【解析版】山东省滨州市博兴县2019年七年级下期末数学试卷
2019-2020学年山东省滨州市滨城区人教版七年级(下)期末数学试卷解析版

2019-2020学年山东省滨州市滨城区七年级第二学期期末数学试卷一、选择题1.(4分)下列各数中,是无理数的是()A.B.3.14C.D.2π2.(4分)点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5,则AB 的长度一定不是()A.10B.8C.5D.33.(4分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b B.a(c﹣1)<b(c﹣1)C.ac﹣1>bc﹣1D.a+c>b﹣c4.(4分)如图,直角△ABC沿BC方向平移到△DEF的位置,平移的距离为8,AB=6,则图中四边形ACFD的面积是()A.24B.36C.48D.以上答案都不对5.(4分)在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为4,到y轴的距离为3,则点P的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)6.(4分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解7.(4分)若实数x,y满足|x﹣3|+=0,则(x+y)3的平方根为()A.4B.8C.±4D.±88.(4分)若关于x,y的方程x2m﹣1+4y n+2=6是二元一次方程,则m,n的值是()A.m=1,n=﹣1B.m=﹣1,n=1C.m=,n=D.m=,n=9.(4分)已知方程组,则2x+6y的值是()A.﹣2B.2C.﹣4D.410.(4分)移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,结果其中有20位使用了5G手机.下列关于该调查说法错误的是()A.该调查方式是抽样调查B.样本是20位大学生C.样本容量是500D.5G手机在该高校的使用率约是4%11.(4分)下列说法:(1)负数没有立方根;(2)在同一平面内,不相交的两条线段互相平行;(3)平面内,过一点有且仅有一条直线垂直于已知直线;(4)相等的角是对顶角;(5)的算术平方根是2.其中正确的个数有()A.5B.4C.1D.012.(4分)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)二、填空题:本大题共5个小题,满分30分,每小题填对最后结果得6分.13.(6分)计算:(1)+(﹣1)2020+=;(2)|﹣2|+=.14.(6分)若a<﹣2<b,a,b是两个连续的整数,则a=,b=.15.(6分)在平面直角坐标系中,连接M(﹣2,3)与N(x,3)的线段与x轴的关系是,若线段MN的长为5,则x=.16.(6分)若关于x的不等式(a﹣5)x>1的解集为x<,则a的取值范围是.17.(6分)若关于x,y的方程组的解都是非负数,则m的取值范围为.三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.18.(14分)(1)在等式y=kx+b中,当x=﹣1时,y=﹣5;当x=2时,y=4.求k,b 的值.(2)x取哪些自然数值时,5x+2≥3(x﹣1)与x﹣1<7﹣x都成立?19.(10分)如图,E,F分别是AB和CD上的点,CE,BF分别交AD于G,H,∠1=∠2,∠B=∠C.求证:AB∥CD.20.(11分)在党和国家的正确领导下,COVID﹣19在中国被得到有效控制.为了了解全市市民对“居家生活和戴口罩”的认识,市调查队随机抽取了10~60岁的m名市民进行了调查,并对所抽取的各年龄段的人数数据进行分组整理并绘制成了下列不完整的图表.组别年龄段频数一组10≤x<20670二组20≤x<30a三组30≤x<40550四组40≤x<50500五组50≤x<60780(1)求出m和a的值,并补全上面的频数分布直方图;(2)求第3组人数在扇形统计图中所对应的圆心角的度数;(3)假设该市现有10~60岁的市民300万人,问10~20岁年龄段约有多少人?21.(11分)如图,在方格边长为1的方格纸上画平面直角坐标系,若△ABO内任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0﹣3),用一句话描述该点的平移过程:.若将△ABC作同样的平移得到△A1B1C1.完成下面问题:(1)画出△A1B1C1,并写出A1,B1,C1的坐标;(2)求△A1B1C1的面积.22.(12分)某蔬菜种植基地为提高蔬菜产量,计划对甲,乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?23.(14分)如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)直接写出∠AEP,∠EPF,∠PFC满足的数量关系.(2)若QE,QF分别平分∠PEB和∠PFD.①当∠EPF=60°时,∠EQF=.②猜想∠EPF与∠EQF的数量关系,并说明理由.参考答案一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,将其字母标识填涂在答题卡中.每小题选对得4分,选错,不选或多选均记0分,满分48分.1.(4分)下列各数中,是无理数的是()A.B.3.14C.D.2π解:A.,是整数,属于有理数;B.3.14是有限小数,属于有理数;C.是分数,属于有理数;D.2π是无理数.故选:D.2.(4分)点A为直线a外一点,点B是直线a上一点,点A到直线a的距离为5,则AB 的长度一定不是()A.10B.8C.5D.3解:∵A为直线a外一点,B是直线a上一点,点A到直线a的距离为5,∴AB最短为5.∴AB≥5,∴AB的长度一定不是3.故选:D.3.(4分)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b B.a(c﹣1)<b(c﹣1)C.ac﹣1>bc﹣1D.a+c>b﹣c解:A.根据a>b和c<0不能推出a+c<b,故本选项不符合题意;B.∵c<0,∴c﹣1<0,∵a>b,∴a(c﹣1)<b(c﹣1),故本选项符合题意;C.