN==,∴BD=+.18.解:(1)观察猜想:①如图1,设AE交CD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD,∠CAO=∠ODP,S△ACE =S△BCD,∴∠DPO=∠ACO=60°,∴∠APB=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴CP平分∠APB,∴∠APC=60°,故答案为AE=BD,60°.(2)数学思考::①成立,②不成立,理由:设AC交BD于点O.过点C作CH⊥AE,CG⊥BD,∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD,∠PAO=∠ODC,∵∠AOP=∠DOC,∴∠APO=∠DCO=60°,∴∠DPE=120°,∵S△ACE =S△BCD,∴×AE×CH=×BD×CG,∴CH=CG,且CH⊥AE,CG⊥BD,∴∠DPC=60°,∴∠APC=120°,∴①成立,②不成立;拓展应用:设AC交BD于点O.∵∠ACD=∠BCE=90°,CA=CD,CB=CE,∴∠ACE=∠DCB∴△AEC≌△DBC(SAS),∴AE=BD,∠CDB=∠CAE,∵∠AOP=∠COD,∠CDB=∠CAE,∴∠DCO=∠APO=90°,∴AE⊥BD,故答案为:AE=BD,AE⊥BD.19.证明:(1)①如图1,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠ACB=∠B=60°,∠BAC=∠DAE=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE;②∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠DCE=∠ACE+∠ACB=60°+60°=120°;(2)∠DCE=90°,BD2+CD2=DE2.证明:如图2,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠ACE=45°,BD=CE,∴∠B+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;(3)①(2)中的结论还成立.理由:∵∠BAC=∠DAE=90°,∴∠BAC+∠DAC=∠DAE+∠DAC,即∠BAD=∠CAE,在△ABD与△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABC=∠ACE=45°,BD=CE,∴∠ABC+∠ACB=∠ACE+∠ACB=90°,∴∠BCE=90°=∠ECD,∴Rt△DCE中,CE2+CD2=DE2,∴BD2+CD2=DE2;②∵Rt△BCE中,BE=10,BC=6,∴CE===8,∴BD=CE=8,∴CD=8﹣6=2,∴Rt△DCE中,DE===,∵△ADE是等腰直角三角形,∴.20.(1)解:∵CD∥AB,∴∠ABP=∠C,∵P是BC的中点,∴PB=PC,在△ABP和△DCP中,,∴△ABP≌△DCP(ASA),∴AB=CD=200米;故答案为:200;(2)①证明:延长EP交BC于F,如图②所示:∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDP=∠FBP,∠DEP=∠BFP,∵点P是线段BD的中点,∴PB=PD,在△FBP和△EDP中,,∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵PE=PF,∴PC⊥EF,PC=EF=PE;②解:PC⊥PE,PC=PE;理由如下:延长ED交BC于H,如图③所示:由旋转的性质得:∠CAE=90°,∵∠AED=∠ACB=90°,∴四边形ACHE是矩形,∴∠BHE=∠CHE=90°,AE=CH,∵AE=DE,∴CH=DE,∠ADE=45°,∴∠EDP=135°,∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵∠BHE=90°,点P是线段BD的中点,∴PH⊥BD,PH=BD=PD,△BPH是等腰直角三角形,∴∠BHP=45°,∴∠CHP=135°=∠EDP,在△CPH和△EPD中,,∴△CPH≌△EPD(SAS),∴PC=PE,∠CPH=∠EPD,∴∠CPE=∠HPD=90°,∴PC⊥PE;故答案为:PC⊥PE,PC=PE;③解:当α=135°时,AD⊥AC,过点D作DF⊥BC于F,连接CD,过点C作CN⊥BD于N,如图④所示:则四边形ACFD是矩形,∴CF=AD=AE=2,DF=AC=4,∴CD===2,BF=BC﹣CF=4﹣2=2,∴BD===2,∵DF•BC=CN•BD,∴CN===,BN===,∴PN=BD﹣BN=×2﹣=,∴PC===.。

