高考数学导数解法知识分享
高中数学导数相关知识点总结+解题技巧

高中数学:导数相关知识点总结+解题技巧一. 导数概念的引入1. 导数的物理意义瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数当x变化时,便是x的一个函数,我们称它为f(x)的导函数. y=f(x)的导函数有时也记作,即二. 导数的计算1.基本初等函数的导数公式2.导数的运算法则3.复合函数求导y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明1.合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
2.类比推理的一般步骤(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
高考数学求导知识点

高考数学求导知识点数学作为高考科目之一,求导是其中一个重要的知识点,以下是高考数学求导的相关知识点和公式总结。
一、导数的概念在微积分中,导数是函数的一个概念,描述了函数在某点的变化速率。
对于函数$f(x)$,如果函数在某一点$x_0$处的导数存在,那么导数即为$f(x)$在$x_0$处的变化速率。
二、导数的计算方法1. 导数与极限的关系导数可以通过极限的计算来求得,具体来说,对于函数$f(x)$,其在$x_0$处的导数可以表示为以下极限形式:$$f'(x_0)=\lim_{\Delta x \to 0}\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$2. 基本求导法则(1)常数的导数:常数的导数为0。
(2)幂函数的导数:对于幂函数$x^n$,其中$n$为常数,其导数为$nx^{n-1}$。
(3)指数函数的导数:对于指数函数$a^x$,其中$a$为常数且$a>0$,其导数为$a^x\ln{a}$。
(4)对数函数的导数:对于对数函数$\log_a{x}$,其中$a$为常数且$a>0$且$a\neq 1$,其导数为$\frac{1}{x\ln{a}}$。
(5)三角函数的导数:- 正弦函数的导数:$\sin{x}$的导数为$\cos{x}$。
- 余弦函数的导数:$\cos{x}$的导数为$-\sin{x}$。
- 正切函数的导数:$\tan{x}$的导数为$\sec^2{x}$。
3. 基本函数的导数(1)多项式函数的导数对于多项式函数$f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x^1+a_0$,其中$a_n,a_{n-1},...,a_1,a_0$为常数,其导数为$f'(x)=na_nx^{n-1}+(n-1)a_{n-1}x^{n-2}+...+a_1$。
(2)分式函数的导数对于分式函数$f(x)=\frac{g(x)}{h(x)}$,其中$g(x)$和$h(x)$为多项式函数,其导数为$f'(x)=\frac{g'(x)h(x)-g(x)h'(x)}{(h(x))^2}$。
高考数学导数解题技巧

高考数学导数解题技巧
在高考数学中,导数是一个常见的解题工具。
以下是一些解题技巧:
1. 使用定义法求导数:如果需要求一个函数在某个点的导数,可以使用定义法,即计算函数在该点附近的斜率。
具体步骤是计算函数在点x处的斜率极限,即Lim(h→0)[f(x+h)-f(x)]/h。
2. 使用基本导数公式:熟记一些基本导数公式可以帮助简化计算过程。
例如,常数函数的导数为0,幂函数的导数等于幂次乘以原函数的导数,指数函数的导数等于常数乘以指数。
3. 使用导数的性质:导数具有一些重要的性质,如线性性质和乘积规则。
线性性质表示导数是线性运算,即对于两个函数
f(x)和g(x),以及常数a和b,有导数[a*f(x) + b*g(x)]' = a*f'(x) + b*g'(x)。
乘积规则表示两个函数的乘积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。
4. 使用链式法则:当一个函数由两个复合函数相乘或相除构成时,可以使用链式法则简化导数的计算。
链式法则可以表示为如果y = f(g(x)),则y' = f'(g(x)) * g'(x)。
5. 注意求导的顺序:当需要求一个复合函数的导数时,要注意求导的顺序。
通常,外函数的导数应该先求出来,再将其嵌入到内函数中求导。
以上是一些常见的高考数学导数解题技巧。
通过熟练掌握这些技巧,可以在考试中更快、更准确地解题。
数学高考导数知识点

数学高考导数知识点导数是高中数学中一个非常重要的概念,也是高考中常考的知识点。
掌握导数的基本概念和计算方法对于解题至关重要。
本文将详细介绍导数的相关知识点。
