华为FPGA设计流程指南定稿版
fpga设计步骤

fpga设计步骤FPGA(现场可编程门阵列)是一种可编程逻辑设备,可以通过配置文件来实现不同的功能。
FPGA设计是一个复杂的过程,涉及多个步骤。
以下是一个关于FPGA设计的详细步骤,以帮助您更好地了解FPGA设计过程。
1.确定需求:在开始FPGA设计之前,首先需要明确您的设计需求。
这包括确定所需的功能、性能要求、接口要求等。
这个步骤是非常关键的,因为它将直接影响到后续的设计和实现过程。
2.设计规划:在确定需求之后,接下来需要进行设计规划。
设计规划包括确定所需的资源(如逻辑单元、存储器、DSP等)、时钟频率、接口协议等。
这个步骤的目的是为了确保设计可以在FPGA上正确实现。
3. 设计编码:在设计规划完成之后,接下来需要进行设计编码。
设计编码是将设计规划转化为可实现的硬件描述语言(HDL)代码的过程。
常用的HDL语言包括VHDL和Verilog。
在设计编码过程中,需要根据需求使用适当的逻辑门、时序元件等。
4.仿真验证:在设计编码完成之后,需要进行仿真验证。
仿真验证是通过使用仿真工具对设计进行验证,以确保其功能和性能满足需求。
在仿真过程中,可以使用不同的输入情况和测试用例来验证设计的正确性和稳定性。
5.综合:在仿真验证通过之后,需要进行综合。
综合是将HDL代码转化为逻辑门级的网表表示。
综合工具将根据目标FPGA的资源和约束来进行综合。
综合后会生成一个网表文件,其中包含了所有的逻辑门和时序元件的连接关系。
6.物理布局:在综合完成之后,需要进行物理布局。
物理布局是将逻辑网表映射到FPGA的物理资源上的过程。
物理布局过程中需要考虑资源的分配、时钟布线、信号路由等因素。
物理布局的目标是最大程度地优化资源利用和信号延迟。
7.静态时序分析:在物理布局完成之后,需要进行静态时序分析。
静态时序分析是通过使用时序分析工具对设计进行分析,以确保时序约束得到满足。
时序约束包括时钟频率、数据路径延迟、时钟间隔等。
静态时序分析的目的是保证设计在时序约束下能够正常工作。
FPGA开发设计流程和功能实现

FPGA开发设计流程和功能实现FPGA(现场可编程门阵列)是一种可编程数字电子器件,可以实现各种数字电路的功能。
FPGA的开发设计流程包括五个主要步骤:描述设计需求、设计电路结构、编写硬件描述语言(HDL)、仿真和综合、配置FPGA并验证。
下面将详细介绍每个步骤,并探讨如何通过FPGA开发实现各种功能。
第一步:描述设计需求在FPGA开发过程中,首先需要明确设计的目标和需求,包括设计的功能、输入输出要求、性能指标等。
这些需求可以来自于系统设计的要求、市场需求或者用户需求。
清晰的设计需求有助于指导后续的设计工作。
第二步:设计电路结构在明确了设计需求后,需要进行电路结构的设计。
电路结构包括选择适当的电路模块和连接方式,确定信号的传输路径等。
设计电路结构时需要充分考虑资源利用和性能需求,尽量优化电路结构,减少资源占用和延迟。
第三步:编写硬件描述语言(HDL)HDL是一种用于描述数字电路的编程语言,常用的HDL包括VHDL和Verilog。
使用HDL编写电路描述是FPGA开发的核心步骤。
在编写HDL代码时,需要按照电路结构进行模块化设计,使用适当的语法和语义描述电路的行为和结构。
第四步:仿真和综合在完成HDL代码编写后,需要进行仿真和综合。
仿真是通过对HDL代码进行功能验证,模拟电路的行为和工作过程,以确保设计的正确性。
综合是将HDL代码生成可在FPGA上运行的物理电路,包括实际的门和时序元件。
综合还可以对电路进行优化,如减少延迟、优化资源利用等。
第五步:配置FPGA并验证在综合后,需要将生成的物理电路配置到FPGA芯片中。
配置FPGA可以通过编程工具和JTAG接口实现。
配置完成后,需要进行验证,包括功能验证、性能测试和可靠性测试等。
验证是确保设计符合需求和预期结果的重要步骤。
通过FPGA开发可以实现各种功能。
FPGA的可编程性使得它可以根据设计需求实现不同的功能和应用。
常见的功能包括数字信号处理、通信协议处理、图像处理、计算加速等。
华为_FPGA设计流程指南

华为_FPGA设计流程指南FPGA设计流程指南前言本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。
编写本流程的目的是:●在于规范整个设计流程,实现开发的合理性、一致性、高效性。
●形成风格良好和完整的文档。
●实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。