2022-2023学年初二数学第二学期培优专题05 旋转之线段问题

2022-2023学年初二数学第二学期培优专题05 旋转之线段问题

2022-2023学年初二数学第二学期培优专题05 旋转之线段问题【模型讲解】数学探究课上老师出了这样一道题:“如图,等边ABC 中有一点P ,且3PA =,4PB =,5PC =,试求APB ∠的度数.”小明和小军探讨时发现了一种求APB ∠度数的方法,下面是这种方法的一部分思路,请按照下列思路要求画图或判断.(1)在图中画出APC △绕点A 顺时旋转60°后的1APB △,并判断1APP △的形状是_______;(2)试判断1BPP △的形状,并说明理由;(3)由(1)、(2)两问可知:APB ∠=___________. 【解答】(1)如图,△AP 1 B 为所作;连接PP 1, △AP 1 P 为等边三角形理由如下:∵△APC 绕点A 顺时针旋转60°后得△AP 1 B , ∴AP 1=AP ,∠PAP 1 = 60°, ∴△AP 1P 为等边三角形; (2)∵△AP 1P 为等边三角形;∴PP 1=AP =3,又根据旋转的性质得BP 1=PC =5,PP 12 + PB 2=32+42=25,BP 12=CP 2=52=25,∴PP 12 + PB 2=BP 12∴△BP 1P 为直角三角形,∠BPP 1 = 90°;(3)∵△APP 1为等边三角形,∴∠APP 1 = 60°,而∠BPP 1= 90°; ∴∠APB = 90°+ 60°= 150°,故答案为:150°.【模型演练】1.(1)如图1,P 是锐角ABC 内一动点,把APC △绕点A 逆时针旋转60°得到AP C '',连接PP ',这样就可得出PA PB PC BP PP P C '''++=++,请给出证明过程.(2)图2所示的是一个锐角为30°的直角三角形公园(30B ∠=︒,90C ∠=︒),其中顶点A 、B 、C 为公园的出入口,20km AB =,工人师傅准备在公园内修建一凉亭P ,使该凉亭到三个出入口的距离PA PB PC ++最小,求这个最小的距离.2.(1)如图1,正方形ABCD ,E 、F 分别为BC 、CD 上的点,45EAF ∠=︒,求证:EF BE DF =+小聪把△ABE 绕点A 逆时针旋转90°至△ADG ,从而发现EF BE FD =+,请你利用图1证明上述结论.(2)如图2,若点E 、F 分别在正方形ABCD 的边CB 、DC 的延长线上,45EAF ∠=︒,那么线段EF 、DF 、BE 之间有怎样的数量关系?请证明你的结论.3.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图①,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =.【问题提出】(1)如图②,在图①的基础上连接BD ,由于AD CD =,所以可将DCB △绕点D 顺时针方向旋转60°,得到DAB ',则BDB '的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD 的面积; 【类比应用】(3)如图③,等边ABC 的边长为2,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长.4.问题:如图(1),点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF =45°,试判断BE 、EF 、FD 之间的数量关系.(1)延长FD 到点G 使DG =BE ,连接AG ,得到至△ADG ,从而可以证明EF =BE +FD ,请你利用图(1)证明上述结论.(2)如图(2),四边形ABCD 中,90≠︒∠BAD ,AB =AD ,∠B +∠D =180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足______数量关系时,仍有EF =BE +FD ,并说明理由. 5.阅读下列材料:问题:如图(1),已知正方形ABCD 中,E 、F 分别是BC 、CD 边上的点,且∠EAF =45°.解决下列问题:(1)图(1)中的线段BE 、EF 、FD 之间的数量关系是______.(2)图(2),已知正方形ABCD 的边长为8,E 、F 分别是BC 、CD 边上的点,且∠EAF =45°,AG ⊥EF 于点G ,求△EFC 的周长.6.在等边BCD △中,DF BC ⊥于点F ,点A 为直线DF 上一动点,以点B 为旋转中心,把BA 顺时针旋转60°至BE .(1)如图1,点A 在线段DF 上,连接CE ,求证:CE DA =;(2)如图2,点A 在线段FD 的延长线上,请在图中画出BE 并连接CE ,当45DEC ∠=︒时,连接AC ,求出BAC ∠的度数;(3)在点A 的运动过程中,若6BD =,求EF 的最小值7.(1)如图1,O 是等边△ABC 内一点,连接OA 、OB 、OC ,且OA =3,OB =4,OC =5,将△BAO 绕点B 顺时针旋转后得到△BCD ,连接OD . 求:①旋转角的度数 ; ②线段OD 的长 ; ③求∠BDC 的度数.(2)如图2所示,O 是等腰直角△ABC (∠ABC =90°)内一点,连接OA 、OB 、OC ,将△BAO 绕点B 顺时针旋转后得到△BCD ,连接OD .当OA 、OB 、OC 满足什么条件时,∠ODC =90°?请给出证明.8.如图所示,正方形ABCD 中,点E 、F 、G 分别是边AD 、AB 、BC 的中点,连接EF ,FG .(1)如图1,直接写出EF与FG的关系______;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.△;①求证:HFE≌PFG②直接写出EF、EH、BP三者之间的关系;9.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).10.[方法探索]如图1,在等边ABC 中,点P 在ABC 内,且2PA =,4PC =,150APC ∠=︒,求PB 的长. 小敏在解决这个问题时,想到了以下思路:如图1,把APC △绕着点A 顺时针旋转60︒得到'AP B ,连接'PP ,分别证明AP P '△和BP P '△是特殊三角形,从而得解.请在此思路提示下,求出PB 的长.解:把APC △绕着点A 顺时针旋转60︒得到AP B '△,连接PP '. 接着写下去: 11.[方法应用]请借鉴上述利用旋转构图的方法,解决下面问题:①如图2,点P 在等边ABC 外,且3PA PB ==,120APB ∠=︒,若33AB =PBC ∠度数. ②如图3,在ABC 中,90BAC ∠=︒,10AB AC =P 是ABC 外一点,连接PA 、PB 、PC .已知45APB ∠=︒,2PB =.求PC 的长.12.婆罗摩笈多(Brahmagupta )约公元598年生,约660年卒,在数学、天文学方面有所成就. 婆罗摩笈多是印度印多尔北部乌贾因地方人,原籍可能为巴基斯坦的信德. 婆罗摩笈多的一些数学成就在世界数学史上有较高的地位. 例如下列模型就被称为“婆罗摩笈多模型”:如图1,2,3,△ABC 中,分别以AB ,AC 为边作Rt △ABE 和Rt △ACD ,AB =AE ,AC =AD ,∠BAE =∠CAD =90°,则有下列结论:①图1中S △ABC =S △ADE ;②如图2中,若AM 是边BC 上的中线,则ED =2AM ;③如图3中,若AM ⊥BC ,则MA 的延长线平分ED 于点N .(1)上述三个结论中请你选择一个感兴趣的结论进行证明,写出证明过程;(2)能力拓展:将上述图形中的某一个直角三角形旋转到如图4所示的位置:△ABC 与△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,连接BD ,CE ,若F 为BD 的中点,连接AF ,求证:2AF =CE .13.数学探究课上老师出了这样一道题:“如图,等边ABC 中有一点P ,且3PA =,4PB =,5PC =,试求APB ∠的度数.”小明和小军探讨时发现了一种求APB ∠度数的方法,下面是这种方法的一部分思路,请按照下列思路要求画图或判断.(1)在图中画出APC △绕点A 顺时旋转60°后的1APB △,并判断1APP △的形状是___________; (2)试判断1BPP △的形状,并说明理由;(3)由(1)、(2)两问可知:APB ∠=___________.答案与解析【模型讲解】数学探究课上老师出了这样一道题:“如图,等边ABC 中有一点P ,且3PA =,4PB =,5PC =,试求APB ∠的度数.”小明和小军探讨时发现了一种求APB ∠度数的方法,下面是这种方法的一部分思路,请按照下列思路要求画图或判断.(1)在图中画出APC △绕点A 顺时旋转60°后的1APB △,并判断1APP △的形状是_______;(2)试判断1BPP △的形状,并说明理由;(3)由(1)、(2)两问可知:APB ∠=___________. 【解答】(1)如图,△AP 1 B 为所作;连接PP 1, △AP 1 P 为等边三角形理由如下:∵△APC 绕点A 顺时针旋转60°后得△AP 1 B , ∴AP 1=AP ,∠PAP 1 = 60°, ∴△AP 1P 为等边三角形;(2)∵△AP 1P 为等边三角形;∴PP 1=AP =3,又根据旋转的性质得BP 1=PC =5,PP 12 + PB 2=32+42=25,BP 12=CP 2=52=25,∴PP 12 + PB 2=BP 12∴△BP 1P 为直角三角形,∠BPP 1 = 90°;(3)∵△APP 1为等边三角形,∴∠APP 1 = 60°,而∠BPP 1= 90°; ∴∠APB = 90°+ 60°= 150°,故答案为:150°.