∵a>b,c<0,∴ac<bc,∴ac﹣1<bc﹣1,故本选项不符合题意;D.,根据a>b和c<0不能推出a+c和b﹣c的大小,故本选项不符合题意;故选:B.4.(4分)如图,直角△ABC沿BC方向平移到△DEF的位置,平移的距离为8,AB=6,则图中四边形ACFD的面积是()A.24B.36C.48D.以上答案都不对解:∵△DEF是△ABC平移得到的,∴AD∥CF,AD=CF=8,∴四边形ACFD是平行四边形,∴四边形ACFD的面积是:AD•AB=8×6=48,故选:C.5.(4分)在平面直角坐标系的第四象限内有一点P,点P到x轴的距离为4,到y轴的距离为3,则点P的坐标是()A.(3,﹣4)B.(4,﹣3)C.(﹣4,3)D.(﹣3,4)解:∵第四象限的点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是3,纵坐标是﹣4,∴点P的坐标为(3,﹣4).故选:A.6.(4分)一个不等式组中的两个不等式的解集如图所示,则这个不等式组的解集为()A.﹣1<x≤2B.﹣1≤x<2C.﹣1<x<2D.无解解:由图可得,这个不等式组的解集为﹣1<x≤2.故选:A.7.(4分)若实数x,y满足|x﹣3|+=0,则(x+y)3的平方根为()A.4B.8C.±4D.±8解:∵|x﹣3|+=0,∴x﹣3=0,y﹣1=0,∴x=3,y=1,则(x+y)3=(3+1)3=64,64的平方根是:±8.故选:D.8.(4分)若关于x,y的方程x2m﹣1+4y n+2=6是二元一次方程,则m,n的值是()A.m=1,n=﹣1B.m=﹣1,n=1C.m=,n=D.m=,n=解:由题意得:2m﹣1=1,n+2=1,解得:m=1,n=﹣1,故选:A.9.(4分)已知方程组,则2x+6y的值是()A.﹣2B.2C.﹣4D.4解:两式相减,得x+3y=﹣2,∴2(x+3y)=﹣4,即2x+6y=﹣4,故选:C.10.(4分)移动通讯行业人员想了解5G手机的使用情况,在某高校随机对500位大学生进行了问卷调查,结果其中有20位使用了5G手机.下列关于该调查说法错误的是()A.该调查方式是抽样调查B.样本是20位大学生C.样本容量是500D.5G手机在该高校的使用率约是4%解:A、该调查方式是抽样调查,该说法不符合题意;B、该调查中的样本是500位大学生5G手机的使用情况,该说法符合题意;C、该调查中的样本容量是500,该说法不符合题意;D、=4%,由此估计5G手机在该高校的使用率约是4%,该说法不符合题意.故选:B.11.(4分)下列说法:(1)负数没有立方根;(2)在同一平面内,不相交的两条线段互相平行;(3)平面内,过一点有且仅有一条直线垂直于已知直线;(4)相等的角是对顶角;(5)的算术平方根是2.其中正确的个数有()A.5B.4C.1D.0解:(1)错误,任何实数都有且只有一个立方根;(2)错误,线段延长后可能相交;(3)在同一平面内,过一点有一条而且仅有一条直线垂直于已知直线,正确;(4)错误,相等的角不一定是对顶角故此选项错误;(5)错误,的算术平方根是.故选:C.12.(4分)在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2020÷4=505,所以A2020的坐标为(505×2,0),则A2020的坐标是(1010,0).故选:A.二、填空题:本大题共5个小题,满分30分,每小题填对最后结果得6分.13.(6分)计算:(1)+(﹣1)2020+=6;(2)|﹣2|+=2.解:(1)原式=2+1+3=6;(2)原式=2﹣+=2.故答案为:(1)6;(2)2.14.(6分)若a<﹣2<b,a,b是两个连续的整数,则a=0,b=1.解:∵2<<3,∴0<﹣2<1,∵a<﹣2<b,a,b是两个连续的整数,∴a=0,b=1,故答案为:0,1.15.(6分)在平面直角坐标系中,连接M(﹣2,3)与N(x,3)的线段与x轴的关系是平行,若线段MN的长为5,则x=3或﹣7.解:∵M(﹣2,3)与N(x,3),∴MN∥x轴,∵MN=5,∴x=﹣2+5=3或x=﹣2﹣5=﹣7,故答案为:平行,3或﹣7.16.(6分)若关于x的不等式(a﹣5)x>1的解集为x<,则a的取值范围是a<5.解:∵不等式(a﹣5)x>1的解集为x<,∴a﹣5<0,解得:a<5,故答案为:a<5.17.(6分)若关于x,y的方程组的解都是非负数,则m的取值范围为.解:解方程组得,,根据题意,得:,解得:,故答案为:.三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.18.(14分)(1)在等式y=kx+b中,当x=﹣1时,y=﹣5;当x=2时,y=4.求k,b 的值.(2)x取哪些自然数值时,5x+2≥3(x﹣1)与x﹣1<7﹣x都成立?解:(1)根据题意可得:,解得:;(2)根据题意,解不等式组得﹣≤x<4,故x取0,1,2,3时,不等式5x+2≥3(x﹣1)与x﹣1<7﹣x都成立.19.(10分)如图,E,F分别是AB和CD上的点,CE,BF分别交AD于G,H,∠1=∠2,∠B=∠C.求证:AB∥CD.【解答】证明:如图,∵∠1=∠3,∠1=∠2,∴∠3=∠2,∴CE∥BF,∴∠BFD=∠C,∵∠B=∠C,∴∠BFD=∠B,∴AB∥CD.20.(11分)在党和国家的正确领导下,COVID﹣19在中国被得到有效控制.为了了解全市市民对“居家生活和戴口罩”的认识,市调查队随机抽取了10~60岁的m名市民进行了调查,并对所抽取的各年龄段的人数数据进行分组整理并绘制成了下列不完整的图表.组别年龄段频数一组10≤x<20670二组20≤x<30a三组30≤x<40550四组40≤x<50500五组50≤x<60780(1)求出m和a的值,并补全上面的频数分布直方图;(2)求第3组人数在扇形统计图中所对应的圆心角的度数;(3)假设该市现有10~60岁的市民300万人,问10~20岁年龄段约有多少人?解:(1)本次调查的人数为:780÷26%=3000,即m=3000,a=3000﹣670﹣550﹣500﹣780=500,补充完整的频数分布直方图如右图所示;(2)360°×=66°,即第3组人数在扇形统计图中所对应的圆心角的度数是66°;(3)300×=67(万人),即10~20岁年龄段约有67万人.21.(11分)如图,在方格边长为1的方格纸上画平面直角坐标系,若△ABO内任意一点P(x0,y0)经平移后对应点为P1(x0+5,y0﹣3),用一句话描述该点的平移过程:将点P先右平移5个单位,再向下平移3个单位得到点P0.