一、导数的定义在微积分中,若函数f(x)在点x处的导数存在,则称函数f(x)在点x处可导。
导数的定义为:f'(x) = lim┬(△x→0)(f(x+△x)-f(x))/△x其中,f'(x)表示函数f(x)在点x处的导数,f(x+△x)表示点x处的函数值加上一个非常小的增量△x,f(x)表示点x处的函数值。
导数的计算方法有多种,如使用导数的四则运算法则、链式法则、反函数求导法则等。
二、导数的几何意义导数在几何上表示函数曲线在某一点处的切线的斜率。
当函数的导数为正时,表示函数在该点处递增;当函数的导数为负时,表示函数在该点处递减;当函数的导数为零时,表示函数在该点处取得极值。
三、常见函数的导数1. 常数函数:常数函数的导数为0,即f'(x) = 0。
2. 幂函数:幂函数f(x) = x^n的导数为f'(x) = nx^(n-1),其中n为常数,x为自变量。
3. 指数函数:指数函数f(x) = a^x的导数为f'(x) = a^xlna,其中a为常数,x为自变量。
4. 对数函数:对数函数f(x) = logₐ(x)的导数为f'(x) = 1/(xlna),其中a为常数,x为自变量。
5. 三角函数:三角函数的导数可以通过公式直接计算,例如sin(x)的导数为cos(x),cos(x)的导数为-sin(x),tan(x)的导数为sec^2(x)等。
6. 反三角函数:反三角函数的导数可以通过公式直接计算,例如arcsin(x)的导数为1/√(1-x^2),arccos(x)的导数为-1/√(1-x^2),arctan(x)的导数为1/(1+x^2)等。
四、导数的应用导数在实际问题中有广泛的应用。
常见的应用包括求函数的极值、判断函数的单调性、求曲线的凹凸区间、求函数的零点、求函数的最大最小值等。
数学高考知识点导数总结

数学高考知识点导数总结一、导数的定义1. 导数的定义:设函数y=f(x),若极限lim┬(Δx→0)(f(x+Δx)-f(x))/Δx存在,则称这一极限为函数y=f(x)在点x处的导数,记作f'(x),即f'(x)=lim┬(Δx→0)(f(x+Δx)-f(x))/Δx2. 几何意义:函数y=f(x)在点x处的导数f'(x)表示函数曲线在点(x,f(x))处的切线的斜率。
3. 物理意义:导数也可以表示物理上的速度、加速度等概念,即导数表示函数在某一点的瞬时变化率。
4. 导数的存在性:函数在某一点处存在导数的充分必要条件是函数在该点处的左、右导数存在且相等。
二、导数的计算1. 基本函数的导数:(1)常数函数:(k)'=0(2)幂函数:(xⁿ)'=nxⁿ⁻¹(3)指数函数:(aˣ)'=aˣlna(4)对数函数:(logₐx)'=1/(xlna)(5)三角函数:(sinx)'=cosx,(cosx)'=-sinx,(tanx)'=sec²x(6)反三角函数:(arcsinx)'=1/√(1-x²),(arccosx)'=-1/√(1-x²),(arctanx)'=1/(1+x²)2. 基本导数公式:(1)和差法则:(u±v)'=u'±v'(2)积法则:(uv)'=u'v+uv'(3)商法则:(u/v)'=(u'v-uv')/v²(4)复合函数求导:若y=u(v(x)),则y'=(du/dv)·v'(x)3. 隐函数求导:当函数关系式中含有自变量的隐函数,利用导数的基本运算法则以及求导公式进行求导。
4. 参数方程求导:设x=x(t),y=y(t),则dy/dx=(dy/dt)/(dx/dt)5. 高阶导数的计算:若函数f(x)的导数存在,则f'(x)也是一个函数,可以继续求导,得到f''(x)、f'''(x)等高阶导数。
高考数学导数及其应用知识点

高考数学导数及其应用知识点数学导数及其应用知识点一函数的单调性在a,b内可导函数fx,f′x在a,b任意子区间内都不恒等于0.f′x≥0?fx在a,b上为增函数.f′x≤0?fx在a,b上为减函数.1、f′x>0与fx为增函数的关系:f′x>0能推出fx为增函数,但反之不一定.如函数fx=x3在-∞,+∞上单调递增,但f′x≥0,所以f′x>0是fx为增函数的充分不必要条件.2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′x0=0是可导函数fx在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.数学导数及其应用知识点二函数的极值1、函数的极小值:函数y=fx在点x=a的函数值fa比它在点x=a附近其它点的函数值都小,f′a=0,而且在点x=a附近的左侧f′x<0,右侧f′x>0,则点a叫做函数y=fx的极小值点,fa叫做函数y=fx的极小值.2、函数的极大值:函数y=fx在点x=b的函数值fb比它在点x=b附近的其他点的函数值都大,f′b=0,而且在点x=b附近的左侧f′x>0,右侧f′x<0,则点b叫做函数y=fx的极大值点,fb叫做函数y=fx的极大值.