●便于新员工快速掌握本部门FPGA的设计流程。
由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为modelsim + LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。
目录1. 基于HDL的FPGA设计流程概述 (1)1.1 设计流程图 (1)1.2 关键步骤的实现 (2)1.2.1 功能仿真 (2)1.2.2 逻辑综合 (2)1.2.3 前仿真 (3)1.2.4 布局布线 (3)1.2.5 后仿真(时序仿真) (4)2. Verilog HDL设计 (4)2.1 编程风格(Coding Style)要求 (4)2.1.1 文件 (4)2.1.2 大小写 (5)2.1.3 标识符 (5)2.1.4 参数化设计 (5)2.1.5 空行和空格 (5)2.1.6 对齐和缩进 (5)2.1.7 注释 (5)2.1.8 参考C语言的资料 (5)2.1.9 可视化设计方法 (6)2.2 可综合设计 (6)2.3 设计目录 (6)3. 逻辑仿真 (6)3.1 测试程序(test bench) (7)3.2 使用预编译库 (7)4. 逻辑综合 (8)4.1 逻辑综合的一些原则 (8)4.1.1 关于LeonardoSpectrum (8)4.1.1 大规模设计的综合 (8)4.1.3 必须重视工具产生的警告信息.. 84.2 调用模块的黑盒子(Black box)方法 8 参考 (10)修订纪录 (10)1. 基于HDL的FPGA设计流程概述1.1 设计流程图(1)设计(2)HDL(3)功能(4)逻辑(5)前仿逻辑仿真逻辑综合逻辑仿真说明:● 逻辑仿真器主要指modelsim ,Verilog-XL 等。
FPGA设计流程与规范

FPGA设计流程与规范FPGA(现场可编程门阵列)设计流程与规范是指在FPGA设计中所需遵循的一系列步骤和规定,以确保设计的正确性、可靠性和高效性。
在进行FPGA设计时,按照一定的流程和规范进行,可以确保设计的正确性,并最大限度地提高设计的效率。
下面将详细介绍FPGA设计流程与规范。
1.设计需求分析:在进行任何FPGA设计工作之前,首先需要明确设计的需求和目标。
包括了解所需实现的功能、性能要求、资源限制等。
这个阶段需要与项目的相关方(如产品经理、硬件工程师等)进行充分的沟通和讨论,以确保设计的准确性和可行性。
在分析需求的过程中,也要考虑到设计的灵活性和扩展性,以便在将来的版本迭代中进行更新和修改。
2.架构设计:在完成需求分析后,需要进行架构设计。
架构设计是将需求细化为硬件实现的关键步骤。
在这个阶段,需要选择适当的FPGA芯片,并确定设计的模块划分和通信接口。
同时,还需要考虑电源管理、时钟分配、数据流控制等方面的设计。
架构设计需要综合考虑性能需求、资源利用和硬件复杂度等因素,以找到最合适的设计方案。
3. 硬件设计:通过使用硬件描述语言(如Verilog或VHDL),根据架构设计进行硬件设计。
这个阶段需要将设计划分为多个模块,并对每个模块进行详细的设计。
每个模块的设计需要考虑数据流和控制流,确定寄存器传输级RTL描述、信号接口等。
在设计过程中,需要根据设计规范和最佳实践进行设计,以确保设计的正确性和可维护性。
4.仿真与验证:在完成硬件设计后,需要进行仿真和验证工作。
通过使用仿真工具,可以对设计进行功能仿真和时序仿真,以验证设计的正确性和性能。
此外,还可以使用专门的验证工具来对设计进行验证。
在这个阶段,需要与设计规范对比,检查设计是否满足要求,并及时修复和改进设计中的错误和缺陷。
5.综合与布局:在完成仿真和验证后,需要对设计进行综合和布局。
综合是将设计转换为门级电路的过程,布局是将综合后的门级电路放置在FPGA芯片上的过程。
华为fpga设计流程指南

华为f p g a设计流程指南文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)FPGA设计流程指南前言本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。
编写本流程的目的是:在于规范整个设计流程,实现开发的合理性、一致性、高效性。
形成风格良好和完整的文档。
实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。
便于新员工快速掌握本部门FPGA的设计流程。