若将△ABC作同样的平移得到△A1B1C1.完成下面问题:(1)画出△A1B1C1,并写出A1,B1,C1的坐标;(2)求△A1B1C1的面积.解:故答案为:将点P先右平移5个单位,再向下平移3个单位得到点P0;(1)如图,△A1B1C1为所作;A1(1,1),B1(﹣1,﹣4),C1(4,﹣3);(2)△A1B1C1的面积=5×5﹣×5×1﹣×5×2﹣×3×4=11.5.22.(12分)某蔬菜种植基地为提高蔬菜产量,计划对甲,乙两种型号蔬菜大棚进行改造,根据预算,改造2个甲种型号大棚比1个乙种型号大棚多需资金6万元,改造1个甲种型号大棚和2个乙种型号大棚共需资金48万元.改造1个甲种型号和1个乙种型号大棚所需资金分别是多少万元?解:设改造1个甲种型号大棚所需资金是x万元,改造1个乙种型号大棚所需资金是y 万元,由题意得:,解得:,答:改造1个甲种型号大棚所需资金是12万元,改造1个乙种型号大棚所需资金是18万元.23.(14分)如图,AB∥CD,定点E,F分别在直线AB,CD上,在平行线AB,CD之间有一动点P,满足0°<∠EPF<180°.(1)直接写出∠AEP,∠EPF,∠PFC满足的数量关系.(2)若QE,QF分别平分∠PEB和∠PFD.①当∠EPF=60°时,∠EQF=150°或30°.②猜想∠EPF与∠EQF的数量关系,并说明理由.解:(1)当P点在EF的左侧时,如图1,过点P作PH∥AB,则∠EPF=∠EPH+∠FPH=∠AEP+∠CFP;当P点在EF的右侧时,如图2,同理可得:∠AEP+∠EPF+∠PFC=360°;(2)①如图3,若当P点在EF的左侧时,∵∠EPF=60°,∴∠PEB+∠PFD=360°﹣60°=300°,∵EQ,FQ分别平分∠PEB和∠PFD,∴,∠QFD=,∴∠EQF=∠BEQ+∠QFD===150°;如图4,当P点在EF的右侧时,∵∠EPF=60°,∴∠PEB+∠PFD=60°,∴∠BEQ+∠QFD===30°;故答案为:150°或30°;②如图3,EQ,FQ分别平分∠PEB和∠PFD,∴,∠QFD=,∴∠EPF=180°﹣2∠BEQ+180°﹣2∠DFQ=360°﹣2(∠BEQ+∠PFD),∵∠EQF=∠BEQ+∠DFQ,∴∠EPF+2∠EQF=360°;如图4,EQ,FQ分别平分∠PEB和∠PFD,∴,∠QFD=,∵∠EPF=∠BEP+∠PFD,∴∠EPF=2(∠BEQ+∠DFQ),∵∠BEQ+∠DFQ=∠EQF,∴∠EPF=2∠EQF;综合以上可得∠EPF与∠EQF的数量关系为:∠EPF+2∠EQF=360°或∠EPF=2∠EQF.。
2022-2023学年山东省滨州市博兴县七年级(下)期末数学试卷(含解析)

2022-2023学年山东省滨州市博兴县七年级(下)期末数学试卷学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,小胡同学的家在点P处,他在行走速度相同的情况下,想尽快地到达公路边,他选择沿线段PB去公路边,他这一选择用到的数学知识是( )A. 两点之间,线段最短B. 两点之间,直线最短C. 垂线段最短D. 两点确定一条直线2. 用加减消元法解方程组{2x+5y=−10 ①5x−3y=−1 ②时,下列结果正确的是( )A. 要消去x,可以将①×3−②×5B. 要消去y,可以将①×5+②×2C. 要消去x,可以将①×5−②×2D. 要消去y,可以将①×3+②×23. 在数轴上表示不等式x−3≥0的解集,正确的是( )A. B.C. D.4. 下列事件中适合采用抽样调查的是( )A. 对乘坐飞机的乘客进行安检B. 学校招聘教师,对应聘人员进行面试C. 对“天宫2号”零部件的检查D. 对某品牌某批次灯泡使用寿命情况的调查5. 如图是天安门周围的景点分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系.如果表示景山的点的坐标为(0,4),表示王府井的点的坐标为(3,1),则表示美术馆的点的坐标为( )A. (4,2)B. (−1,2)C. (2,−1)D. (2,4)6. 如图,△DEF 是由△ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上.若BF =14,EC =6.则BE 的长度是( )A. 2B. 4C. 5D. 37. 下列判断:①0.25的平方根是0.5;②只有正数才有平方根;③−7是−49的平方根;④(25)2的平方根是±25.正确的有个.( )A. 1 B. 2 C. 3 D. 48. 已知实数a ,b 满足a−1>b−1,则下列选项中错误的为( )A. a>bB. a+1>b+1C. −a<−bD. 3a>4b9. 一副直角三角尺如图摆放,点D在BC的延长线上,EF//BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是( )A. 15°B. 25°C. 45°D. 60°10. 《孙子算经》中有一题,原文是:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果设有x人,y辆车,则可列方程组( )A. {x=3(y−2)x−9=2y B. {x=3(y−2)y−9=2x C.{x=3y−2x−9=2y D.{x=3(y+2)x+9=2y11. 下列命题中真命题的个数有( )(1)经过一点有且只有一条直线与这条直线平行(2)过一点有且只有一条直线与已知直线垂直(3)过直线m外一点P向这条直线作垂线段,这条垂线段就是点P到直线m的距离(4)如果两条直线都和第三条直线平行,那么这两条直线也互相平行A. 1个B. 2个C. 3个D. 4个12. 若关于x的不等式组{x<2(x−a)x−1≤23x恰有3个整数解,则a的取值范围是( )A. 0≤a<12B. 0≤a<1 C. −12<a≤0 D. −1≤a<0第II卷(非选择题)二、填空题(本大题共6小题,共24.0分)13. 点P在第四象限内,点P到x轴的距离是1,到y轴的距离是2,那么点P的坐标为______.14. 若方程x2a−b−3y a+b=2是关于x,y的二元一次方程,则a−b=.15. 已知正数x的两个不同的平方根是2a−3和5−a,则x的值为______ .16.如图,把一张长方形纸片ABCD沿EF折叠,点D与点C分别落在点D′和点C′的位置上,ED′与BC的交点为G,若∠EFG=55°,则∠1为度.17. 在平面直角坐标系中,点A(2a+4,6−2a)在第二象限,则a的取值范围为______ .18. 为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二学生进行了问卷调查,其中一项是疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整),由图中信息可知,下列结论正确的序号______ .①本次调查的样本容量是600;②选“责任”的有120人;③扇形统计图中“生命”所对应的扇形圆心角的大小为64.8°;④选“感恩”的人数最多.三、解答题(本大题共6小题,共60.0分。
