典型的FPGA设计开发流程
HDLC的FPGA实现方法(Altera)

HDLC的FPGA实现方法摘要:HDLC(高级数据链路控制)的一般实现方法为采用ASIC器件和软件编程等。
应用ASIC器件时设计简单,但灵活性较差;软件编程方法灵活,但占用处理器资源多,执行速度慢,实时性不易预测。
FPGA器件采用硬件处理技术,可以反复编程,能够兼顾速度和灵活性,并能多路并行处理,实时性能能够预测和仿真。
在中小批量通信产品的设计中,FPGA是取代ASIC实现HDLC功能的一种合适选择。
采用Altera公司的FPGA芯片,在MAX+plus II软件平台上实现了多路HDLC电路的设计,并已在某通信产品样机中应用成功。
关键词:数据通信; HDLC;CRC校验;FPGA;MAX+plus II1 引言HDLC(High-level Data Link Control Procedures, 高级数据链路控制规程)广泛应用于数据通信领域,是确保数据信息可靠互通的重要技术。
实施HDLC的一般方法通常是采用ASIC(Application Specific I ntegrated Circuit,特定用途集成电路)器件和软件编程等。
HDLC的ASIC芯片有Motorola公司的MC92460、ST公司的MK5025、Zarlink公司的MT8952B等。
这些集成电路使用简易,功能针对性强,性能可靠,适合应用于特定用途的大批量产品中。
但由于HDLC 标准的文本较多,ASIC芯片出于专用性的目的难以通用于不同版本,缺乏应用灵活性。
例如CCITT、A NSI、ISO/IEC等都有各种版本的HDLC标准,有的芯片公司还有自己的标准,对HDLC的CRC(Cycl ical Redundancy Check,循环冗余码校验)序列生成多项式等有不同的规定。
况且,专用于HDLC的A SIC芯片其片内数据存储器容量有限,通常只有不多字节的FIFO(先进先出存储器)可用。
对于某些应用来说,当需要扩大数据缓存的容量时,只能对ASIC芯片再外接存储器或其它电路,ASIC的简单易用性就被抵销掉了。
ASIC相关资料

主流ASIC EDA研发商
• 开发商有Mentor Graphics、Cadence, Synopsys等。 • 其开发工具众多,按照功能主要分为设 计输入、综合、版图设计、静态时序分 析、动态时序分析、功耗估计、可测性 分析等。
数字集成系统设计与综合(2)
设计层次 系统级 算法级 寄存器级 门级 版图级 行为域 自然语言描述 自然语言综合(设计) 算法描述 算法综合(设计) 数据流图描述 逻辑综合(设计) 逻辑图描述 版图综合(设计) 几何图形描述 结构域
数字集成系统设计与综合(2)
设计层次 系统级 算法级 寄存器级 门级 版图级 行为域 自然语言描述 自然语言综合(设计) 算法描述 算法综合(设计) 数据流图描述 逻辑综合(设计) 逻辑图描述 版图综合(设计) 几何图形描述 结构域
典型IC设计流程
系统设计 算法设计 RTL设计 系统验证 算法验证 RTL验证 逻辑综合 向foundry提交网表 后仿真 Foundry进行版图设计 Foundry返回最终网表 foundry流片
典型IC设计流程
系统设计 算法设计 RTL设计 系统验证 算法验证 RTL验证 逻辑综合 向foundry提交网表 后仿真 Foundry进行版图设计 Foundry返回最终网表 foundry流片 后端流程
一个硅谷丛林的故事
阿凡提 筋斗云 二○○一年一二月二六 于美国硅谷
背景(1)
• 在二十世纪七十年代的末期,集成电路 的设计开始走向商业化。CAD软件出现。 • 七十年代末与八十年代初,EDA的领头 羊是Calma,Computer Vision与Applicon。 但是很快,从八十年代中开始,另外三 家公司Mentor Graphics,Daisy,Valid 占有了市场的最大份额。
软硬件开发流程及规范

机密机密0目录0目录 (2)1概述 (4)1。
1硬件开发过程简介 (4)1。
1。
1硬件开发的基本过程 (4)1.1。
2硬件开发的规范化 (4)1.2硬件工程师职责与基本技能 (5)1.2.1硬件工程师职责 (5)1.2。
2硬件工程师基本素质与技术 (5)2软硬件开发规范化管理 (6)2。
1硬件开发流程 (6)2.1。