【模型演练】1.(1)如图1,P 是锐角ABC 内一动点,把APC △绕点A 逆时针旋转60°得到AP C '',连接PP ',这样就可得出PA PB PC BP PP P C '''++=++,请给出证明过程.(2)图2所示的是一个锐角为30°的直角三角形公园(30B ∠=︒,90C ∠=︒),其中顶点A 、B 、C 为公园的出入口,20km AB =,工人师傅准备在公园内修建一凉亭P ,使该凉亭到三个出入口的距离PA PB PC ++最小,求这个最小的距离.【答案】(1)见解析;(2)107km【分析】(1)根据旋转的性质证明△APP'是等边三角形,即可得出结论;(2)如图,将△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,构建直角△ABC',利用勾股定理求AC'的长,即是点P到这个三角形各顶点的距离之和的最小值.【解答】(1)如图1,由旋转得:∠PAP'=60°,PA=P'A,∴△APP'是等边三角形,∴PP'=PA,∵PC=P'C,∴PA+PB+PC=BP+PP′+P′C′;(2)解:在Rt△ACB中,∵AB=20,∠ABC=30°,∴AC=10,BC=103,如图,将△BPC绕点B逆时针旋转60度得到△BP′C′,连接PP′,当A、P、P'、C'在同一直线上时,PA+PB+PC的值为最小,由旋转得:BP=BP',∠PBP'=60°,PC=P'C',BC=BC',∴△BPP′是等边三角形,∴PP'=PB,∵∠ABC=∠APB+∠CBP=∠APB+∠C'BP'=30°,∴∠ABC'=90°,由勾股定理得:222220(103)107,AC AB C B ''=+=+= ∴PA +PB +PC =PA +PP '+P 'C '=AC '=107,则点P 到这个三角形各顶点的距离之和的最小值为107km .【点评】本题主要考查三角形的旋转变换的性质、勾股定理、等边三角形的判定与性质等知识点,将待求线段的和通过旋转变换转化为同一直线上的线段来求是解题的关键,学会利用旋转的方法添加辅助线,构造特殊三角形解决问题.2.(1)如图1,正方形ABCD ,E 、F 分别为BC 、CD 上的点,45EAF ∠=︒,求证:EF BE DF =+小聪把△ABE 绕点A 逆时针旋转90°至△ADG ,从而发现EF BE FD =+,请你利用图1证明上述结论.(2)如图2,若点E 、F 分别在正方形ABCD 的边CB 、DC 的延长线上,45EAF ∠=︒,那么线段EF 、DF 、BE 之间有怎样的数量关系?请证明你的结论.【答案】(1)见解析;(2)DF EF BE =+,理由见解析【分析】(1)根据旋转的性质及全等三角形的判定和性质证明即可;(2)把△ABE 绕点A 逆时针旋转90°至△ADG ,结合(1)中证明方法进行证明即可. 【解答】证明:(1)∵AB AD =,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,可使AB 与AD 重合, ∵90ADC B ∠=∠=︒,∴180FDG ∠=︒,即点F 、D 、G 共线, ∴DAG BAE ∠∠=,AE AG =,+904545FAG FAD GAD FAD EAE EAF =+==︒-︒=︒=∠∠∠∠∠∠,即EAF FAG ∠=∠.∵AF AF =,AE AG =∴AFG AFE ≌∴EF FG =.∴EF DF DG DF BE =+=+,即EF BE DF =+(2)DF EF BE =+.理由:如图2所示.∵AB AD =,∴把△ABE 绕点A 逆时针旋转90°至△ADG ,使AB 与AD 重合,∵90ADC ABE ∠=∠=︒∴点C 、D 、G 在一条直线上.∴EB DG =,AE AG =,EAB GAD ∠=∠.∵90BAG GAD ∠+∠=︒∴90EAG BAD ∠=∠=︒.∵45EAF ∠=︒∴904545FAG EAG EAF ∠=∠-∠=︒-︒=︒∴EAF GAF ∠=∠.∴EAF GAF △≌△∴EF FG =∵FD FG DG =+∴DF EF BE =+.【点评】题目主要考查旋转的性质及全等三角形的判定和性质,正方形的性质等,理解题意,熟练掌握全等三角形的判定和性质是解题关键.3.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图①,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =.【问题提出】(1)如图②,在图①的基础上连接BD ,由于AD CD =,所以可将DCB △绕点D 顺时针方向旋转60°,得到DAB ',则BDB '的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD 的面积;【类比应用】(3)如图③,等边ABC 的边长为2,BDC 是顶角120BDC ∠=︒的等腰三角形,以D 为顶点作一个60°的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长. 【答案】(1)等边三角形(2)934(3)4【分析】(1)由旋转的性质得出BD =DB ′,∠BDB ′=60°,所以△BDB ′是等边三角形;(2)求出等边三角形的边长为3,求出三角形BDB ′的面积即可;(3)将△BDM 绕点D 顺时针方向旋转120°,得到△DCP ,则△BDM ≌△CDP ,得出MD =PD ,∠MBD =∠DCP ,∠MDB =∠PDC ,证明△NMD ≌△NPD ,证得△AMN 的周长=AB +AC =4.【解答】(1)解:∵将△DCB 绕点D 顺时针方向旋转60°,得到△DAB ′,∴BD =B ′D ,∠BDB ′=60°,∴△BDB ′是等边三角形;故答案为:等边三角形;(2)解:由(1)知,△BCD ≌△B ′AD ,∴四边形ABCD 的面积=等边三角形BDB ′的面积,∵BC =AB ′=1,∴BB ′=AB +AB ′=2+1=3,∴S四边形ABCD=S△BDB′=133933224⨯⨯=;(3)解:将△BDM绕点D顺时针方向旋转120°,得到△DCP,∴△BDM≌△CDP,∴MD=PD,CP=BM,∠MBD=∠DCP,∠MDB=∠PDC,∵△BDC是等腰三角形,且∠BDC=120°,∴BD=CD,∠DBC=∠DCB=30°,又∵△ABC等边三角形,∴∠ABC=∠ACB=60°,∴∠MBD=∠ABC+∠DBC=90°,同理可得∠NCD=90°,∴∠PCD=∠NCD=∠MBD=90°,∴∠DCN+∠DCP=180°,∴N,C,P三点共线,∵∠MDN=60°,∴∠MDB+∠NDC=∠PDC+∠NDC=∠BDC﹣∠MDN=60°,即∠MDN=∠PDN=60°,∴△NMD≌△NPD(SAS),∴MN=PN=NC+CP=NC+BM,∴△AMN的周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2+2=4.故△AMN的周长为4.【点评】本题是四边形综合题,考查了图形的旋转变换,等边三角形的判定与性质,全等三角形的判定与性质,类比思想等.熟练掌握旋转的性质是解决问题的关键.4.问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.(1)延长FD 到点G 使DG =BE ,连接AG ,得到至△ADG ,从而可以证明EF =BE +FD ,请你利用图(1)证明上述结论.(2)如图(2),四边形ABCD 中,90≠︒∠BAD ,AB =AD ,∠B +∠D =180°,点E 、F 分别在边BC 、CD 上,则当∠EAF 与∠BAD 满足______数量关系时,仍有EF =BE +FD ,并说明理由. 【答案】(1)见解析(2)2BAD EAF ∠∠=,理由见解析【分析】(1)根据旋转变换的性质得到△ADG ≌△ABE ,根据全等三角形的性质得到AG =AE ,∠DAG =∠BAE ,DG =BE ,∠ADG =∠ABE =90°,证明∠AFE ≌△AFG ,根据全等三角形的性质证明;(2)延长CB 至M ,使BM =DF ,连接AM ,证明△EAF ≌△EAM ,根据全等三角形的性质证明;(1)延长FD 到点G 使DG =BE ,连接AG .如图(1),在正方形ABCD 中,AB =AD ,90,BAD ADC B ∠=∠=∠=︒在ABE ∆和ADG ∆中,AB AD ABE ADG BE DG =⎧⎪∠=∠⎨⎪=⎩ABE ∴∆≌ADG ∆(SAS ),BAE GAD AE AG ∴∠=∠=45GAD DAF BAE DAF ∴∠+∠=∠+∠=︒45EAF GAF ∴=∠=∠︒在AEF ∆和AGF ∆中,GA EA GAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴AEF ∆≌AGF ∆EF GF GD DF BE DF ∴==+=+(2)2BAD EAF ∠∠=理由如下:如图,延长CB 至M ,使BM =DF ,连接AM ,180,180ABC D ABC ABM ∠+∠=︒∠+∠=︒D ABM ∠∠∴=在ABM ∆和ADF ∆中,AB AD ABM D BM DF =⎧⎪∠=∠⎨⎪=⎩ABM ∴∆≌ADF ∆,AF AM DAF BAM ∴=∠=∠2BAD EAF ∠∠=DAF BAE BAM BAE EAF ∴∠+∠=∠+∠=∠EAF EAM ∴∠=∠在EAF ∆和ΔEAM 中,AF AM EAF EAM AE AE =⎧⎪∠=∠⎨⎪=⎩∴EAF ∆≌ΔEAMEF EM BE BM BE DF ∴==+=+EF BE DF ∴=+【点评】本题考查的是正方形的性质、旋转变换的性质、正方形的性质,掌握正方形的性质定理、全等三角形的判定定理和性质定理是解题的关键.5.