极小值点,极大值点统称为极值点,极大值和极小值统称为极值.数学导数及其应用知识点三函数的最值1、在闭区间[a,b]上连续的函数fx在[a,b]上必有最大值与最小值.2、若函数fx在[a,b]上单调递增,则fa为函数的最小值,fb为函数的最大值;若函数fx在[a,b]上单调递减,则fa为函数的最大值,fb为函数的最小值.数学导数及其应用知识点四求可导函数单调区间的一般步骤和方法1、确定函数fx的定义域;2、求f′x,令f′x=0,求出它在定义域内的一切实数根;3、把函数fx的间断点即fx的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数fx的定义区间分成若干个小区间;4、确定f′x在各个开区间内的符号,根据f′x的符号判定函数fx在每个相应小开区间内的增减性.数学导数及其应用知识点五函数极值的步骤1、确定函数的定义域;2、求方程f′x=0的根;3、用方程f′x=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;4、由f′x=0根的两侧导数的符号来判断f′x在这个根处取极值的情况.六、求函数fx在[a,b]上的最大值和最小值的步骤1、求函数在a,b内的极值;2、求函数在区间端点的函数值fa,fb;3、将函数fx的各极值与fa,fb比较,其中最大的一个为最大值,最小的一个为最小值.感谢您的阅读,祝您生活愉快。
高考导数题型及解题方法总结

高考压轴题:导数题型及解题方法一.切线问题题型1求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例已知函数f(x)=x 3﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)题型3求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )二.单调性问题题型1求函数的单调区间。
求含参函数的单调区间的关键是确定分类标准。
分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。
(整理版)高考中导数问题的六大热点

高考中导数问题的六大热点由于导数其应用的广泛性,为解决函数问题提供了一般性的方法及简捷地解决一些实际问题.因此在高考占有较为重要的地位,其考查重点是导数判断或论证单调性、函数的极值和最值,利用导数解决实际问题等方面,下面例析导数的六大热点问题,供参考.一、运算问题 例1函数22()(1)x bf x x -=-,求导函数()f x '.分析:用商的导数及复合函数导数的运算律即可解决.解:242(1)(2)2(1)()(1)x x b x f x x ---•-'=-3222(1)x b x -+-=-32[(1)](1)x b x --=--. 评注:对于导数运算问题关键是记清运算法那么.主要是导数的定义、常见函数的导数、函数和差积商的导数,及复合函数、隐函数的导数法那么等.二、切线问题例2设曲线axy e =在点(01),处的切线与直线210x y ++=垂直,那么a = .分析:由垂直关系可得切线的斜率为-12,又k =0()f x ',即可求出a 的值. 解:axae y =',∴切线的斜率a y k x ===0',由垂直关系,有1)21(-=-⋅a ,解得2=a .评注:是指运用导数的几何意义或物理意义,解决瞬时速度,加速度,光滑曲线切线的斜率等三类问题.特别是求切线的斜率、倾斜角及切线方程问题,其中:⑴ 曲线y =f (x )在点P (x 0,f (x 0))处的斜率k ,倾斜角为θ,那么tan θ=k =0()f x '. ⑵ 其切线l 的方程为:y =y 0+0()f x '(x -x 0).假设曲线y =f (x )在点P (x 0,f (x 0))的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为x =x 0.三、单调性问题例3函数32()1f x x ax x =+++,a ∈R .〔Ⅰ〕讨论函数()f x 的单调区间;〔Ⅱ〕设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 分析:对于第(1)小题,求导后利用f '(x )>0或'()f x <0,解不等式即得单调区间;而(2)转化为'()f x <0在2133⎛⎫-- ⎪⎝⎭,上恒成立即可. 解:〔1〕32()1f x x ax x =+++求导:2()321f x x ax '=++. 当23a≤时,0∆≤,()0f x '≥,()f x 在R 上递增.