1硬件开发流程文件介绍 (6)2.1。
2硬件开发流程详解 (6)2.2硬件开发文档规范 (10)2.2.1硬件开发文档规范文件介绍 (10)2。
2.2硬件开发文档编制规范详解 (11)2.3与硬件开发相关的流程文件介绍 (13)2.3.1项目立项流程: (13)2.3.2项目实施管理流程: (14)2.3.3软件开发流程: (14)2.3。
4系统测试工作流程: (14)2.3。
5内部验收流程 (14)机密3附录一。
硬件设计流程图: (16)4附录二。
软件设计流程图: (18)5附录三。
编程规范 (19)机密1概述1.1 硬件开发过程简介1.1.1硬件开发的基本过程硬件开发的基本过程:1。
明确硬件总体需求情况,如CPU 处理能力、存储容量及速度,I/O 端口的分配、接口要求、电平要求、特殊电路(厚膜等)要求等等。
2.根据需求分析制定硬件总体方案,寻求关键器件及电路的技术资料、技术途径、技术支持,要比较充分地考虑技术可能性、可靠性以及成本控制,并对开发调试工具提出明确的要求。
关键器件索取样品。
3.总体方案确定后,作硬件和单板软件的详细设计,包括绘制硬件原理图、单板软件功能框图及编码、PCB 布线,同时完成发物料清单。
4.领回PCB 板及物料后由焊工焊好1~2 块单板,作单板调试,对原理设计中的各功能进行调测,必要时修改原理图并作记录。
5。
软硬件系统联调,一般的单板需硬件人员、单板软件人员的配合,特殊的单板(如主机板)需比较大型软件的开发,参与联调的软件人员更多。
一般地,经过单板调试后在原理及PCB布线方面有些调整,需第二次投板。
DA简介

一、概述:EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。
EDA技术是以计算机为工具,根据硬件描述语言HDL(Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。
典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。
综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件,进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。
综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。
也就是说,综合器是软件描述与硬件实现的一座桥梁。
综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD相映射的网表文件。
适配器的功能是将由综合器产生的王表文件配置与指定的目标器件中,产生最终的下载文件,如JED文件。
适配所选定的目标器件(FPGA/CPLD芯片)必须属于在综合器中已指定的目标器件系列。
硬件描述语言HDL是相对于一般的计算机软件语言,如:C、PASCAL而言的。
HDL 语言使用与设计硬件电子系统的计算机语言,它能描述电子系统的逻辑功能、电路结构和连接方式。
设计者可利用HDL程序来描述所希望的电路系统,规定器件结构特征和电路的行为方式;然后利用综合器和适配器将此程序编程能控制FPGA和CPLD内部结构,并实现相应逻辑功能的的门级或更底层的结构网表文件或下载文件。
目前,就FPGA/CPLD开发来说,比较常用和流行的HDL主要有ABEL-HDL、AHDL和VHDL。
二、基于EDA工具的FPGA/CPLD开发流程:开发步骤:1、文本/原理图编辑与修改。
Altium Designer第12章 FPGA硬件电路的设计

12.4 思考与练习
➢ 思考与练习
1.概念题 (1)简述硬件电路的设计流程。 (2)FPGA最小系统主要由那些电路构成? 2.操作题 (1)动手绘制一张FPGA硬件最小系统的原理图。 (2)动手绘制一张FPGA硬件最小系统的PCB图。
4.用户I/O 5. 特殊管脚 VCCPD VCCSEL PORSEL NIOPULLUP TEMPDIODEn/p
12.1.2 电源电路的设计
电源是整个系统能够正常工作的基本保证,如果电源电路设计的不好,系统有可能不能 正常工作,所以如何选用合适的电源芯片,以及如何合理地对电源进行布局布线,都是 值得下大功夫研究的。
12.1.8 LED电路的设计