山东省滨州市七年级下学期期末数学试卷

山东省滨州市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)如图所示,下列说法正确的是()A . ∠1和∠2是同位角B . ∠1和∠4是内错角C . ∠1和∠3是内错角D . ∠1和∠3是同旁内角2. (2分) (2019七下·海拉尔期末) 将一副三角板按如图放置,则下列结论中,正确的有()①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠CA . ①②③B . ①②④C . ③④D . ①②③④3. (2分) (2016七下·抚宁期末) 下列说法中,正确的是()A . 在同一平面内,过直线外一点,有无数条直线与已知直线垂直B . 由平移得到的两个图形的各组对应点连线互相垂直C . 命题“一个角的余角一定是锐角”是真命题D . 是无理数4. (2分)下列命题是真命题的是()A . 若ac>bc,则a>bB . 4的平方根是2C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 顺次连接任意四边形各边中点所得的四边形是平行四边形5. (2分) (2017八上·常州期末) 下列运算正确的是()A . =2B . =﹣2C . =±2D . =±26. (2分) (2019九上·黑山期中) 菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()A . (-3,﹣1)B . (3,﹣1)C . (3,1)D . (﹣1,3)7. (2分)一个人从A点出发向北偏东60°方向走了4米到B点,再从B点向南偏西15°方向走了3米到C 点,那么∠ABC等于A . 45°B . 75°C . 105°D . 135°8. (2分)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人。
滨州市博兴区第二学期七年级期末考试.doc

滨州市博兴区期末考试 七年级数学试题Ⅰ卷一、选择题(每小题3分,共45分。
选出唯一正确答案的代号填在Ⅱ卷的答题栏内)1、如图,直线AB CD 、相交于点垂直足为,O EO CD ⊥则图中AEO ∠与DOB ∠的关系是A .互为余角B .互为补角C .对顶角D .邻补角2、如图,//a b ,则下列结论:①12∠=∠;②13∠=∠;③23∠=∠中,不正确的个数为A .0个B .1个C .2个D .3个3、点P(,1m -)在第三象限内,则点Q(,0m -)在A .x 轴正半轴上B .x 轴负半轴上C .y 轴正半轴上D .y 轴负半轴上4、过A(2,4-)和B(2,4--)两点的直线一定A .垂直于x 轴B .与y 轴相交但不平行于x 轴C .平行于x 轴D .与x 轴、y 轴都相交5、能把三角形的面积分成相等的两部分的是 A .三角形的角平分线B .三角形的高C .三角形的中线D .以上均不对6、三角形的两边长分别为2和6,则周长L 的取值范围是A .4<L<8B .12<L<16C .11<L<13D .10<L<167、如图,B ∠和C ∠的角平分线相交于点P ,若A ∠=50°,则P ∠的度数为A .110°B .115°C .120°D .125°8、在等式y kx b =+中,当1x =时,2y =;1x =-时,4y =;那么当0x =时,y =A .0B .3C .6D .99、关于x 、y 的二元一次方程组59x y kx y k+=⎧⎨-=⎩的解也是二元一次方程236x y +=的解,则k的值是A .34-B .34C .43D .43-10、若2m <,则关于x 的不等式(2)2m x m ->-的解集为A .1x >B .1x <C .1x >-D .1x <-11、如果0a b +<,且0a >,那么a 、b 、a -、b -的大小关系为A .a b a b -<<<-B .b a a b <-<<-C .a b a b <-<-<D .b a b a -<-<<12A .±2B .C .±4D13、如果一个数的平方根与其立方根相同,那么这个数为 A .0B .1C .0或1D .不存在14、若x -不大于-2,那么23x -的值A .不大于lB .不小于lC .大于lD .小于l15、二元一次方程的25x y +=正整数解的组数为A .1B .2C .3D .无数二、填空题(每小题4分,共20分,把正确答案填在Ⅱ卷的答题栏内) 16、在同一平面内,三条直线的交点个数为 。
2018-2019学年山东省滨州市七年级下学期期末考试数学试卷及答案解析

2018-2019学年山东省滨州市七年级下学期期末考试数学试卷一、选择题(本题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,每小题3分,满分36分)
1.下列调查中,适合采用全面调查方式的是()
A.调查国产航母的所有零部件质量
B.调查我县的空气污染情况
C.调查一批新型节能灯的使用寿命
D.调查我县七年级学生的身高情况
2.解方程组时,把①代入②,得()
A.2(2y﹣3)﹣3x=9B.2y﹣3(2y+3)=9
C.(3y﹣2)﹣3x=9D.2y﹣3(2y﹣3)=9
3.一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()
A.x≤1B.x>3C.x≥3D.1≤x<3
4.若点M的坐标为(|b|+2,),则下列说法正确的是()
A.点M在x轴正半轴上B.点M在x轴负半轴上
C.点M在y轴正半轴上D.点M在y轴负半轴上
5.如图,数轴上点P表示的数可能是()
A .
