概率论与数理统计期末证明题专项训练

合集下载

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。

从该批产品中随机抽查5个,计算至少有一个不合格品的概率。

解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。

不合格品的概率为 0.1,合格品的概率为 0.9。

则没有不合格品的概率为 (0.9)^5。

至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。

4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。

解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。

一个骰子点数大于3的概率为 3/6 = 1/2。

两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。

至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。

以上是《概率分析与数理统计》期末考试的部分试题及解答。

希望对你有帮助!。

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案

概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。

概率论与数理统计测试题及答案

概率论与数理统计测试题及答案

概率论与数理统计测试题一、填空题(每小题3分,共15分)1.将3个小球随机地放到3个盒子中去,每个盒子都有1个小球的概率为__________. 2.设A ,B 是两事件,()1/4,(|)1/3P A P B A ==,则()P AB =__________.3.掷两颗骰子,已知两颗骰子点数之和是5,则其中有一颗是1点的概率是__________.4.设随机变量X 的分布函数为0,1()ln ,11,x F x x x e x e <⎧⎪=≤<⎨⎪≥⎩,则X 的概率密度为__________.5.设总体X~U[0,1],123,,X X X 是其一个样本,则123{max(,,)1/2}P X X X <=__________. 二、单项选择题(每小题3分,共15分)1.设两事件A 与B 互不相容,且P(A)>0,P(B)>0,则( )正确. (A )A B 与互不相容; (B )()()()P AB P A P B =; (C )()()()P AB P A P B =; (D )()().P A B P A -=2.一种零件的加工由两道工序完成,第一道工序、第二道工序的废品率分别为p ,q ,设两道工序的工作是独立的,则该零件的合格品率是 ( )(A )1p q --;(B) 1pq -; (C) 1p q pq --+;(D) (1)(1)p q -+-. 3.设~(),X t n 则2X 服从 ( )分布 (A)2()n χ; (B )(1,)F n ; (C )(,1)F n ; (D )(1,1)F n -.4.设随机变量X 与Y 的协方差(,)0,Cov X Y =则下列结论正确的是 ( ) (A) X 与Y 独立; (B )()()()D X Y D X D Y +=+; (C )()()()D X Y D X D Y -=-; (D) ()()()D XY D X D Y =5.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211,(())1ni i X S X X n ==--∑分别为样本均值和样本方差,则下面结论中不正确的是 ( ) (A)2~(,);X N nσμ(B)22();E S σ=(C)22();1nE S n σ=- (D)222(1)/~(1).n S n σχ--三、解答题(6个小题,共60分) 1.(10分)设一仓库中有10箱同样规格产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的废品率依次为0.1、0.2、0.3,从这10箱产品中任取一箱,再从该箱中任取一件产品.(1)求取到的产品为废品的概率;(2)若已知取到的产品为废品,求该废品是由甲厂生产的概率. 2.(10分)对一批次品率为0.1的产品进行重复抽样检查,现抽取3件产品,以X 表示抽取的3件产品中次品的件数,试求(1)X 的分布律;(2)至少有一件是次品的概率. 3.(12分)设连续型随机变量X 的概率密度为sin ,0()0,a x x f x π<<⎧=⎨⎩,其它求:(1)系数a ; (2) 分布函数();(3){/4/2}F x P X ππ<<. 4.(8分)设二维随机变量(,)X Y 的分布律为求X 与Y 的协方差Cov (X ,Y )及P{X +Y ≥1}. 