为了便于验证FPGA最小系统时钟电路和主芯片是否可以正常工作,一般系 统都需接入8位LED等,如图所示为LED电路设计原理图。
12.1.9 高速SDRAM存储器接口电路的设计
SDRAM典型电路如图所示。
12.1.10 Flash存储器接口电路的设计
Flash同样也可以通过设置实现8位 和16位的数据位宽,典型的16位 模式下的Flash连接如图所示。
12.1.11 FPGA最小系统扩展接口电路的设计
为了完成FPGA对外围电路的控 制,一般来说,FPGA最小系统 都需要使用扩展接口电路来外 接其他外围设备,同时也需要 将电压5V、3.3V、GND引出, 其典型电路如图所示。
12.2 FPGA硬件系统的设计技巧
1. FPGA管脚兼容性设计 FPGA在芯片选项的时候要尽量选择兼容性好的封装。那么,在硬件电路设计时,就要考
12.1.5 时钟电路的设计
如图所示是时钟电路原理图。
12.1.6 复位电路的设计
CPLD及FPGA介绍

深圳双恩科技有限公司产品使用说明书一、FPGA/PLD的基本概念:PLD是可编程逻辑器件(Programable Logic Device)的简称,FPGA是现场可编程门阵列(Field Programable Gate Array)的简称,两者的功能基本相同,只是实现原理略有不同,所以我们有时可以忽略这两者的区别,统称为可编程逻辑器件或PLD/FPGA。
PLD是电子设计领域中最具活力和发展前途的一项技术,它的影响丝毫不亚于70年代单片机的发明和使用。
单片机在时序和延迟方面优于FPGA/PLD,但在速度、芯片容量和数字逻辑方面不及FPGA/PLD。
PLD能做什么呢?可以毫不夸张的讲,PLD能完成任何数字器件的功能,上至高性能CPU,下至简单的74电路,都可以用PLD来实现。
PLD如同一张白纸或是一堆积木,工程师可以通过传统的原理图输入法,或是硬件描述语言自由的设计一个数字系统。
通过软件仿真,我们可以事先验证设计的正确性。
在PCB完成以后,还可以利用PLD的在线修改能力,随时修改设计而不必改动硬件电路。
使用PLD来开发数字电路,可以大大缩短设计时间,减少PCB面积,提高系统的可靠性。
PLD的这些优点使得PLD技术在90年代以后得到飞速的发展,同时也大大推动了EDA软件和硬件描述语言(HDL)的进步。
1如何使用PLD呢?其实PLD的使用很简单,学习PLD比学习单片机要简单的多,有数字电路基础,会使用计算机,就可以进行PLD的开发。
开发PLD需要了解两个部分:1.PLD开发软件 2.PLD本身1.PLD开发软件由于PLD软件已经发展的相当完善,用户甚至可以不用详细了解PLD的内部结构,也可以用自己熟悉的方法:如原理图输入或HDL语言来完成相当优秀的PLD设计。
所以对初学者,首先应了解PLD开发软件和开发流程。
了解PLD的内部结构,将有助于提高我们设计的效率和可靠性。
如何获得PLD开发软件软件呢? 许多PLD公司都提供免费试用版或演示版(当然商业版大都是收费的),例如:可以免费从/上下载Altera公司的 Maxplus2 (Baseline版或E+MAX版),或向其代理商索取这套软件。
EDA原理及应用

马冬梅
2019.1.17
内容: 一、EDA设计导论 二、可编程逻辑器件设计方法 三、Verilog HDL语言基础
一、EDA设计导论
EDA技术综述;
EDA技术发展历史 EDA技术涵义 EDA技术主要内容
PLD设计方法学;
PLD设计概论 PLD设计术,是通过计算机及其电子系统的辅助 分析和设计软件,完成电子系统某一部分的设计过 程。因此,广义EDA技术除了包含狭义的EDA技术 外,还包括计算机辅助分析CAA技术(如PSPICE, EWB,MATLAB等),印刷电路板计算机辅助设计 PCB-CAD技术(如PROTEL,ORCAD等)和其它高 频和射频设计和分析的工具等。
PLD设计方法学
传统上的设计方法是自下而上 的设计方法,是以固定功能元 件为基础,基于电路板的设计 方法。这种设计方法有下面的 缺点: • 设计依赖于设计人员的经验。 • 设计依赖于通用元器件。 • 设计后期的仿真不易实现,并 且调试复杂。 • 设计实现周期长,灵活性差, 耗时耗力,效率低下。
系统调试、测试与性能分析 完整系统构成 电路板设计 固定功能元件 系统功能需求
4、综合优化