B .
C .
D .
6.某次考试中,某班级的数学成绩统计图如下.下列说法错误的是()
A.得分在70~80分之间的人数最多
B.该班的总人数为40
第1 页共24 页。
山东省滨州市2019-2020学年初一下期末达标测试数学试题含解析

山东省滨州市2019-2020学年初一下期末达标测试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题只有一个答案正确)1.若a>b,则下列不等式中一定成立的是()A.a﹣b<0 B.ab>0 C.﹣a>﹣b D.a+1>b+1【答案】D【解析】【分析】根据不等式的基本性质解答即可.【详解】∵a>b,∴a﹣b>0,故A错误;由于不能确定a与b是否同号,所以ab的符号不能确定,故B错误,﹣a<﹣b,故C错误,a+1>b+1,故D正确.故选:D.【点睛】本题考查了不等式的性质,熟练运用不等式的性质是解题的关键.2.将多项式因式分解,正确的是()A.B.C.D.【答案】A【解析】【分析】利用十字相乘法分解因式即可得解.【详解】解:=.故选A.【点睛】本题主要考查因式分解,解此题的关键在于熟练掌握十字相乘法分解因式.3.将一张长与宽的比为2:1的长方形纸片按如图①、②所示的方式对折,然后沿图③中的虚线裁剪,得到图④,最后将图④的纸片再展开铺平,则所得到的图案是( )A .B .C .D .【答案】A 【解析】 【详解】根据图示的裁剪方式,由折叠的性质,可知此图最后剪去了两个角和一边的中间被剪,因此答案为A. 故选A4.如图所示,在ABC ∆中,AC BC >,B 、C 、D 三点共线。
观察图中尺规作图的痕迹,则下列结论不正确的是( )A .ACE A ∠=∠B .DCE B ∠=∠C .CE AB ∥D .∠=∠ACE DCE【答案】D 【解析】 【分析】由图可得ACE A ∠=∠,从而得到CE AB ∥,再由平行线的性质得到DCE B ∠=∠. 【详解】由作图可得:ACE A ∠=∠, ∴CE AB ∥, ∴DCE B ∠=∠ .故A 、B 、C 选项结论正确,不符合题意;D 选项结论错误,符合题意. 故选:D. 【点睛】考查了平行线的判定与性质,解题时注意:内错角相等,两直线平行;两直线平行,同位角相等. 5.下列四个数中,与最接近的整数是( ) A .4B .5C .6D .7【答案】B 【解析】 【分析】 直接得出1<<6,进而得出最接近的整数.【详解】 ∵1<<6,且1.012=21.1021, ∴与无理数最接近的整数是:1.故选B . 【点睛】此题主要考查了估算无理数的大小,正确估算出的取值范围是解题关键.6.下列计算正确的是() A .(a 3)2=a 5 B .(a-b)2=a 2-b 2C .a ・a 3=a 4D .(-3a)3=-9a 3【答案】C 【解析】 【分析】根据整式运算法则逐个分析. 【详解】 A. (a 3)2=a 6 B. (a-b)2=a 2-2ab+b 2 C. a ・a 3=a 4 D. (-3a)3=-27a 3 故选:C 【点睛】考核知识点:整式运算.掌握运算法则是关键.7.如图,在等腰直角三角形ABD 中,,AD BD =点F 是AD 上的一个动点,过点A 作,AC BF ⊥交BF 的延长线于点,E 交BD 的延长线于点,C 则下列说法错误的是( )A . CD DF =B .AC BF = C .AD BE = D .45CAD ABF ∠+∠=︒【答案】C 【解析】 【分析】由ASA 证明∆BDF ≅∆ADC ,可得 CD DF =,AC BF =即可判断A 、B ,由∠CAD=∠FBD ,结合等腰直角三角形的性质,即可判断D ,由AD=BD <BF <BE ,即可判断C . 【详解】∵在等腰直角三角形ABD 中,∠ADB=90°,AC BF ⊥, ∴∠CAD+∠C=∠FBD+∠C=90°, ∴∠CAD=∠FBD ,∵AD BD =,∠BDF=∠ADC=90°, ∴∆BDF ≅∆ADC (ASA ), ∴ CD DF =,AC BF =, 故A 、B 正确; ∵∠CAD=∠FBD ,∴18090452CAD ABF FBD ABF ABD ︒-︒∠+∠=+===︒∠∠∠, 故D 正确; ∵AD=BD <BF <BE , ∴AD BE ≠, 故C 错误, 故选C . 【点睛】本题主要考查三角形全等的判定和性质定理以及等腰直角三角形的性质定理,掌握三角形全等的判定和性质定理是解题的关键.8.若x >y ,则下列式子中错误的是( ) A .x+3>y+3 B .x-2<y-2C .5x>5y D .-2x <-2y【答案】B【解析】 【分析】利用不等式的性质即可解答. 【详解】A. x+3>y+3,正确;B. x-2>y-2,故B 选项错误;C.55x y,正确; D. -2x <-2y ,正确; 故选B 【点睛】本题考查了不等式的性质,熟练掌握不等式的性质是解题关键.9 3.1415926,32,, 0.5757757775…(相邻两个5之间的7的个数逐次加1),无理数的个数( ). A .1 B .2 C .3 D .4【答案】D 【解析】0.5757757775…(相邻两个5之间的7的个数逐次加1),共4个,故选D.10( ) A .﹣4 B .±2C .±4D .4【答案】B 【解析】 【分析】4,再根据平方根的定义求解即可. 【详解】 ∵42=16,4,±2, 故选B . 【点睛】. 二、填空题11.已知x=3,y=2 是方程4x+ky=2的解,则k=______。
滨州市七年级下学期期末数学试题题

滨州市七年级下学期期末数学试题题一、选择题1.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为()A.0.1289×1011B.1.289×1010C.1.289×109D.1289×1072.一周时间有604800秒,604800用科学记数法表示为()A.2604810⨯B.56.04810⨯C.66.04810⨯D.60.604810⨯3.如果﹣2xy n+2与 3x3m-2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.64.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱5.不等式x﹣2>0在数轴上表示正确的是()A.B.C.D.6.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠27.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°8.下列等式的变形中,正确的有()①由5 x=3,得x= 53;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得mn=1.A .1个B .2个C .3个D .4个 9.单项式﹣6ab 的系数与次数分别为( )A .6,1B .﹣6,1C .6,2D .﹣6,210.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元C .赚了50元D .不赔不赚11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元12.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( ) A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 14.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__. 15.已知关于x 的一元一次方程320202020xx n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 16.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.17.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.19.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).20.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.21.﹣225ab π是_____次单项式,系数是_____.22.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.23.已知代数式235x -与233x -互为相反数,则x 的值是_______. 24.用度、分、秒表示24.29°=_____.三、解答题25.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______. 