5.(10分)设随机变量(X,Y)的概率密度为6,01(,)0,y y x f x y <<<⎧=⎨⎩其它 (1)试求关于X 及Y 的边缘概率密度;(2)判断X 与Y 是否相互独立,并说明理由.6.(10分)设总体X 的概率密度为(1),01(;)0,x x f x θθθ⎧+<<=⎨⎩其它,其中(1)θθ>-是未知参数,12,,,n X X X 是X 的样本,求参数θ 的矩估计量与最大似然估计量.四、证明题(2个小题,共10分)1. (5分)设随机变量X ~N (0,1),证明随机变量(0)Y X σμσ=+>~2(,)N μσ.2.(5分)设4321,,,X X X X 是来自总体N(μ,2σ)的样本,证明2212342()()2X X X X Y σ-+-= 服从2χ分布,并写出自由度. 一、填空题(每小题3分,共15分)1.2/9;2.1/12;3.1/2;4. 1/,1()0,x x ef x <<⎧=⎨⎩其它;5.1/8.二、单项选择题(每小题3分,共15分)1.(D )2. (C);3.(B );4.(B );5. (C). 三、解答题(6个小题,共60分)1.(10分)解: 123,,A A A 分别表示取得产品是甲、乙、丙厂生产的,B 表示取出的产品为废品,P(A 1)=0.5,P(A 2)=0.3,P(A 3)=0.2,P(B|A 1)=0.1,P(B|A 2)=0.2,P(B|A 3)=0.3 (3)分(1) P(B)=P(A 1)P(B|A 1)+P(A 2)P(B|A 2)+P(A 3)P(B|A 3) (5)分=0.5⨯0.1+0.3⨯0.2+0.2⨯0.3=0.17 (7)分(2)111()(|)0.50.15(|)0.29()0.1717P A P B A P A B P B ⨯==== (1)0分2.(10分)解:(1) X ~b(3,0.1), 33{}0.10.9(0,1,2,3)k k k P X k C k -=== (3)分………7分(2)P{X ≥1}=1-P{X=0}=0.271 ………10分 3.(12分)解:(1)01sin 1;2a xdx a π=⇒=⎰………3分(2)()()xF x f t dt -∞=⎰ (6)分00,01sin ,02x x tdt x x ππ≤⎧⎪⎪=<≤⎨⎪>⎪⎩⎰1,0,01cos ,02x x x x ππ≤⎧⎪-⎪=<≤⎨⎪>⎪⎩1, ………10分241(3){/4/2}sin 2P X xdx ππππ<<==⎰ (12)分4.(8分)解: E (X )=0.5,E (Y )=0.3,E (XY )=0.1 (4)分Cov (X ,Y )=E (XY )-E (X )E (Y )=-0.05 (6)分P{X +Y ≥1}=0.2+0.4+0.1=0.7 ………8分5.(10分)解: (1)()(,)X f x f x y dy ∞-∞=⎰06,010,xydy x ⎧<<⎪=⎨⎪⎩⎰其它23,010,x x ⎧<<=⎨⎩其它 ………4分 ()(,)Y f y f x y dx ∞-∞=⎰16,010,y ydx y ⎧<<⎪=⎨⎪⎩⎰其它6(1),010,y y y -<<⎧=⎨⎩其它 ………8分 (2)X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………10分 6.(10分)解 (1)矩估计量1101()(1)2E X x x dx θθμθθ+==⋅+=+⎰ ………3分 11121μθμ-⇒=-12ˆ1X X θ-⇒=- ………5分 (2) 最大似然估计量 对于给定样本值12,,,,n x x x 似然函数为11()(;)(1)nni i i i L f x x θθθθ====+∏∏12(1)(),01n n i x x x x θθ=+<< ………7分1()ln(1)ln ni i lnL n x θθθ==++∑,1()ln 01ni i d nlnL x d θθθ==+=+∑ ………8分11ln ˆln nii nii n x xθ==+⇒=-∑∑,最大似然估计量为11ln ˆln nii nii n X Xθ==+=-∑∑ ………10分四、证明题(2个小题,共10分)1.证明 :X的概率密度为22(),x X f x -= ………1分函数,0,(,)y x y y σμσ'=+=>∈-∞∞,1(),(),y x h y h y μσσ-'===………3分2()22()[()]|()|~(,).y u Y X f y f h y h y Y N σμσ--'==⇒ ………5分2.证明:212~(0,2)~(0,1),X X N N σ-⇒~(0,1),N ………2分 两者独立 ………4分因此 22212342()()~(2)2X X X X Y χσ-+-= ………5分。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