当23a >,()0f x '=求得两根为3a x -±=,即()f x在⎛-∞ ⎝⎭递增,⎝⎭递减,⎫+∞⎪⎪⎝⎭递增. 〔2〕假设函数在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,那么2()321f x x ax '=++两根在区间2133⎛⎫-- ⎪⎝⎭,外,即2'()31'()3f f ⎧-⎪⎪⎨⎪-⎪⎩≤0≤0,解得a ≥2,故取值范围是[2,+∞). 评注:一般地,设函数y =f (x )在某个区间内可导.如果f '(x )>0,那么f (x )为增函数;如果f '(x )<0,那么f (x )为减函数.单调性是导数应用的重点内容,主要有四类问题:①运用导数判断单调区间; ②证明单调性; ③单调性求参数;④先证明其单调性,再运用单调证明不等式等问题. 四、极值问题 例4函数1()ln(1),(1)nf x a x x =+--其中n ∈N*,a 为常数.当n =2时,求函数f (x )的极值;分析:运用导数先确定函数的单调性,再求其极值. 解:由得函数f (x )的定义域为{x |x >1}, 当n =2时,21()ln(1),(1)f x a x x =+--所以232(1)().(1)a x f x x --=-(1)当a >0时,由'()f x =0,得11x =+1,21x =<1, 此时 f ′〔x 〕=123()()(1)a x x x x x ----. 当x ∈〔1,x 1〕时,f ′〔x 〕<0,f (x )单调递减; 当x ∈〔x 1+∞〕时,f ′〔x 〕>0, f (x )单调递增. 〔2〕当a ≤0时,f ′〔x 〕<0恒成立,所以f (x )无极值. 综上所述,n =2时,当a >0时,f (x )在1x =+处取得极小值,极小值为2(1(1ln ).2a f a+=+当a ≤0时,f (x )无极值.评注:运用导数解决极值问题.一般地,当函数f (x )在x 0处连续,判别f (x 0)为极大(小)值的方法是:⑴ 假设0'()f x =0,且在x 0附近的左侧()f x '>0,右侧()f x '<0,那么f (x 0)是极大值,⑵ 如果在x 0附近的左侧()f x '<0,右侧()f x '>0,那么f (x 0)是极小值. 五、最值问题例5 求函数f (x )=x 4-2x 2+5在[-2,2]上的最大值与最小值. 分析:可先求出导数及极值点,再计算.解: ()f x '=4x 3-4x ,令()f x '=0,解得x 1=-1,x 2=0,x 3=1,均在(-2,2)内. 计算f (-1)=4,f (0)=5,f (1)=4,f (-2)=13,f (2)=13. 通过比拟,可见f (x ) 在[-2,2]上的最大值为13,最小值为4.评注:运用导数求最大(小)值的一般步骤如下: 假设f (x )在[a ,b ]上连续,在(a ,b )内可导,那么⑴ 求()f x ',令()f x '=0,求出在(a ,b )内使导数为0的点及导数不存在的点. ⑵ 比拟三类点:导数不存在的点,导数为0的点及区间端点的函数值,其中最大者便是f (x )在[a ,b ]上的最大值,最小者便是f (x )在[a ,b ]上的最小值.六、应用问题例6 用总长的钢条制成一个长方体容器的框架,如果所制做容器的底面的一边比另一边长0.5m ,那么高为多少时容器的容积最大?并求出它的最大容积.分析:本小题主要考查应用所学导数的知识、思想和方法解决实际问题的能力,建立函数式、解方程、不等式、最大值等根底知识.解:设容器底面短边长为x m ,那么另一边长为()0.5x + m ,高为()14.8440.5 3.224x x x --+=-.由3.220x ->和0x >,得0 1.6x <<, 设容器的容积为3ym ,那么有()()0.5 3.22y x x x =+- ()0 1.6x <<.即322 2.2 1.6y x x x =-++, 令0y '=,有26 4.4 1.60x x -++=,即2151140x x --=,解得11x =,2415x =-〔不合题意,舍去〕.当x =1时,y 取得最大值,即max 2 2.2 1.6 1.8y =-++=, 这时,高为3.221 1.2-⨯=.答:容器的高为m 时容积最大,最大容积为31.8m .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考中数学导数的解法1、导数的背景:(1)切线的斜率;(2)瞬时速度.如一物体的运动方程是21s t t =-+,其中s 的单位是米,t 的单位是秒,那么物体在3t =时的瞬时速度为_____(答:5米/秒)2、导函数的概念:如果函数()f x 在开区间(a,b )内可导,对于开区间(a,b )内的每一个0x ,都对应着一个导数 ()0f x ' ,这样()f x 在开区间(a,b )内构成一个新的函数,这一新的函数叫做()f x 在开区间(a,b )内的导函数, 记作 ()0lim x yf x y x∆→∆'='=∆()()limx f x x f x x∆→+∆-=∆,导函数也简称为导数。