所谓综合就是将较高级抽象层次的描述转化成较 低层次的描述。综合优化根据目标与要求优化所生 成的逻辑连接,使层次设计平面化,供FPGA布局 布线软件进行实现。
综合优化是指将设计输入编译成由与门、或门、 非门、RAM、触发器等基本逻辑单元组成的逻辑 连接网表,而并非真实的门级电路。真实具体的门 级电路需要利用FPGA制造商的布局布线功能,根 据综合后生成的标准门级结构网表来产生。由于门 级结构、RTL级的HDL程序的综合是很成熟的技术, 所有的综合器都可以支持到这一级别的综合。
8051单片机的FPGA设计与实现

第一章前言20世纪末在计算机技术逐渐发展的情况写,电子技术得到了飞速的发展,现代电子产品已经渗透到了社会的各个领域,有力的推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品的性能进一步提高,产品更新换代的节奏也越来越快。
电子技术发展的根基是微电子技术的进步,它表现在大规模集成电路加工技术,即半导体工艺技术的发展上,表征半导体工艺水平的线宽已经达到60nm以下,并还在不断缩小;在硅片单位面积上集成了更多的晶体管,集成电路设计在不断地向超大规模,极低功耗和超高速的方向发展;专用集成电路ASIC (Application Specific Integrated Circuit)的设计成本不断降低,在功能上,现代的集成电路已能够实现单片电子系统SOC(System on a chip)的功能。
另外集成电路(IC)技术在微电子领域中占有重要的地位。
且伴随着IC技术的发展,电子设计自动(Electronic Design Automation,EDA)已经逐渐成为重要的设计手段,其广泛应用于模拟与数字电路系统等许多领域。
单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统,在工业控制领域的广泛应用。
从上世纪80年代,由当时的4位、8位单片机,发展到现在的32位300M的高速单片机。
单片机具有体积小、功耗低、控制功能强、扩展灵活、微型化和使用方便等优点,广泛应用于仪器仪表中,结合不同类型的传感器,可实现诸如电压、电流、功率、频率、湿度、温度、流量、速度、厚度、角度、长度、硬度、元素、压力等物理量的测量。
采用单片机控制使得仪器仪表数字化、智能化、微型化,且功能比起采用电子或数字电路更加强大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典型的FPGA 设计开发流程
(2011-10-02 16:08:17)
标签: 杂谈
分类: 专业总结
FPGA 的设计流程就是利用EDA 开发软件和编程工具对FPGA 芯片进行开发的过程。
FPGA 的开发流程一般如图1所示,包括电路设计、设计输入、功能仿真、综合优化、综合后仿真、实现、布线后仿真、板级仿真以及芯片编程与调试等主要步骤。
图1 FPGA 开发的一般流程
1. 电路功能设计
在系统设计之前,首先要进行的是方案论证、系统设计和FPGA
芯片选择等准备工作。
系统工程师根
据任务要求,如系统的指标和复杂度,对工作速度和芯片本身的各种资源、成本等方面进行权衡,选择合理的设计方案和合适的器件类型。
一般都采用自顶向下的设计方法,把系统分成若干个基本单元,然后再把每个基本单元划分为下一层次的基本单元,一直这样做下去,直到可以直接使用EDA元件库为止。
2.设计输入
设计输入是将所设计的系统或电路以开发软件要求的某种形式表示出来,并输入给EDA工具的过程。
常用的方法有硬件描述语言(HDL)和原理图输入方法等。
原理图输入方式是一种最直接的描述方式,在可编程芯片发展的早期应用比较广泛,它将所需的器件从元件库中调出来,画出原理图。
这种方法虽然直观并易于仿真,但效率很低,且不易维护,不利于模块构造和重用。
更主要的缺点是可移植性差,当芯片升级后,所有的原理图都需要作一定的改动。
目前,在实际开发中应用最广的就是HDL语言输入法,利用文本描述设计,可以分为普通HDL和行为HDL。
普通HDL有ABEL、CUR 等,支持逻辑方程、真值表和状态机等表达方式,主要用于简单的小型设计。
而在中大型工程中,主要使用行为HDL,其主流语言是Verilog HDL和VHDL。