概率论与数理统计期终考试试卷及参考答案

概率论与数理统计期终考试试卷及参考答案

上海应用技术学院2009—2010学年第二学期 《概率论与数理统计》期(末)(A )试卷课程代码: B2220073/B2220071 学分: 3 考试时间: 100 分钟课程序号: 1441、1447、1451、1455、1456、1457、1458、1459、1460、1461、1976 班级: 学号: 姓名:我已阅读了有关的考试规定和纪律要求,愿意在考试中遵守《考场规则》,如有违反将愿接受相应的处理。

试卷共5页,请先查看试卷有无缺页,然后答题。

一、填空题(每题3分,共计18分)1、设A 、B 、C 为三事件,则事件“A 、B 、C 不都发生”可表示为_______________。

2、设()4.0=A P ,()7.0=+B A P ,若B A ,相互独立,则()=B P ___________。

3、100件产品中有5件次品,任取10件,恰有2件为次品的概率为______________。

4、设随机变量X 的概率密度为()⎩⎨⎧≤≤=其他,0,10,32x x x f ,则()=X E __________。

5、设由总体~(,)X F x θ(θ未知)的样本观察值求得9.0}5.455.35{=<<θP ,则称区间[35.5,45.5]为θ的一个置信度为________的置信区间。

6、设Z Y X ,,相互独立,X 在]6,0[上服从均匀分布,)4,1(~N Y ,Z 服从参数2=λ 的泊松分布,32+--=Z Y X W ,()D W = 。

二、选择题(每题3分,共12分)1、对于任意两个随机变量X 和Y ,若)()()(Y E X E XY E =,则( )。

(A ))()()(Y D X D XY D = (B ))()()(Y D X D Y X D +=+ (C )X 和Y 相互独立(D )X 和Y 不独立2、设321,,X X X 是来自正态总体)1,(μN 的样本,现有μ的三个无偏估计量1123131ˆ5102X X X μ=++,2123115ˆ3412X X X μ=++,3123111ˆ362X X X μ=++其中方差最小的估计量是( )。