阅读下列材料:问题:如图(1),已知正方形ABCD中,E、F分别是BC、CD边上的点,且∠EAF=45°.解决下列问题:(1)图(1)中的线段BE、EF、FD之间的数量关系是______.(2)图(2),已知正方形ABCD的边长为8,E、F分别是BC、CD边上的点,且∠EAF=45°,AG⊥EF于点G,求△EFC的周长.【答案】(1)EF=BE+DF(2)过程见解析【分析】对于(1),先将△DAF绕点A顺时针旋转90°,得到△BAH,可得△ADF≌△ABH,再根据全等三角形的性质得AF=AH,∠EAF=∠EAH,然后根据“SAS”证明△FAE≌△HAE,根据全等三角形的对应边相等得出答案;对于(2),先根据(1),得△FAE≌△HAE,可得AG=AB=AD,再根据“HL”证明Rt△AEG≌Rt△ABE,得EG=BE,同理GF=DF,可得答案.(1)EF=BE+DF.理由如下:如图,将△DAF绕点A顺时针旋转90°,得到△BAH,∴△ADF≌△ABH,∴∠DAF=∠BAH,AF=AH,∴∠EAF=∠EAH=45°.∵AE=AE,∴△FAE≌△HAE,∴EF=HE=BE+HB,∴EF=BE+DF;(2)由(1),得△FAE ≌△HAE ,AG ,AB 分别是△FAE 和△HAE 的高,∴AG=AB=AD=8.在Rt △AEG 和Rt △ABE 中,AE AE AG AB =⎧⎨=⎩, ∴Rt △AEG ≌Rt △ABE (HL ),∴EG=BE ,同理GF=DF ,∴△EFG 的周长=EC+EF+FC=EC+EG+GF+FC=EC+BE+DF+FC=BC+CD=16.【点评】这是一道关于正方形和旋转的综合题目,考查了旋转的性质,正方形的性质,全等三角形的判定和性质等.6.在等边BCD △中,DF BC ⊥于点F ,点A 为直线DF 上一动点,以点B 为旋转中心,把BA 顺时针旋转60°至BE .(1)如图1,点A 在线段DF 上,连接CE ,求证:CE DA =;(2)如图2,点A 在线段FD 的延长线上,请在图中画出BE 并连接CE ,当45DEC ∠=︒时,连接AC ,求出BAC ∠的度数;(3)在点A 的运动过程中,若6BD =,求EF 的最小值 在DBA 与△BD BC DBA BA BE =∠=∠=DBA ≌△解:如图3,由(1)可知,DBA CBE ≌△△,∴DA CE =,BDA BCE ∠=∠,又∵BCD △是等边三角形,∴60BDC BCD ∠=∠=︒,DB DC =,∵DB DC =,∴△BCD 是等腰三角形,∵DF BC ⊥,∴1302BDF BDC ∠=∠=︒, ∴180150BDA BDF ∠=︒-∠=︒,∴150BCE ∠=︒,360150CDA BDA BDC ∠=︒-∠-∠=︒,∴90DCE BCE BCD ∠=∠-∠=︒,∵45DEC ∠=︒,∴45EDC ∠=︒,∴DEC EDC ∠=∠,∴CE CD =,∴DB DC DA ==,∴180152BDA BAD ︒-∠∠==︒,180152CDA CAD ︒-∠∠==︒, ∴30BAC BAD CAD ∠=∠+∠=︒.(3)解:∵由图1可知,当点A 在线段DF 上时,30BCE BDA ∠=∠=︒;由图3可知,当点A 在线段FD 的延长线上时,150BCE BDA ∠=∠=︒;由图4可知,当点A 在线段DF 的延长线上时,30BCE BDA ∠=∠=︒;∴综上所述,当点A 在直线DF 上运动时,直线CE 与直线BC 的夹角始终为30°,即点E 的运动轨迹为一条直线,过点F 作FE EC '⊥于点E ',则当点E 运动到点E '时,此时EF 的长度最短,∵6BD CD BC ===,DF BC ⊥,∴132CF BC ==,又∵FE EC '⊥,30BCE ∠=︒,∴1322FE CF '==, ∴EF 的最小值为32. 【点评】此考查了旋转的性质、全等三角形的判定和性质、等边三角形的性质、直角三角形的性质、三角形的内角和、等腰三角形的判定和性质等知识,分类讨论是解决问题的关键.7.(1)如图1,O 是等边△ABC 内一点,连接OA 、OB 、OC ,且OA =3,OB =4,OC =5,将△BAO 绕点B 顺时针旋转后得到△BCD ,连接OD .求:①旋转角的度数 ;②线段OD 的长 ;③求∠BDC 的度数.(2)如图2所示,O 是等腰直角△ABC (∠ABC =90°)内一点,连接OA 、OB 、OC ,将△BAO 绕点B 顺时针旋转后得到△BCD ,连接OD .当OA 、OB 、OC 满足什么条件时,∠ODC =90°?请给出证明.【答案】(1)①60°;②4;③150°;(2)当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°,见解析【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD为等腰直角三角形,则OD=2OB,然后根据勾股定理的逆定理,当222+=时,△OCD为直角三角形,∠ODC=90°.CD OD OC【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=2OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判断与性质和勾股定理的逆定理.8.如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EF,FG.(1)如图1,直接写出EF与FG的关系______;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.①求证:HFE≌PFG△;②直接写出EF、EH、BP三者之间的关系;∴HFE≌△②解:22EF∵HFE≌△EH PG=AE AF==∴22EF AF BG==,∴22BG EF=,∵BG GP BP+=,∴22EF EH BP+=【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,证明△HFE≌△PFG是解题的关键.9.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).【答案】(1)CD=BE.理由见解析;(2)△AMN是等边三角形.理由见解析.【分析】(1)CD=BE.利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE≌△ACD;然后根据全等三角形的对应边相等即可求得结论CD=BE;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD ”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM =AN 、∠NAM =∠NAC +∠CAM =∠MAB +∠CAM =∠BAC =60°,所以有一个角是60°的等腰三角形的正三角形.【解答】(1)CD =BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠EAD =60°,∵∠BAE =∠BAC ﹣∠EAC =60°﹣∠EAC ,∠DAC =∠DAE ﹣∠EAC =60°﹣∠EAC ,∴∠BAE =∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD =BE ;(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE =∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM =CN ,∵AB =AC ,∠ABE =∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM =AN ,∠MAB =∠NAC .∴∠NAM =∠NAC +∠CAM =∠MAB +∠CAM =∠BAC =60°.∴△AMN 是等边三角形.【点评】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.10.[方法探索]如图1,在等边ABC 中,点P 在ABC 内,且2PA =,4PC =,150APC ∠=︒,求PB 的长. 小敏在解决这个问题时,想到了以下思路:如图1,把APC △绕着点A 顺时针旋转60︒得到'AP B ,连接'PP ,分别证明AP P '△和BP P '△是特殊三角形,从而得解.请在此思路提示下,求出PB 的长.解:把APC △绕着点A 顺时针旋转60︒得到AP B '△,连接PP '.接着写下去:11.[方法应用]请借鉴上述利用旋转构图的方法,解决下面问题:①如图2,点P 在等边ABC 外,且3PA PB ==,120APB ∠=︒,若33AB =PBC ∠度数. ②如图3,在ABC 中,90BAC ∠=︒,10AB AC =P 是ABC 外一点,连接PA 、PB 、PC .已知45APB ∠=︒,2PB =.求PC 的长. 【答案】10.PB =25 11.PBC ∠=90°;PC =210【分析】(1)把APC △绕着点A 顺时针旋转60︒得到'AP B ,连接'PP ,易证明AP P '△是等边三角形,BP P '△是直角三角形,根据勾股定理即可求出BP .(2)①把APB △绕着点A 逆时针旋转60︒得到'AP C ,连接'PP ,易证明AP P '△是等边三角形,BP P '△是等边,△BPC 是直角三角形,则可得到PBC ∠=90°.