26.计算:(1)23(1)27|2|--+- (2)2311(6)()232-⨯--27.阅读与思考:整式乘法与因式分解是方向相反的变形由(x+p)(x+q)=x 2+(P+q)x+pq 得 x 2+(p+q)x+Pq=(x+P)(x+q)利用这个式子可以将某些二次项系数是1的二次三项式分解因式, 例如:将式子x 2+3+2分解因式.分析:这个式子的常数项2=1×2,一次项系数3=1+2所以 x 2+3x+2=x 2+(1+2)x+1×2,x 2+3x+2=(x+1)(x+2) 请仿照上面的方法,解答下列问题 (1)分解因式:x 2+6x-27(2)若x 2+px+8可分解为两个一次因式的积,则整数p 的所有可能值是____ (3)利用因式分解法解方程:x 2-4x-12=028.一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元.计算每天最高价与最低价的差,以及这些差的平均值. 29.如图,已知点C 为AB 上的一点,12AC =,23CB AC =,点D 是AC 的中点,点E 是AB 的中点,求DE 的长30.全民健身运动已成为一种时尚 ,为了解揭阳市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷内容包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动. 以下是根据调查结果绘制的统计图表的一部分, 运动形式 ABCDE人数1230m54 9请你根据以上信息,回答下列问题:()1接受问卷调查的共有 人,图表中的m = ,n = . ()2统计图中,A 类所对应的扇形的圆心角的度数是 度.()3揭阳市环岛路是市民喜爱的运动场所之一,每天都有“暴走团”活动,若某社区约有1500人,请你估计一下该社区参加环岛路“暴走团”的人数.四、压轴题31.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数32.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC,BC;=;(2)当t为何值时,AP PQ(3)当t为何值时,P与Q第一次相遇;PQ=.(4)当t为何值时,1cm33.已知:∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD、OE.(1)如图①,当∠BOC=70°时,求∠DOE的度数;(2)如图②,若射线OC在∠AOB内部绕O点旋转,当∠BOC=α时,求∠DOE的度数.(3)如图③,当射线OC在∠AOB外绕O点旋转时,画出图形,直接写出∠DOE的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.B解析:B 【解析】 【分析】科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【详解】604800的小数点向左移动5位得到6.048, 所以数字604800用科学记数法表示为56.04810⨯, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110,a n ≤<为整数,表示时关键要正确确定a 的值以及n 的值. 3.C解析:C 【解析】 【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解. 【详解】解:∵﹣2xy n+2与 3x 3m-2y 是同类项, ∴3m-2=1,n+2=1,解得:m=1,n=-1, ∴|n ﹣4m|=|-1-4|=5, 故选C. 【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.C解析:C 【解析】 【分析】三棱柱的侧面展开图是长方形,底面是三角形. 【详解】解:由图可得,该展开图是由三棱柱得到的, 故选:C .此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.5.C解析:C【解析】【分析】先求出不等式的解集,再在数轴上表示出来,找出符合条件的选项即可.【详解】移项得,x>2,在数轴上表示为:故选:C.【点睛】本题考查的是在数轴上表示一元一次不等式的解集,解答此类题目的关键是熟知实心圆点与空心圆点的区别.6.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.8.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.9.D解析:D【解析】【分析】直接利用单项式的次数与系数确定方法分析得出答案.【详解】解:单项式﹣6ab的系数与次数分别为﹣6,2.故选:D.【点睛】此题主要考查了单项式,正确把握单项式的次数与系数确定方法是解题关键.10.A解析:A试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.考点:一元一次方程的应用11.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.12.A解析:A【解析】设一件的进件为x元,另一件的进价为y元,则x(1+25%)=200,解得,x=160,y(1-20%)=200,解得,y=250,∴(200-160)+(200-250)=-10(元),∴这家商店这次交易亏了10元.故选A.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.考点:数轴.14.2 【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2. 点睛:本题主要考查合并同类解析:2 【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m ﹣2=0,解得m =2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x 的取值无关,即含字母x 的系数为0.15.y =﹣. 【解析】 【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案. 【详解】解:∵关于x 的一元一次方程①的解为x =2020, ∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020, 解解析:y =﹣20183. 【解析】 【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案. 【详解】解:∵关于x 的一元一次方程320202020xx n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.16.1【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解解析:1【解析】【分析】把x=2代入转换成含有a的一元一次方程,求解即可得【详解】由题意可知2×(a+1)−4a=0∴2a+2−4a=0∴2a=2∴a=1故本题答案应为:1【点睛】解一元一次方程是本题的考点,熟练掌握其解法是解题的关键17.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 18.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.19.36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】32=x(x+2y)(x-2y).4x xy当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入20.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.21.三﹣【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】是三次单项式,系数是 .故答案为:三, .解析:三 ﹣25π 【解析】【分析】单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,由此可得答案.【详解】 225ab π-是三次单项式,系数是25π- . 故答案为:三,25π-. 【点睛】本题考查了单项式的知识,掌握单项式系数及次数的定义是解题的关键. 22.72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C 等级的百分比即可得.【详解】观察可知C 等级所占的百分比为20%,所以C 等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键.23.