由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为 modelsim +LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。
V目录1. 基于HDL的FPGA设计流程概述 (1)设计流程图 (1)关键步骤的实现 (2)功能仿真 (2)逻辑综合 (2)前仿真 (3)布局布线 (3)后仿真(时序仿真) (4)2. Verilog HDL设计 (4)编程风格(Coding Style)要求 (4)文件 (4)大小写 (5)标识符 (5)参数化设计 (5)空行和空格 (5)对齐和缩进 (5)注释 (5)参考C语言的资料 (5)可视化设计方法 (6)可综合设计 (6)设计目录 (6)3. 逻辑仿真 (6)测试程序(test bench) (7)使用预编译库 (7)4. 逻辑综合 (8)逻辑综合的一些原则 (8)关于LeonardoSpectrum (8)大规模设计的综合 (8)必须重视工具产生的警告信息 (8)调用模块的黑盒子(Black box)方法 (8)参考 (10)修订纪录 (10)1. 基于HDL的FPGA设计流程概述设计流程图说明:逻辑仿真器主要指modelsim,Verilog-XL等。
逻辑综合器主要指LeonardoSpectrum 、Synplify 、FPGAExpress/FPGA Compiler 等。
fpga 设计流程

fpga 设计流程
FPGA 设计流程一般包括以下几个步骤:
1. 确定系统需求:确定设计所需的功能和性能要求,并对系统进行需求分析和架构设计。
2. RTL 设计:使用硬件描述语言(如VHDL 或Verilog)编写Register Transfer Level(RTL)代码,描述设计的功能和行为。
3. 验证和仿真:使用仿真工具对RTL 代码进行功能验证和时序验证,确保设计符合预期。
4. 综合与优化:使用综合工具将RTL 代码转换为逻辑综合网表,并进行优化以减小电路规模、降低功耗或提高性能。
5. 时序约束:根据设计需求和目标硬件平台,设定时序约束以确保设计能够满足时序要求。
6. 物理设计:基于综合后的网表,使用布局工具进行物理布局和布线,生成布局后的电路结构。
7. 验证与仿真:对物理设计后的电路结构进行验证和时序仿真,确保布局布线
后的电路满足时序约束和设计要求。
8. 配置位流生成:根据物理设计结果和目标FPGA 设备,生成相应的配置位流文件,用于配置FPGA 设备。
9. 配置位流下载与调试:将配置位流文件下载到FPGA 设备中,并进行硬件调试和验证。
10. 系统集成与测试:将FPGA 设备与其他系统组件进行集成,进行系统级测试和验证。
以上是FPGA 设计常见的流程步骤,可能会根据具体项目需求和开发流程的差异而有所调整。
FPGA的设计流程

FPGA的设计流程FPGA(现场可编程门阵列)是一种能够实现硬件加速和可编程逻辑功能的半导体芯片。
FPGA设计流程是指设计者按照一定的步骤和方法,将所需的功能和逻辑转化为FPGA可执行的形式。
下面,我们将详细介绍FPGA的设计流程。
1.确定需求和规格:在开始进行FPGA设计之前,首先需要明确设计的目标和要求,确定所需的功能和性能规格。
这包括确定输入输出接口、时序要求、电源和信号电平要求等。
同时,也需要考虑设计的复杂度和可实现性。
2.设计构思和拓扑规划:在明确了需求和规格之后,设计者需要进行设计的构思和拓扑规划。
这个步骤主要是确定FPGA内部各个模块之间的连接关系以及数据流的传递方式。
可以利用设计工具进行逻辑设计和仿真,确定所需的模块和信号。
3.选择开发平台和工具:根据设计需求和规模,选择适合的FPGA开发平台和工具。
FPGA开发平台提供了硬件资源和设计环境,可以进行逻辑设计、综合、布局和布线,还可以进行时序约束和时序优化等操作。
4. 进行逻辑设计和仿真:在选择了开发平台和工具之后,设计者可以开始进行逻辑设计和仿真。
逻辑设计阶段主要是通过使用硬件描述语言(如VHDL或Verilog)来描述所需的功能和逻辑,并通过仿真验证设计的正确性和功能性。
5.进行综合和优化:完成逻辑设计和仿真之后,可以进行综合和优化。
综合是将逻辑描述转化为门级网表或其他表示形式,以便进行后续的布局和布线操作。
综合工具会将逻辑与所选FPGA的资源和约束进行匹配,并生成逻辑网表。
6.进行布局和布线:在综合和优化之后,需要进行布局和布线。
布局是将设计中的各个逻辑元件放置在FPGA芯片上,以优化性能和功耗。