②将△APC 绕点A 逆时针旋转90°得到△'ABP ,连接'PP ,过B 点做BM 垂直于AP 于M 点,易证明△PBM 是等腰直角三角形,△'P PB 是直角三角形,用勾股定理即可求出PC .10.AP B '△由△APC 旋转60°得到∴AP ='AP =2,PC ='BP =4,∠'PAP =60°∴△'PAP 为等边三角形∴ AP ='AP ='PP =2,'AP P ∠=60°150APC ∠=︒∴'BP P ∠=90°在Rt △'BP P 中,由勾股定理可得:BP =22''BP PP +=2224+=2511.把APB △绕着点B 顺时针旋转60︒得到'BP C ,连接'PP'BP C 由△APB 逆时针旋转60°得到∴AP ='P C =3,PB ='BP =3,∠'PBP =60°,'120APB BP C ∠=∠=︒∴△'PBP 为等边三角形,∴'PP =PB =3'BP C ∠=120°,∠'BP P =60°∴∠'CP P =180°,即'C P P 、、三点共线.∴PC ='CP +'PP =6在△PBC 中,PC =6,PB =3,BC =33223223(33)36PB BC PC +=+==∴△PBC 是直角三角形,故PBC ∠=90°.将△APC 绕点A 顺时针旋转90°得到△'ABP ,连接'PP ,过B 点做BM 垂直于AP 于M 点45APB ∠=︒,BM ⊥AP ,PB =2∴PM =BM =2AB =10在Rt △AMB 中,AM =2210222AB BM -=-=∴AP =PM +AM =32△'ABP 由△APC 旋转90°所得∴ AP ='AP =32,∠'PAP =90°,∠'PP A =45°在Rt △'PAP 中,'PP =22'6AP AP +=∠'PP A =45°,45APB ∠=︒∴'P PB =90°在Rt △'P PB 中,22''210P B P P PB =+=∴PC ='P B =210【点评】本题主要考查了旋转和直角三角形相关内容,注意旋转后的图形要能够和原图构造出特殊的三角形才有利于解题,正确的做出旋转后的图形和辅助线是解题的关键.12.婆罗摩笈多(Brahmagupta )约公元598年生,约660年卒,在数学、天文学方面有所成就. 婆罗摩笈多是印度印多尔北部乌贾因地方人,原籍可能为巴基斯坦的信德. 婆罗摩笈多的一些数学成就在世界数学史上有较高的地位. 例如下列模型就被称为“婆罗摩笈多模型”:如图1,2,3,△ABC 中,分别以AB ,AC 为边作Rt △ABE 和Rt △ACD ,AB =AE ,AC =AD ,∠BAE =∠CAD =90°,则有下列结论: ①图1中S △ABC =S △ADE ;②如图2中,若AM 是边BC 上的中线,则ED =2AM ;③如图3中,若AM ⊥BC ,则MA 的延长线平分ED 于点N .(1)上述三个结论中请你选择一个感兴趣的结论进行证明,写出证明过程;(2)能力拓展:将上述图形中的某一个直角三角形旋转到如图4所示的位置:△ABC 与△ADE 均为等腰直角三角形,∠BAC =∠DAE =90°,连接BD ,CE ,若F 为BD 的中点,连接AF ,求证:2AF =CE .【答案】(1)①证明见解答;②证明见解答;③证明见解答;(2)证明见解答.【分析】(1)①取DE 中点F ,过E 作EG ∥AD ,交射线AF 于G ,先证△GEF ≌△ADF (AAS ),得出S △EAD =S △GEA ,再证△GEA ≌△CAB (SAS )即可;②取DE 中点F ,过E 作EG ∥AD ,交射线AF 于G ,先证△GEF ≌△ADF (AAS ),得出∠BAC =∠GEA ,再证△GEA ≌△CAB (SAS ),得出∠EAG =∠ABC ,AC =AG ,由AM 是边BC 上的中线,得出BM =CM =AF ,三证△EAF ≌△ABM (SAS )即可;③过E 作EP ⊥MN 交MN 延长线于O ,过D 作DO ⊥MN 于O ,先证∠ABM =∠EAP ,∠MCA =∠OAD ,证明△EAP ≌△ABM (AAS ),再证△CAM ≌△ADO (AAS ),三证△EPN ≌△DON (AAS )即可.(2)延长AF ,使FQ =AF ,连接DQ ,将△ACE 绕点A 逆时针旋转90°,得△ARD ,由点F 为BD 中点,可得DF =BF ,先证△DQF ≌△BAF (SAS ),DQ =BA =AC ,∠FDQ =∠FBA ,可证DQ ∥BA ,根据△ACE 绕点A 逆时针旋转90°得△ARD ,可得AR =AC =AB =QD ,RD =CE ,证明R 、A 、B 三点共线,再证△DQA ≌△ARD (SAS ),即可.【解答】(1)①图1中S △ABC =S △ADE ;证明:取DE 中点F ,过E 作EG ∥AD ,交射线AF 于G ,∵点F 为DE 中点,∴EF =DF ,∵EG ∥AD ,∴∠GEF =∠ADF ,∠GEA +∠EAD =180°,在△GEF 和△ADF 中,GFE AFD GEF ADF EF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△GEF ≌△ADF (AAS ),∴GE =AD ,∠G =∠DAF ,∴S △GEF =S △ADF ,∴S △EAD =S △GEA ,∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =360°-∠BAE -∠CAD =180°∴∠BAC +∠EAD =∠GEA +∠EAD =180°∴∠BAC =∠GEA ,∴GE =AD =AC ,在△GEA 和△CAB 中,GE CA GEA CAB EA AB =⎧⎪∠=∠⎨⎪=⎩,∴△GEA ≌△CAB (SAS ),∴S △ABC =S △GEA=S △ADE ;②如图2中,若AM 是边BC 上的中线,则ED =2AM ; 证明:取DE 中点F ,过E 作EG ∥AD ,交射线AF 于G , ∵点F 为DE 中点,∴EF =DF ,∵EG ∥AD ,∴∠GEF =∠ADF ,∠GEA +∠EAD =180°,在△GEF 和△ADF 中,GFE AFD GEF ADF EF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△GEF ≌△ADF (AAS ),∴GE =AD ,GF =AF =12AG ∵∠BAE =∠CAD =90°,∴∠BAC +∠EAD =360°-∠BAE -∠CAD =180°∴∠BAC +∠EAD =∠GEA +∠EAD =180°∴∠BAC =∠GEA ,∴GE =AD =AC ,在△GEA 和△CAB 中,GE CA GEA CAB EA AB =⎧⎪∠=∠⎨⎪=⎩,∴∠EAG =∠ABC ,AC =AG ,∵AM 是边BC 上的中线,∴BM =CM =1122BC AG AF ==, 在△EAF 和△ABM 中,EA AB EAF ABM AF BM =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ABM (SAS ),∴EF =AM ,∵点F 为DE 中点,∴DE =2EF =2AM ,③如图3中,若AM ⊥BC ,则MA 的延长线平分ED 于点N .证明:过E 作EP ⊥MN 交MN 延长线于O ,过D 作DO ⊥MN 于O ,∵∠BAE =90°,∠DAC =90°,∴∠BAM +∠EAP =90°,∠MAC +∠DAO =90°,∵AM ⊥BC ,∴∠ABM +∠BAM =90°,∠MCA +∠MAC =90°∴∠ABM =∠EAP ,∠MCA =∠OAD ,∵EP ⊥MN ,∴∠EPA =90°在△EAP 和△ABM 中,90EPA AMB EAP ABMEA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴EP =AM ,∵DO ⊥MN ,∴∠AOD =90°,在△CAM 和△ADO 中,CMA AOD MCA OAD AC DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CAM ≌△ADO (AAS )∴AM =DO ,∴EP =DO =AM ,在△EPN 和△DON 中,90EPN DON ENP DNOEP DO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴△EPN ≌△DON (AAS ),∴EN =DN ,∴MA 的延长线平分ED 于点N .(2)延长AF ,使FQ =AF ,连接DQ ,将△ACE 绕点A 逆时针旋转90°,得△ARD∵点F 为BD 中点,∴DF =BF ,在△DQF 和△BAF 中,QF AF DFQ BFA DF BF =⎧⎪∠=∠⎨⎪=⎩∴△DQF ≌△BAF (SAS ),∴DQ =BA =AC ,∠FDQ =∠FBA ,∴DQ ∥BA ,∵△ACE 绕点A 逆时针旋转90°得△ARD∴△ACE ≌△ARD ,∠RAC =90°,∴AR =AC =AB =QD ,RD =CE ,∵∠CAB =90°,∴∠RAB =∠RAC +∠CAB =90°+90°=180°,∴R 、A 、B 三点共线,∵DQ ∥BA ,∴∠QDA =∠RAD ,在△DQA 和△ARD 中,DQ AR QDA RAD DA AD =⎧⎪∠=∠⎨⎪=⎩∴△DQA ≌△ARD (SAS ),∴AQ =DR ,∴2AF =AG =DR =CE ,∴2AF =CE .【点评】本题考查三角形全等判定与性质,三角形面积,中线加倍,三角形中线性质,等腰直角三角形性质,图形旋转变换性质,三点共线,掌握以上知识,尤其是利用辅助线作出准确图形是解题关键.。