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.24.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′解析:241724︒'"【解析】【分析】进行度、分、秒的转化运算,注意以60为进制.【详解】根据角的换算可得24.29°=24°+0.29×60′=24°+17.4′=24°+17′+0.4×60″=24°17′24″.故答案为24°17′24″.此类题是进行度、分、秒的转化运算,相对比较简单,注意以60为进制.三、解答题25.(1) 画图见解析,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)15.【解析】【分析】(1)将△ABC 的三个顶点分别向上平移3个单位长度,然后再向右平移2个单位长度,连接各点,可以得到△A 1B 1C 1,根据网格特点,找到各点横纵坐标即可找到△A 1B 1C 1三个顶点的坐标;(2)四边形的面积可看成两个底为5,高为3的三角形的和,由三角形面积公式进行计算即可得.【详解】(1) △A 1B 1C 1如图所示,点A 1(0,5)、B 1(-1,2)、C 1(3,2);(2)四边形A 1ACC 1的面积为:11535322⨯⨯+⨯⨯=15, 故答案为:15.【点睛】 本题考查了作图——平移变换,四边形的面积,熟练掌握平移的性质以及网格的结构特征是解题的关键.26.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)23(1)27|2|--+-0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)(x+9)(x-3);(2)±9,±6;(3)x=6或-2【解析】【分析】(1)利用十字相乘法分解因式即可:(2)找出所求满足题意p 的值即可(3)方程利用因式分解法求出解即可【详解】(1)x 2+6x-27=(x+9)(x-3)故答案为:(x+9)(x-3);(2)∵8=1×8;8=-8×(-1);8=-2×(-4);8=4×2则p 的可能值为-1+(-8)=-9;8+1=9;-2+(-4)=-6;4+2=6∴整数p 的所有可能值是±9,±6故答案为:±9,±6;(3)∵方程分解得:(x-6)(x+2)=0可得x-6=0或x+2=0解得:x=6或x=-2【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则28.第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【解析】【分析】设开盘价为x 元,分别表示出每天最高价与最低价,并求出差价,再求差的平均值即可.【详解】解:设开盘价为x 元,第一天:最高价为(0.3)x +元,最低价(0.2)x -元,差价为:(0.3)(0.2)0.30.20.5x x x x +--=+-+=(元);第二天:最高价(0.2)x +元,最低价(0.1)x -元,差价为:(0.2)(0.1)0.20.10.3x x x x +--=+-+=(元);第三天:最高价x 元,最低价(0.13)x -元,差价为:(0.13)0.130.13x x x x --=-+=(元), 差的平均值为:0.50.30.130.313++=(元), 则第一天到第三天的差价分别为0.5元,0.3元,0.13元,差的平均值为0.31元.【点睛】此题考查了整式的加减,以及列代数式,弄清题意,求出差价是解本题的关键. 29.4【解析】【分析】 根据已知条件可求出28,203CB AC AB ===,再根据点D 是AC 的中点,点E 是AB 的中点,求出,DC AE ,由图可得出DE AE AD =-,计算求解即可.【详解】解:∵12AC =,23CB AC =∴28,203CB AC AB === ∵点D 是AC 的中点,点E 是AB 的中点∴10,6AE AD DC ===∴1064DE AE AD =-=-=.【点睛】本题考查的知识点是与线段中点有关的计算,能够根据图形找出相关线段间的数量关系是解此题的关键.30.(1)150、45、36;(2)28.8°;(3)450人【解析】【分析】(1)由B 项目的人数及其百分比求得总人数,根据各项目人数之和等于总人数求得m=45,再用D 项目人数除以总人数可得n 的值;(2)360°乘以A 项目人数占总人数的比例可得;(3)利用总人数乘以样本中C 人数所占比例可得.【详解】解:(1)接受问卷调查的共有30÷20%=150人,m=150-(12+30+54+9)=45,54%100%36%150n =⨯=∴n=36, 故答案为:150、45、36; (2)A 类所对应的扇形圆心角的度数为1236028.8150︒︒⨯=故答案为:28.8°;(3)451500450150⨯=(人)答:估计该社区参加碧沙岗“暴走团”的大约有450人【点睛】本题考查的是统计表和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.四、压轴题31.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣483 4【解析】【分析】(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB﹣AP 求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ ﹣BP=AB列出方程;第二次相遇是点Q到达C点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.【详解】(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60﹣30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB﹣AP=30﹣3t.故答案为30﹣3t;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP =AB ,∴5x﹣3x =30,解得x =15,此时P 点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q 到达C 点后返回到A 点的途中.∵CQ+BP=BC ,∴5(x ﹣24)+3x =90,解得x =1054, 此时P 点在数轴上对应的数是:30﹣3×1054=﹣4834. 综上,相遇时P 点在数轴上对应的数为﹣15或﹣4834. 【点睛】 本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键. 32.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm. (2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==,P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】 此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.33.(1)45°;(2)45°;(3)45°或135°.【解析】 【分析】(1)由∠BOC 的度数求出∠AOC 的度数,利用角平分线定义求出∠COD 与∠COE 的度数,相加即可求出∠DOE 的度数;(2)∠DOE 度数不变,理由为:利用角平分线定义得到∠COD 为∠AOC 的一半,∠COE 为∠COB 的一半,而∠DOE=∠COD+∠COE ,即可求出∠DOE 度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE 为45°;如图4,则∠DOE 为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°, ∴∠DOE=∠COD+∠COE=45°; (2)∠DOE 的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB )=12∠AOB=45°; (3)∠DOE 的大小发生变化情况为:如图③,则∠DOE 为45°;如图④,则∠DOE 为135°,分两种情况:如图3所示,∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC ,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。
2019-2020学年山东省滨州市七年级第二学期期末达标测试数学试题含解析

∴b-1<0,-a+1>0,
∴点M(b-1,-a+1)在第二象限.