这两种语言都是美国电气与电子工程师协会(IEEE)的标准,其共同的突出特点有:语言与芯片工艺无关,利于自顶向下设计,便于模块的划分与移植,可移植性好,具有很强的逻辑描述和仿真功能,而且输入效率很高。
3.功能仿真
功能仿真,也称为前仿真,是在编译之前对用户所设计的电路进行逻辑功能验证,此时的仿真没有延迟信息,仅对初步的功能进行检测。
仿真前,要先利用波形编辑器和HDL等建立波形文件和测试向量(即将所关心的输入信号组合成序列),仿真结果将会生成报告文件和输出信号波形,从中便可以观察各个节点信号的变化。
如果发现错误,则返回设计修改逻辑设计。
常用的工具有Model Tech公司的ModelSim、Sysnopsys公司的VCS和Cadence公司的NC-Verilog以及NC-VHDL等软件。
虽然功能仿真不是FPGA开发过程中的必需步骤,但却是系统设计中最关键的一步。
4.综合
所谓综合就是将较高级抽象层次的描述转化成较低层次的描述。
综合优化根据目标与要求优化所生成的逻辑连接,使层次设计平面化,供FPGA布局布线软件进行实现。
就目前的层次来看,综合优化(Synthesis)是指将设计输入编译成由与门、或门、非门、RAM、触发器等基本逻辑单元组成的逻辑连接网表,而并非真实的门级电路。
真实具体的门级电路需要利用FPGA制造商的布局布线功能,根据综合后生成的标准门级结构网表来产生。
为了能转换成标准的门级结构网表,HDL程序的编写必须符合特定综合器所要求的风格。
由于门级结构、RTL级的HDL程序的综合是很成熟的技术,所有的综合器都可以支持到这一级别的综合。
常用的综合工具有Synplicity公司的Synplify/Synplify Pro软件以及各个FPGA厂家自己推出的综合开发工具。
5.综合后仿真
综合后仿真检查综合结果是否和原设计一致。
在仿真时,把综合生成的标准延时文件反标注到综合仿真模型中去,可估计门延时带来的影响。
但这一步骤不能估计线延时,因此和布线后的实际情况还有一定的差距,并不十分准确。
目前的综合工具较为成熟,对于一般的设计可以省略这一步,但如果在布局布线后发现电路结构和设计意图不符,则需要回溯到综合后仿真来确认问题之所在。
在功能仿真中介绍的软件工具一般都支持综合后仿真。
6.实现与布局布线
实现是将综合生成的逻辑网表配置到具体的FPGA芯片上,布局布线是其中最重要的过程。
布局将逻辑网表中的硬件原语和底层单元合理地配置到芯片内部的固有硬件结构上,并且往往需要在速度最优和面积最优之间作出选择。
布线根据布局的拓扑结构,利用芯片内部的各种连线资源,合理正确地连接各个元件。
目前,FPGA的结构非常复杂,特别是在有时序约束条件时,需要利用时序驱动的引擎
进行布局布线。
布线结束后,软件工具会自动生成报告,提供有关设计中各部分资源的使用情况。
由于只有FPGA芯片生产商对芯片结构最为了解,所以布局布线必须选择芯片开发商提供的工具。
7.时序仿真与验证
时序仿真,也称为后仿真,是指将布局布线的延时信息反标注到设计网表中来检测有无时序违规(即不满足时序约束条件或器件固有的时序规则,如建立时间、保持时间等)现象。
时序仿真包含的延迟信息最全,也最精确,能较好地反映芯片的实际工作情况。
由于不同芯片的内部延时不一样,不同的布局布线方案也给延时带来不同的影响。
因此在布局布线后,通过对系统和各个模块进行时序仿真,分析其时序关系,估计系统性能,以及检查和消除竞争冒险是非常有必要的。
在功能仿真中介绍的软件工具一般都支持综合后仿真。
8.板级仿真与验证
板级仿真主要应用于高速电路设计中,对高速系统的信号完整性、电磁干扰等特征进行分析,一般都以第三方工具进行仿真和验证。
9.芯片编程与调试
设计的最后一步就是芯片编程与调试。
芯片编程是指产生使用的数据文件(位数据流文件,Bitstream Generation),然后将编程数据下载到FPGA芯片中。
其中,芯片编程需要满足一定的条件,如编程电压、编程时序和编程算法等方面。
逻辑分析仪(Logic Analyzer,LA)是FPGA设计的主要调试工具,但需要引出大量的测试管脚,且LA价格昂贵。
目前,主流的FPGA芯片生产商都提供了内嵌的在线逻辑分析仪(如Xilinx ISE中的ChipScope、Altera QuartusII中的SignalTapII以及SignalProb)来解决上述矛盾,它们只需要占用芯片少量的逻辑资源,具有很高的实用价值。