2020年中考数学压轴题专题9 动态几何定值问题学案(原版+解析)

专题九动态几何定值问题【考题研究】数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

【解题攻略】动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。

解答动态几何定值问题的方法,一般有两种:第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.第二种是采用综合法,直接写出证明.【解题类型及其思路】在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。

在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。

【典例指引】类型一【线段及线段的和差为定值】【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)【举一反三】如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .(1)若12PACABOP S S ∆=四边形时,求tan BPO ∠的值; (2)设PC x =,AB y BC=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。

2024年天津市中考数学试卷+答案解析

2024年天津市中考数学试卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的结果等于()A. B.0 C.3 D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估算的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A. B. C. D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A. B. C. D.6.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.xC.D.8.若点,,都在反比例函数的图象上,则,,的大小关系是()A. B. C. D.9.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A. B. C. D.10.如图,中,,,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧所在圆的半径相等在的内部相交于点P;画射线AP,与BC相交于点D,则的大小为()A. B. C. D.11.如图,中,,将绕点C顺时针旋转得到,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.B.C.D.12.从地面竖直向上抛出一小球,小球的高度单位:与小球的运动时间单位:之间的关系式是有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题:本题共6小题,每小题3分,共18分。

中考数学备考专题复习: 阅读理解问题(含解析)