概率论和数理统计期末考试试题及答案

概率论和数理统计期末考试试题及答案

一、选 择 题 (本大题分5小题, 每小题3分, 共15分)(1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有 (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P =(2)某人花钱买了C B A 、、三种不同的奖券各一张.已知各种奖券中奖是相互独立的,中奖的概率分别为,02.0)(,01.0)(,03.0)(===C p B P A p 如果只要有一种奖券中奖此人就一定赚钱,则此人赚钱的概率约为(A) 0.05 (B ) 0.06 (C) 0.07 (D ) 0.08(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则(A)对任意实数21,p p =μ (B )对任意实数21,p p <μ(C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意实数a 成立的是(A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-a dx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)二维随机变量(X ,Y )服从二维正态分布,则X +Y 与X -Y 不相关的充要条件为(A )EY EX = (B)2222][][EY EY EX EX -=-(C)22EY EX = (D) 2222][][EY EY EX EX +=+二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P 0.1(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f ,则使)()(a X P a X P <=>的常数a = 421(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P 0.35(4) 设两个相互独立的随机变量X 和Y 均服从)51,1(N ,如果随机变量X -aY +2满足条件 ])2[()2(2+-=+-aY X E aY X D ,则a = 20 _.(5) 已知X ~),(p n B ,且8)(=X E ,8.4)(=X D , 则n = 3三、解答题 (共65分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?解:A 为事件“生产的产品是次品”,B 1为事件“产品是甲厂生产的”,B 2为事件“产品是乙厂生产的”,B 3为事件“产品是丙厂生产的”易见的一个划分是Ω321,,B B B(1) 由全概率公式,得.0345.0%2%40%4%35%5%25)()()()(3131=⨯+⨯+⨯===∑∑==i i i i i B A P B P AB P A P(2) 由Bayes 公式有:2、(10分)设二维随机变量(X,Y)的联合概率密度为⎩⎨⎧<<<<--= , 其它040,20),6(),(y x y x k y x f 求:(1)常数k (2))4(≤+Y X P2380345.0%4%35)()()()()(31222=⨯==∑=i ii B P B A P B P B A P A B P解:(1)由于1),(=⎰⎰∞∞-∞∞-dxdy y x f ,所以1)6(4020=--⎰⎰dy y x k dx ,可得241=k (2)98)16621(241)6(2412204020=+-=--⎰⎰⎰-dx x x dy y x dx x3、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求:随机变量Y X Z +=的概率密度函数.解: ⎰∞-=xdt t f x F )()( 当t x t e dt e x F x 2121)(,0==<⎰∞-------------------------------------------------------------------------------------3分 当t x t t e dt e dt e x F x --∞--=+=≥⎰⎰211][21)(,0004、(8分)设随机变量X 具有概率密度函数⎩⎨⎧<<=其他,,0;40,8)(x x x f X求:随机变量1-=X e Y 的概率密度函数.解:1-=X e Y 的分布函数).(y F Y⎰+∞-=+≤=≤-=≤=)1ln()())1ln(()1()()(y X X Y dx x f y X P y e P y Y P y F=⎪⎩⎪⎨⎧≤--<≤+<.1,1;10),1(ln 161;0,0442y e e y y y 于是Y 的概率密度函数⎪⎩⎪⎨⎧-<<++==.,0;10,)1(8)1ln()()(4其他e y y y y F dy d y f Y Y5、(8分)设随机变量X 的概率密度为:∞<<∞-=-x e x f x 21)(,求:X 的分布函数.解:由卷积公式得⎰+∞∞--=dx x z x f z f Z ),()( , 又因为X 与Y 相互独立,所以⎰+∞∞--=dx x z f x f z f Y X Z )()()( 当10<<z 时,;1)()()(0)(z z x z Y X Z e dx e dx x z f x f z f ---+∞∞--==-=⎰⎰ 当0≤z 时,;0)()()(=-=⎰+∞∞-dx x z f x f z f Y X Z 当1≥z 时,);1()()()(10)(-==-=---+∞∞-⎰⎰e e dx e dx x z f x f z f z x z Y X Z 所以 ;1)1(10100)()()(⎪⎩⎪⎨⎧≥-<<-≤=-=--∞+∞-⎰z e e z e z dx x z f x f z f z z Y X Z6、(9分)假设一部机器在一天内发生故障的概率为0.2,机器发生故障时全天停止工作,若一周5个工作日里无故障,可获利润10万元;发生一次故障可获利润5万元;发生二次故障所获利润0元;发生三次或三次以上故障就要亏损2万元,求一周内期望利润是多少?解:(1)因为)1,0(~),1,0(~N Y N X ,且相互独立,所以1,1++=+-=Y X V Y X U 都服从正态分布,11)1(=+-=+-=E EY EX Y X E EU2)1(=+=+-=DY DX Y X D DU所以 )2,1(~N U ,所以 4241)(u U e u f -=π同理 11)1(=++=++=E EY EX Y X E EV 2)1(=+=++=DY DX Y X D DU所以 )2,1(~N V ,所以 4241)(u V e u f -=π(2))12()1)(1(22++-=+++-=X Y X E Y X Y X E EUV12))(()(122222+++-+=++-=EX EY DY EX DX EX EY EX 1=7、 所以0=-=DV DU EUEV EUV UV ρ7、(10分)设)1,0(~),1,0(~N Y N X ,且相互独立1,1+-=++=Y X V Y X U ,求:(1)分别求U,V 的概率密度函数;(2)U,V 的相关系数UV ρ; 、(3)解 由条件知)2.0,5(~B X ,即5,,1,0,8.02.05}{5 =⎪⎪⎭⎫ ⎝⎛==-k k k X P k k⎪⎪⎩⎪⎪⎨⎧≥-=====3,2;2,0;1,5;0,10)(X X X X X g Y)(216.5057.02410.05328.010}]5{}4{}3{[2}2{0}1{5}0{10}{)()(50万元=⨯-⨯+⨯==+=+=⨯-=⨯+=⨯+=⨯====∑=X P X P X P X P X P X P k X P k g X Eg EY k。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