提醒:导数的另一种形式00xx 0)()(lim )(0x x x f x f x f y x x --='='→=如(1)*⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,则=a =b解:⎩⎨⎧>+≤==11)(2x bax x xx f y 在1=x 处可导,必连续1)(lim 1=-→x f xb a x f x +=+→)(lim 1 1)1(=f∴ 1=+b a2lim 0=∆∆-→∆xy x a x y x =∆∆+→∆0lim∴ 2=a 1-=b(2)*已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限: (1)hh a f h a f h 2)()3(lim--+→∆;(2)ha f h a f h )()(lim 20-+→∆分析:在导数定义中,增量△x 的形式是多种多样,但不论△x 选择哪种形式,△y 也必须选择相对应的形式。
利用函数f(x)在a x =处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。
解:(1)hh a f h a f h 2)()3(lim--+→h h a f a f a f h a f h 2)()()()3(lim 0--+-+=→b a f a f ha f h a f h a f h a f h h a f a f h a f h a f h h h h 2)('21)('23)()(lim 213)()3(lim 232)()(lim2)()3(lim0000=+=---+-+=--+-+=→→→→ (2)⎥⎦⎤⎢⎣⎡-+=-+→→h h a f h a f h a f h a f h h 22020)()(lim )()(lim00)('lim )()(lim 0220=⋅=⋅-+=→→a f h h a f h a f h h说明:只有深刻理解概念的本质,才能灵活应用概念解题。
解决这类问题的关键是等价变形,使极限式转化为导数定义的结构形式。
可以证明:可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数3、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ∆=+∆-;(2)求平均变化率()()00f x x f x y x x+∆-∆=∆V ;(3)取极限,得导数()00lim x yf x x →∆'=∆V 。
也可(1)求)(x f ',(2))(0x f '.4、导数的几何意义:函数()f x 在点0x 处的导数的几何意义,就是曲线()y f x =在点()()0,0P x f x 处的切线的斜率,即曲线()y f x =在点()()0,0P x f x 处的切线的斜率是()0f x ',相应地切线的方程是()()000y y f x x x -='-。
特别提醒:(1)在求曲线的切线方程时,要注意区分所求切线是曲线上某点处的切线(只有当此点在曲线上时,此点处的切线的斜率才是0()f x '),还是过某点的切线:曲线上某点处的切线只有一条,而过某点的切线不一定只有一条,即使此点在曲线上也不一定只有一条切线,也未必和曲线只有一个交点; (2)求过某一点的切线方程时也是通过切点坐标来求。
如(1)P 在曲线323+-=x x y 上移动,在点P 处的切线的倾斜角为α,则α的取值范围是______(答:),43[)2,0[πππY );(2)直线13+=x y 是曲线a x y -=3的一条切线,则实数a 的值为_______(答:-3或1); (4)曲线13++=x x y 在点)3,1(处的切线方程是______________(答:410x y --=);(5)已知函数x ax x x f 432)(23++-=,又导函数)('x f y =的图象与x 轴交于(,0),(2,0),0k k k ->。
①求a 的值;②求过点)0,0(的曲线)(x f y =的切线方程(答:①1;②4y x =或358y x =)。