中考数学备考专题复习:阅读理解问题(含解析)中考备考专题复习:阅读理解问题一、单选题1、对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b,如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是()A、0B、2C、3D、42、对于实数a、b,定义一种新运算“⊗”为:a⊗b= ,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)= ﹣1的解是()A、x=4B、x=5C、x=6D、x=73、设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A、②③④B、①③④C、①②④D、①②③4、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”.例如:M(1,1),N(﹣2,﹣2)都是“平衡点”.当﹣1≤x≤3时,直线y=2x+m上有“平衡点”,则m的取值范围是()A、0≤m≤1B、﹣3≤m≤1C、﹣3≤m≤3D、﹣1≤m≤0二、填空题5、州)阅读材料并解决问题:求1+2+22+23+…+22014的值,令S=1+2+22+23+…+22014等式两边同时乘以2,则2S=2+22+23+…+22014+22015两式相减:得2S﹣S=22015﹣1所以,S=22015﹣1依据以上计算方法,计算1+3+32+33+…+32015=________.三、解答题6、自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________ .根据上述规律,求不等式>0的解集.7、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[()n﹣()n]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.8、先阅读下列材料,然后解答问题:材料1 从3张不同的卡片中选取2张排成一列,有6种不同的排法,抽象成数学问题就是从3个不同元素中选取2个元素的排列,排列数记为A32=3×2=6.一般地,从n个不同元素中选取m个元素的排列数记作A n m,A n m=n(n-1)(n-2)…(n-m+1)(m≤n).例:从5个不同元素中选3个元素排成一列的排列数为:A53=5×4×3=60.材料2 从3张不同的卡片中选取2张,有3种不同的选法,抽象成数学问题就是从3个元素中选取2个元素的组合,组合数记为C32==3.一般地,从n个不同元素中选取m个元素的组合数记作C n m,C n m=(m≤n).例:从6个不同元素中选3个元素的组合数为:C63==20.问:(1)从7个人中选取4人排成一排,有多少种不同的排法?(2)从某个学习小组8人中选取3人参加活动,有多少种不同的选法?9、定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况.四、综合题10、阅读材料:在一个三角形中,各边和它所对角的正弦的比相等,==,利用上述结论可以求解如下题目:在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.解:在△ABC中,∵=∴b====3.理解应用:如图,甲船以每小时30海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里.(1)判断△A1A2B2的形状,并给出证明(2)求乙船每小时航行多少海里?11、阅读下列材料:2015年清明小长假,北京市属公园开展以“清明踏青,春色满园”为主题的游园活动,虽然气温小幅走低,但游客踏青赏花的热情很高,市属公园游客接待量约为190万人次.其中,玉渊潭公园的樱花、北京植物园的桃花受到了游客的热捧,两公园的游客接待量分别为38万人次、21.75万人次;颐和园、天坛公园、北海公园因皇家园林的厚重文化底蕴与满园春色成为游客的重要目的地,游客接待量分别为26万人次、20万人次、17.6万人次;北京动物园游客接待量为18万人次,熊猫馆的游客密集度较高.2014年清明小长假,天气晴好,北京市属公园游客接待量约为200万人次,其中,玉渊潭公园游客接待量比2013 年清明小长假增长了25%;颐和园游客接待量为26.2万人次,2013 年清明小长假增加了4.6万人次;北京动物园游客接待量为22万人次.2013年清明小长假,玉渊潭公园、陶然亭公园、北京动物园游客接待量分别为32万人次、13万人次、14.9 万人次.根据以上材料解答下列问题:(1)2014年清明小长假,玉渊潭公园游客接待量为________ 万人次(2)选择统计表或统计图,将2013﹣2015年清明小长假玉渊潭公园、颐和园和北京动物园的游客接待量表示出来.12、阅读下列材料,并用相关的思想方法解决问题.计算:(1﹣﹣﹣)×(+++)﹣(1﹣﹣﹣﹣)×(++).令++=t,则原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=问题:(1)计算(1﹣﹣﹣﹣…﹣)×(++++…++)﹣(1﹣﹣﹣﹣﹣…﹣﹣)×(+++…+);(2)解方程(x2+5x+1)(x2+5x+7)=7.13、)阅读下列材料,并解决相关的问题.按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为a1,依此类推,排在第n位的数称为第n项,记为an.一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).如:数列1,3,9,27,…为等比数列,其中a1=1,公比为q=3.(1)等比数列3,6,12,…的公比q为________ ,第4项是________(2)如果一个数列a1, a2, a3, a4,…是等比数列,且公比为q,那么根据定义可得到:=q,=q,=q,…=q.所以:a2=a1•q,a3=a2•q=(a1•q)•q=a1•q2, a4=a3•q=(a1•q2)•q=a1•q3,…由此可得:an =________(用a1和q的代数式表示).(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项.14、阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组;(2)已知x,y满足方程组(i)求x2+4y2的值;(ii)求+的值.15、)阅读理解材料一:一组对边平行,另一组对边不平行的四边形叫梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.梯形的中位线具有以下性质:梯形的中位线平行于两底,并且等于两底和的一半.如图(1):在梯形ABCD中:AD∥BC∵E、F是AB、CD的中点∴EF∥AD∥BCEF=(AD+BC)材料二:经过三角形一边的中点与另一边平行的直线必平分第三边如图(2):在△ABC中:∵E是AB的中点,EF∥BC∴F是AC的中点如图(3)在梯形ABCD中,AD∥BC,AC⊥BD于O,E、F分别为AB、CD的中点,∠DBC=30°请你运用所学知识,结合上述材料,解答下列问题.(1)求证:EF=AC;(2)若OD=,OC=5,求MN的长.16、我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)17、已知点P(x0, y)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d= 计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d= = = = .根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y= x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.18、定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.19、我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.20、阅读下列材料:北京市正围绕着“政治中心、文化中心、国际交往中心、科技创新中心”的定位,深入实施“人文北京、科技北京、绿色北京”的发展战略.“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业.2011年,北京市文化创意产业实现增加值1938.6亿元,占地区生产总值的12.2%.2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值2189.2亿元,占地区生产总值的12.3%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业.2013年,北京市文化产业实现增加值2406.7亿元,比上年增长9.1%,文化创意产业作为北京市支柱产业已经排到了第二位.2014年,北京市文化创意产业实现增加值2749.3亿元,占地区生产总值的13.1%,创历史新高,2015年,北京市文化创意产业发展总体平稳,实现产业增加值3072.3亿元,占地区生产总值的13.4%.根据以上材料解答下列问题:(1)用折线图将2011﹣2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估2016年北京市文化创意产业实现增加值约________亿元,你的预估理由________.21、)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)= = =2+根据以上阅读材料,请选择适当的公式解答下面问题(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC为米,请你帮助李三求出纪念碑的高度.22、阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).答案解析部分一、单选题1、【答案】B【考点】分段函数【解析】【解答】解:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,故选B【分析】分x≥﹣1和x<﹣1两种情况进行讨论计算,此题是分段函数题,主要考查了新定义,解本题的关键是分段.2、【答案】B【考点】分式方程的解,定义新运算【解析】【解答】解:根据题意,得= ﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选B.【分析】所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.3、【答案】C【考点】整式的混合运算,因式分解的应用,二次函数的最值【解析】【解答】解:①根据题意得:a@b=(a+b)2﹣(a﹣b)2∴(a+b)2﹣(a﹣b)2=0,整理得:(a+b+a﹣b)(a+b﹣a+b)=0,即4ab=0,解得:a=0或b=0,正确;②∵a@(b+c)=(a+b+c)2﹣(a﹣b﹣c)2=4ab+4aca@b+a@c=(a+b)2﹣(a﹣b)2+(a+c)2﹣(a﹣c)2=4ab+4ac,∴a@(b+c)=a@b+a@c正确;③a@b=a2+5b2, a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∵a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∴a2+b2+2ab≥4ab,∴4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∴a@b最大时,a=b,故④正确,故选C.【分析】根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.本题考查因式分解的应用、整式的混合运算、二次函数的最值,解题的关键是明确题意,找出所求问题需要的条件.4、【答案】 B【考点】一元一次不等式组的应用【解析】【解答】解:∵x=y,∴x=2x+m,即x=﹣m.∵﹣1≤x≤3,∴﹣1≤﹣m≤3,∴﹣3≤m≤1.故选B.【分析】根据x=y,﹣1≤x≤3可得出关于m的不等式,求出m的取值范围即可.本题考查的是一次函数图象上点的坐标特点,根据题意得出关于m的不等式是解答此题的关键.二、填空题5、【答案】【考点】探索数与式的规律【解析】【解答】解:令s=1+3+32+33+ (32015)等式两边同时乘以3得:3s=3+32+33+ (32016)两式相减得:2s=32016﹣1.所以S= .【分析】令s=1+3+32+33+…+32015,然后再等式的两边同时乘以2,接下来,依据材料中的方程进行计算即可.本题主要考查的是数字的变化规律,依据材料找出解决问题的方法和步骤是解题的关键.三、解答题6、【答案】解:(2)若<0,则或;故答案为:或;由上述规律可知,不等式转化为或,所以,x>2或x<﹣1.【考点】一元一次不等式组的应用【解析】【分析】根据两数相除,异号得负解答;先根据同号得正把不等式转化成不等式组,然后根据一元一次不等式组的解法求解即可.7、【答案】【解答】解:第1个数,当n=1时,[()n﹣()n]=(﹣)=×=1.第2个数,当n=2时,[()n﹣()n]=[()2﹣()2]=×(+)(﹣)=×1×=1.【考点】二次根式的应用【解析】【分析】分别把1、2代入式子化简求得答案即可.8、【答案】解:(1)A74=7×6×5×4=840(种).(2)C83==56(种)【考点】探索数与式的规律【解析】【分析】探索数与式的规律。