证明题专项训练
1. 设总体X~N(0,2
σ),。

n
X X ,...,1就是一个样本,求2σ的矩估计量,并证明它为2
σ的无偏
估计。

2. 设总体),(~2σμN X ,参数μ已知,2σ(2σ>0)未知,n x x x ,,,21Λ为一相应的样本值。

求2σ的最大似然估计量。

,并证明它为2σ的无偏估计。

3. 设总体X 服从u u N ,),,(2
2
已知σσ未知。

n X X ,,1Λ就是X 的一个样本,求u 的矩估
计量,并证明它为u 的无偏估计。

4. 设0)(>A P ,试证:)
()
(1)|(A P B P A B P -≥。

5. 若随机变量(
)2
,~σ
μN X ,则σ
μ-=X Z ()1,0~N 、
设随机变量X 与Y 相互独立,且都服从正态分布)9,0(N ,而921,,,X X X Λ与921,,,Y Y Y Λ分别来自总体X 与Y 的样本,试证统计量
)9(~29
22
21
921t Y
Y Y X X X U ++++++=
ΛΛ
参考答案
1. 解: X 的二阶矩为:2
2)(σ=X E 1’
X 的二阶样本矩为∑==n k i
X n A 1
221 1’
令:
22
)(A X E =, 1’ 解得:2
1
2
1i n
k X n ∑==σ) ,
2σ的矩估计量2
12
1i
n k X n ∑==σ) 2’
σσ==∑=)1()ˆ(21
2
i n
k X n E E , 它为2
σ的无偏估计量、 3’
2.
解: 似然函数为
()
2
1
2
2
2
2)(2
2
2)(1221
21)(σμσ
μπσσ
πσ∑=⎥⎥⎦⎤⎢⎢⎣⎡∏==----=n
i i i x n
x n
i e
e L ,相应的对数似然函数为
(
)2
2
1
2
22ln 2
2)
()(ln πσσ
μσn
x L n
i i -∑--==。

令对数似然函数对2σ的一阶导数为零,得到2σ的最大似然估计值为
∑=-=n
i i x n 1
22
)(1ˆμσ
2’ 21
22
)(1)ˆ(σμσ
=-=∑=n
i i X E n E , 它2σ为的无偏估计量、 3. 解: 样本n X X ,...,1的似然函数为:
])(21ex p[)
2(),,...,(1
22
/1∑=---=n
k i n n u x u x x L π 2’
而])([21)2ln(2/),,...,(ln 1
2
1∑=---=n k i n u x n u x x L π 1’
令:
0)())
,,...,((ln 1
1=-=∑=n
k i n u x du u x x L d , 1’ 解得:i n k x n u
∑==11ˆ u 的最大似然估量i n
k X n u ∑==11ˆ 2’ u X n E u
E k n
k ==∑=)1()ˆ(1
, 它为u 的无偏估计量、 2’ 4. 证明: 因为 1)(≤⋃B A P , 即1)()()(≤-+AB P B P A P 1)|()()()(≤-+A B P A P B P A P )](1[)()|()(B P A P A B P A P --≥
)()()|()(B P A P A B P A P -≥
)
()
(1)|(A P B P A B P -
≥ (0)(>A P )
5. 解法一:σ
μ
-=
X Z 的分布函数为
{}{}()dt e x X P x X P x Z P x
t ⎰
+∞
---
=
+≤=⎭
⎬⎫
⎩⎨⎧≤-=≤σμσμσπμσσμ2
2
221 (5分)

u x =-σ
μ
,得
{}()x du e
x Z P x
u Φ==
≤⎰∞
--
2
2
21
π
所以σ
μ
-=
X Z ()1,0~N 、 (5分)
解法二:令()σ
μ
-=
x x g ,则
()x g 在()+∞∞-,上严格单调递增
其反函数为()μσ+=z z h ,()σ='z h ,()+∞∞-∈,z (4分)
σ
μ
-=
X Z 的密度函数为()()()()22
121z X Z e
z h z h f z f -=
'⋅=π
所以σ
μ
-=
X Z ()1,0~N 、 (6分)
6. 由于X1,X2,……,X9就是来自正态总体的样本,且都服从标准正态分布N(0,1),则【】
由于Y1,Y2,……,Y9相互独立,且都服从标准正态分布N(0,1),则【】 又因为两个随机变量X,Y 相互独立由t 分布可知【】 即统计量Z 服从t 分布,参数为9,得证、。

相关文档
最新文档