布线是将逻辑元件之间的连线进行规划和可行性分析,以满足时序约束和信号电平要求。
7.进行时序约束和时序优化:在布局和布线之后,需要进行时序约束和时序优化。
时序约束是确定FPGA所需的时钟和数据时序关系,以确保设计的正常工作。
时序优化是通过对布线结果进行分析和调整,以优化设计的时序性能。
fpga流程

fpga流程FPGA流程。
FPGA(Field-Programmable Gate Array)是一种可编程逻辑器件,它可以根据用户的需求重新配置其内部电路,实现不同的功能。
在FPGA设计过程中,需要经历一系列的流程来完成从设计到实现的转换。
本文将介绍FPGA设计的整体流程,包括设计准备、综合、布局布线和验证等环节。
首先,FPGA设计的第一步是设计准备。
在这个阶段,设计师需要明确设计的目标和需求,包括功能规格、性能指标、资源约束等。
同时,设计准备阶段还需要进行设计工具的选择和环境的搭建,包括选择合适的开发板、开发软件以及仿真工具等。
设计准备的充分与否将直接影响后续设计工作的顺利进行。
接下来是综合阶段。
在这个阶段,设计师需要将设计的高级描述语言(如Verilog、VHDL等)转换为逻辑门级的网表描述。
这一过程由综合工具自动完成,设计师需要关注的是综合后的逻辑电路是否符合预期的功能和性能要求。
同时,综合阶段还需要进行时序约束的设置,以保证电路的时序要求得到满足。
布局布线是FPGA设计的重要环节。
在这个阶段,综合后的逻辑电路将被映射到FPGA的物理资源上,并通过布线工具完成逻辑电路的连线。
布局布线的质量将直接影响电路的时序性能和资源利用率,因此需要设计师在此阶段进行仔细的优化和调整。
最后是验证阶段。
在这个阶段,设计师需要对设计的电路进行验证,包括功能验证和时序验证等。
功能验证通过仿真工具进行,验证电路的功能是否符合预期的行为;时序验证则需要通过时序分析工具进行,验证电路的时序性能是否满足设计要求。
验证通过后,设计师可以将设计文件下载到FPGA开发板上进行硬件验证。
总的来说,FPGA设计流程包括设计准备、综合、布局布线和验证四个主要环节。
在每个环节中,设计师都需要进行仔细的规划和调整,以保证设计的质量和性能。
同时,FPGA设计也是一个迭代的过程,设计师可能需要多次进行修改和优化,直到达到满意的效果为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华为F P G A设计流程指南HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】FPGA设计流程指南前言本部门所承担的FPGA设计任务主要是两方面的作用:系统的原型实现和ASIC的原型验证。
编写本流程的目的是:在于规范整个设计流程,实现开发的合理性、一致性、高效性。
形成风格良好和完整的文档。
实现在FPGA不同厂家之间以及从FPGA到ASIC的顺利移植。
便于新员工快速掌握本部门FPGA的设计流程。
由于目前所用到的FPGA器件以Altera的为主,所以下面的例子也以Altera为例,工具组合为 modelsim + LeonardoSpectrum/FPGACompilerII + Quartus,但原则和方法对于其他厂家和工具也是基本适用的。
目录1. 基于HDL的FPGA设计流程概述1.1 设计流程图说明:逻辑仿真器主要指modelsim,Verilog-XL等。
逻辑综合器主要指LeonardoSpectrum、Synplify、FPGA Express/FPGACompiler等。
FPGA厂家工具指的是如Altera的Max+PlusII、QuartusII,Xilinx的Foundation、Alliance、ISE4.1等。
1.2 关键步骤的实现1.2.1 功能仿真测试程序RTL代码调用模块的测试数据说明:“调用模块的行为仿真模型”指的是RTL 代码中引用的由厂家提供的宏模块/IP ,如Altera 提供的LPM 库中的乘法器、存储器等部件的行为模型。
1.2.2 逻辑综合说明:“调用模块的黑盒子接口”的导入,是由于RTL代码调用了一些外部模块,而这些外部模块不能被综合或无需综合,但逻辑综合器需要其接口的定义来检查逻辑并保留这些模块的接口。
1.2.3 前仿真说明:一般来说,对FPGA设计这一步可以跳过不做,但可用于debug 综合有无问题。
1.2.4 布局布线1.2.5 后仿真(时序仿真)2. Verilog HDL 设计基于将来设计转向ASIC 的方便,本部门的设计统一采用Verilog HDL ,但针对混合设计和混合仿真的趋势,所有开发人员也应能读懂VHDL 。