5、导数的运算法则:;)(;)(;)(2v v u v u v u v u v u uv v u v u '-'=''+'=''±'='±6.常见函数的导数公式:(1)常数函数的导数为0,即0C '=(C 为常数); (2)()()1n n x nx n Q -'=∈,与此有关的如下:()112211,x x x x ''-⎛⎫⎛⎫='=-'==⎪ ⎪⎝⎭⎝⎭ cosx )(sinx =' ;e )(e -sinx ;)(cosx x x ='=' ;log 1)(log ;x 1)(lnx lna;a )(a e a xa x x x='='= 7.(理科)复合函数的导数:;x u x u y y '⋅'='一般按以下三个步骤进行:(1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导); (3)把中间变量代回原自变量(一般是x )的函数。
也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将已知函数对中间变量求导)'(μy ,中间变量对自变量求导)'(x μ;最后求x y ''μμ⋅,并将中间变量代回为自变量的函数。
整个过程可简记为分解——求导——回代。
熟练以后,可以省略中间过程。
若遇多重复合,可以相应地多次用中间变量。
如(1)已知函数n m mx x f -=)(的导数为38)(x x f =',则=n m _____(答:14); (2)函数2)1)(1(+-=x x y 的导数为__________(答:2321y x x '=+-);(3)若对任意x R ∈,3()4,(1)1f x x f '==-,则)(x f 是______(答:2)(4-=x x f ) 8、函数的单调性:(1)函数的单调性与导数的关系①若()0f x '>,则()f x 为增函数;若()0f x '<,则()f x 为减函数;若()0f x '=恒成立,则()f x 为常数函数;若()f x '的符号不确定,则()f x 不是单调函数。
可导函数y =f (x )在某个区间内0)(>'x f 是函数f(x)在该区间上为增函数的充分条件②若函数()y f x =在区间(,a b )上单调递增,则()0f x '≥,反之等号不成立(等号不恒成立时,反过来就成立);若函数()y f x =在区间(,a b )上单调递减,则()0f x '≤,反之等号不成立(等号不恒成立时,反过来就成立)。
提醒:导数求单调性可用于求函数值域,证明不等式(不等式一端化为0)如(1)函数c bx ax x x f +++=23)(,其中c b a ,,为实数,当032<-b a 时,)(x f 的单调性是______(答:增函数);(2)设0>a 函数ax x x f -=3)(在),1[+∞上单调函数,则实数a 的取值范围______(答:03a <≤); (3)已知函数b bx x x f ()(3+-=为常数)在区间)1,0(上单调递增,且方程0)(=x f 的根都在区间]2,2[-内,则b 的取值范围是____________(答:[3,4]);(4)已知1)(2+=x x f ,22)(24++=x x x g ,设)()()(x f x g x λϕ-=,试问是否存在实数λ,使)(x ϕ在)1,(--∞上是减函数,并且在)0,1(-上是增函数?(答:4λ=)(2)利用导数求函数单调区间的步骤:(1)求()f x '(注意定义域);(2)求方程()0f x '=的根,设根为12,,n x x x L ;(3)12,,n x x x L 将给定区间分成n+1个子区间(在此有一个比较根的大小问题),再在每一个子区间内判断()f x '的符号,由此确定每一子区间的单调性。
如设函数cx bx ax x f ++=23)(在1,1-=x 处有极值,且2)2(=-f ,求)(x f 的单调区间。
(答:递增区间(-1,1),递减区间(),1,(1,)-∞-+∞)(3)利用导数函数的单调性确定参变数(已知函数)(x f 的单调性) 转化为0)(0)(≤'≥'x f x f 或恒成立 7、函数的极值:(1)定义:设函数()f x 在点0x 附近有定义,如果对0x 附近所有的点,都有0()()f x f x <,就说是0()f x 函数()f x 的一个极大值。
记作y 极大值=0()f x ,如果对0x 附近所有的点,都有0()()f x f x >,就说是0()f x 函数()f x 的一个极小值。
记作y 极小值=0()f x 。
极大值和极小值统(2)求函数()y f x =在某个区间上的极值的步骤:(i )求导数()f x ';(ii )求方程()0f x '=的根0x ;(iii )检查()f x '在方程()0f x '=的根0x 的左右的符号:“左正右负”⇔()f x 在0x 处取极大值;“左负右正”⇔()f x 在0x 处取极小值。
注:导数为零的点未必是极值点,特别提醒:(1)0x 是极值点的充要条件是0x 点两侧导数异号,而不仅是()0f x '=0,()0f x '=0是0x 为极值点的必要而不充分条件。