货物贸易外汇管理制度改革试点问题解答.doc

货物贸易外汇管理制度改革试点问题解答11银行货物贸易外汇管理制度改革试点问题解答名录管理问题1:关于企业名录变动情况银行如何把握。

1)企业在银行开立信用证时,名录状态为“A”,在收到单据准备付汇时,发现企业名录状态变更为“B”,银行针对此笔付汇时是否需要进行电子数据核查?2)企业在银行办理出口信用证业务,银行给企业进行出口融资,此时名录状态为“A”,在企业收回款项时,发现企业名录状态变更为了“B”,银行针对此笔还款是否需要进行电子核查?答:根据汇发[2011]39号文所附《货物贸易外汇管理试点指引操作规程》,对于B类企业,银行在信用证开证和出口融资放款时进行电子数据核查。

对于上述跨分类监管期的情形,企业成为“B”类时,已经办理了信用证开证或出口融资放款(当时无需进行电子数据核查),已经越过了“B”类企业电子数据核查的实施环节。

因此,在企业信用证付汇和出口融资回款时,不需要电子核查。

问题2:试点地区企业在非试点地区银行办理贸易外汇收支业务时,非试点地区银行是否可以通过该银行在试点地区网点查询企业分类状态,而不需企业主动说明?答:可以通过该银行在试点地区网点查询企业分类状态。

* 贸易外汇收支问题3:银行为企业办理待核查账户资金结汇或划转时,应当如何进行单证审核?答:试点地区银行为名录企业办理待核查账户资金结汇或划转,应当根据企业的分类状态,分别进行单证审核。

对A类企业的转口贸易、退汇以外的业务,若企业通过银行柜台办理国际收支申报和贸易外汇收支核查专用信息申报(以下简称收支申报)的,银行应当在审核企业填写的申报单证后,为企业办理待核查账户资金结汇或划出手续。

若企业通过国际收支网上申报系统办理收支申报的,银行可先行根据企业的结汇或划转指令办理待核查账户资金结汇或划转,并在企业完成网上申报后,核对企业申报的待核查账户入账资金性质是否符合《货物贸易外汇管理试点指引实施细则》第十条规定的贸易外汇收入;对于两者不一致的,银行应当及时报告外汇局,外汇局将按规定对相关企业予以处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年四川省大学生综合素质A级证书
申报及评审工作问题汇总
问:申报及评审工作的时间安排大概是怎么样的?
答:5月4日——5月8日学校初审阶段;5月9日——5月15日团省委、省学联终审阶段;5月16日——5月22日公示阶段。

问:申请时需要交哪些材料到学校?申请流程是怎样的?
答:在申报阶段时,学生需要在微信上提交申请,学生确认自己已通过院系初评后,填写申请表,院系收集已通过学生的申请表,汇总后填写汇总表,学校通过网络初评,在校内对通过学校初试的学生进行公示,寄送学生申请表和汇总表。

(往年在评审中,学生向学校上交证书原件或复印件,个别学生遗失证书,同时复印和搜集大量的证书也极不方便,所以今年开始,学生可直接在微信平台自助申报,由学校在网络后台进行评审)
问:在微信平台申请时应注意哪些问题?
答:请申报同学在填写资料是务必认真仔细填写,系统关闭后,填写错误的同学将无法进行正常参评;在上传证书图片是,务必请同学们上传正面、清晰的证书图片,如果上传证书不够清晰或角度不正,将不予评审。

问:对于申报条件,有什么需要特别注意的吗?
答:所有证书的颁奖单位需为学校、上级团学主管单位、教育主管部门,企业及不被官方认定的协会组织颁发证书无效;团队获奖证书需由颁奖单位或学校团委出具成员证明;在第三项认证要求中,发表文章必须为学术论文,且附上用稿通知,否则不予认证。

班长团支书身份需由学生科出具职务证明,团学组织负责人由高校团委出具职务证明。

注:请各高校在组织申报的过程中,严格审核,对证书作假和审核要求不严格情况严重的高校进行全系统通报批评。

相关文档
最新文档