Verilog HDL 的学习可参考[1][2]。
2.1 编程风格(Coding Style)要求2.1.1 文件(1)每个模块(module)一般应存在于单独的源文件中,通常源文件名与所包含模块名相同。
(2)每个设计文件开头应包含如下注释内容:年份及公司名称。
作者。
文件名。
所属项目。
顶层模块。
模块名称及其描述。
修改纪录。
请参考标准示例程序[3]。
2.1.2 大小写(1)如无特别需要,模块名和信号名一律采用小写字母。
(2)为醒目起见,常数(`define定义)/参数(parameter定义)采用大写字母。
2.1.3 标识符(1)标识符采用传统C语言的命名方法,即在单词之间以“_”分开,如:max_delay、data_size等等。
(2)采用有意义的、能反映对象特征、作用和性质的单词命名标识符,以增强程序的可读性。
(3)为避免标识符过于冗长,对较长单词的应当采用适当的缩写形式,如用‘buff’代替‘buffer’,‘ena’代替‘enable’,‘addr’代替‘address’等。
2.1.4 参数化设计为了源代码的可读性和可移植性起见,不要在程序中直接写特定数值,尽可能采用`define语句或paramater语句定义常数或参数。
2.1.5 空行和空格(1)适当地在代码的不同部分中插入空行,避免因程序拥挤不利阅读。
(2)在表达式中插入空格,避免代码拥挤,包括:赋值符号两边要有空格;双目运算符两边要有空格;单目运算符和操作数之间可没有空格,示例如下:a <= b;c <= a + b;if (a == b) then ...a <= ~a & c;2.1.6 对齐和缩进(1)不要使用连续的空格来进行语句的对齐。
(2)采用制表符Tab对语句对齐和缩进,Tab键采用4个字符宽度,可在编辑器中设置。
(3)各种嵌套语句尤其是if...else语句,必须严格的逐层缩进对齐。
2.1.7 注释必须加入详细、清晰的注释行以增强代码的可读性和可移植性,注释内容占代码篇幅不应少于30%。
2.1.8 参考C语言的资料要形成良好的编程风格,有许多细节需要注意,可以参考资料[4],虽然它是针对C语言的讨论,但由于Verilog HDL和C语言的形式非常近似,所以里面提到的很多原则都是可以借鉴的。
2.1.9 可视化设计方法为提高设计效率和适应协同设计的方式,可采用可视化的设计方法,Mentor Grahpics 的Renoir 软件提供了非常好的设计模式。
2.2 可综合设计用HDL 实现电路,设计人员对可综合风格的RTL 描述的掌握不仅会影响到仿真和综合的一致性,也是逻辑综合后电路可靠性和质量好坏最主要的因素,对此应当予以充分的重视。
学习可综合的HDL 请参考 [5][6] [7]。
学习设计的模块划分请参考[8]。
2.3 设计目录采用合理、条理清晰的设计目录结构有助于提高设计的效率、可维护性。
建议采用类似下面的目录结构: (1)src synsim par(2)3. 逻辑仿真考虑到性能和易用性,首选的逻辑仿真器是Mentor Graphics 的modelsim 。
3.1 测试程序(test bench )测试程序对于设计功能和时序的验证有着举足轻重的影响,测试激励的完备性和真实性是关键所在,有以下原则须遵循:srcsynsimparsrcsynsimpar(1)测试激励输入和响应输出采集的时序应当兼顾功能仿真(无延时)和时序仿真(有延时)的情况。
(2)对于周期较多的测试,为提高效率,尽可能采用程序语句来判断响应与标准结果是否一致,给出成功或出错标志,而不是通过观察波形来判断。
(3)采用基于文件的测试是很好的办法,即由matlab或spw等系统工具产生测试数据,测试程序将其读入产生激励,再把响应结果写入到文件,再交给上述工具进行处理或分析。
(4)仿真器支持几乎所有的Verilog HDL语法,而不仅仅是常用的RTL 的描述,应当利用这一点使测试程序尽可能简洁、清楚,篇幅长的要尽量采用task来描述。
3.2 使用预编译库在进行功能仿真和后仿真时都需要某些模块的行为仿真模型和门级仿真模型,如Altera Quartus里的220model.v(LPM模块行为仿真模型)和apex20ke_atoms.v(20KE系列门级仿真模型),为避免在不同的设计目录中多次编译这些模型,应当采用一次编译,多次使用的方法。
具体做法如下(以20KE门级库为例):1:在某个工作目录下新建一库名 apex20ke,将apex20ke_atoms.v编译到其中。
2:在图形界面中的Load Design对话框中装入仿真设计时,在Verilog 标签下指定预编译库的完整路径。
(见下图)4. 逻辑综合目前可用的FPGA综合工具有Mentor Graphics 的 LeonardoSpectrum,Synplicity的Synplify和Synopsys 的FPGA CompilerII/FPGA Express,LeonardoSpectrum由于性能和速度最好,成为我们首选的综合器,FPGA CompilerII/FPGA Express由于可以和Design Compiler代码兼容也可用。
见参考[9]4.1 逻辑综合的一些原则HDL代码综合后电路质量的好坏主要取决于三个方面:RTL实现是否合理、对厂家器件特点的理解和对综合器掌握的程度。
参考[10]中有比较全面的讨论。
4.1.1 关于LeonardoSpectrumLeonardoSpectrum对综合的控制能力比较强,但使用也略为复杂,故需要在使用前尽量熟悉其功能,才能取得较好的综合结果。
当出现综合结果不能满足约束条件时,不要急于修改设计源文件,应当通过综合器提供的时序和面积分析命令找出关键所在,然后更改综合控制或修改代码。
在LeonardoSpectrum 2000.1b以前的版本输出的 .v 网表都不能用于仿真。
4.1.1 大规模设计的综合分块综合当设计规模很大时,综合也会耗费很多时间。
如果设计只更改某个模块时,可以分块综合。
如有设计 top.v 包含 a.v和b.v两个模块,当只修改a.v 的话,可以先单独综合b.v,输出其网表b.edf,编写一个b模块的黑盒子接口b_syn.v,每次修改a.v后只综合top.v、a.v、b_syn.v,将综合后的网表和b.edf送去布线,可以节约综合b模块的时间。
采用脚本命令当设计规模比较大时,综合控制也许会比较复杂,可以考虑采用脚本控制文件的方式进行综合控制,modelsim、LeonardoSpectrum和Quartus都支持TCL(Tool Command Language)语言,采用脚本控制可以提供比图形界面更灵活和更方便的控制手段。
4.1.3 必须重视工具产生的警告信息综合工具对设计进行处理可能会产生各种警告信息,有些是可以忽略的,但设计者应该尽量去除,不去除必须确认每条警告的含义,避免因此使设计的实现产生隐患。
这个原则对仿真和布局布线同样适用。
4.2 调用模块的黑盒子(Black box)方法使用黑盒子方法的原因主要有两点:一是HDL代码中调用了一些FPGA厂家提供的模块(如Altera的LPM模块)或第三方提供的IP,这些模块不需要综合,而且有些综合器也不能综合(如FPGA CompilerII/FPGA Express可以综合包含LPM的代码而LeonardoSpectrum不能)。
因此须提供一个黑盒子接口给综合器,所调用的模块到布局布线时才进行连接。
二是方便代码的移植,由于厂家提供的模块或第三方提供的IP通常都是与工艺有关的,直接在代码中调用的话将不利于修改,影响代码移植。
下面以调用Altera的LPM库中的乘法器为例来说明。
调用这样一个模块需要这样一个文件:mult8x8.v(可由Quartus的MegaWizer Plug-in Manager 产生),代码如下:// mult8x8.vmodule mult8x8 (dataa, datab, result);input [7:0] dataa;input [7:0] datab;output [15:0] result;// exemplar translate_off// synopsys translate_offlpm_mult lpm_mult_component(.dataa (dataa),.datab (datab),.aclr (1'b0),.clock (1'b0),.clken (1'b0),.sum (1'b0),.result (result));defparamlpm_mult_component.lpm_widtha = 8,lpm_mult_component.lpm_widthb = 8,lpm_mult_component.lpm_widths = 16,lpm_mult_component.lpm_widthp = 16,lpm_mult_component.lpm_representation = "SIGNED",// exemplar translate_on// synopsys translate_onendmodule。