故选B.
点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一பைடு நூலகம்限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
7.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为
A. B. C. D.
【答案】C
【解析】
试题分析:根据平角和直角定义,得方程x+y=90;根据∠3比∠3的度数大3°,得方程x=y+3.可列方程组为 ,故选D.
考点:3.由实际问题抽象出二元一次方程组;3.余角和补角.
2019-2020学年山东省滨州市七年级第二学期期末达标测试数学试题
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
A.小明B.小红C.小刚D.小丽
【答案】D
【解析】
【分析】
根据加权平均数公式分别求出4位同学的加权平均数,然后比较即可得出答案.
【详解】
80×100%+80×80%+80×60%=192(分);
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析版】山东省滨州市博兴县2019年七年级下期末数学试卷年七年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.数5的算术平方根为()A. B. 25 C.±25 D.±2.已知二元一次方程3x﹣y=1,当x=2时,y﹣8等于()A. 5 B.﹣3 C.﹣7 D. 73.在实数:0,,,0.74,π中,无理数有()A. 1个 B. 2个 C. 3个 D. 4个4.在平面直角坐标系中,点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①② B.③④ C.②④ D.①③6.不等式组的解集在数轴上的表示是()A. B. C.D.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对全国中学生心理健康现状的调查B.对我国首架大型民用飞机零部件的检查C.对我市市民实施低碳生活情况的调查D.对市场上的冰淇淋质量的调查8.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0) B.(0,5)或(0,﹣5) C.(0,5) D.(5,0)或(﹣5,0)9.等式2x﹣y=10变形为﹣4x+2y=﹣20的依据为()A.等式性质1 B.等式性质2C.分数的基本性质 D.乘法分配律10.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A. 150° B. 140° C. 130° D. 120°11.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则售价至少按()A.六折 B.七折 C.八折 D.九折12.已知点(1﹣2a,a﹣4)在第三象限,则整数a的值可以取的个数为()A. 1 B. 2 C. 3 D. 4二、填空题(共6小题,每小题4分,满分24分)13.比较﹣与﹣8的大小:﹣﹣8.14.点P(3a+6,3﹣a)在x轴上,则a的值为.15.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.16.若不等式组的解集是﹣1<x<2,则a=.17.线段AB两端点的坐标分别为A,B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为.18.把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为.三、解答题(共6小题,每小题10分,满分60分)19.计算:(1)3+2﹣6|﹣2|++﹣|﹣2|.20.某校年七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.21.根据要求,解答下列问题.(1)解方程组:.解下列方程组,只写出最后结果即可:①;②.(3)以上每个方程组的解中,x值与y值有怎样的大小关系?(4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.22.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C (3,3),D.(1)求线段AB的长;求四边形ABCD的面积.23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家商场购物花费少?24.如图,直线AC∥BD,AE、AO、BO分别是∠CAF、∠BAC、∠ABD的平分线.求证:(1)AE∥BO;AE⊥AO.年七年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.数5的算术平方根为()A. B. 25 C.±25 D.±考点:算术平方根.分析:根据算术平方根的含义和求法,可得:数5的算术平方根为,据此解答即可.解答:解:数5的算术平方根为.故选:A.点评:此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.2.已知二元一次方程3x﹣y=1,当x=2时,y﹣8等于()A. 5 B.﹣3 C.﹣7 D. 7考点:解二元一次方程.分析:根据已知首先求出y的值,进而得出答案.解答:解:∵3x﹣y=1,当x=2时,∴6﹣y=1,解得:y=5,∴y﹣8=5﹣8=﹣3.故选:B.点评:此题主要考查了解二元一次方程,正确得出y的值是解题关键.3.在实数:0,,,0.74,π中,无理数有()A. 1个 B. 2个 C. 3个 D. 4个考点:无理数.分析:无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.解答:解:在实数:0,,,0.74,π中无理数有,π共2个.故选B.点评:此题主要考查了无理数的概念,同时也考查了有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.4.在平面直角坐标系中,点P在()A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:点的坐标.分析:点P的横、纵坐标均为正,可确定在第一象限.解答:解:点P的横、纵坐标均为正,所以点P在第一象限,故选A.点评:本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).5.下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①② B.③④ C.②④ D.①③考点:二次根式的性质与化简;二次根式有意义的条件.分析:本题考查的是二次根式的意义:①=a(a≥0),②=a(a≥0),逐一判断.解答:解:①==4,正确;②=(﹣1)2=1×4=4≠16,不正确;③=4符合二次根式的意义,正确;④==4≠﹣4,不正确.①③正确.故选:D.点评:运用二次根式的意义,判断等式是否成立.6.不等式组的解集在数轴上的表示是()A. B. C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别把两条不等式解出来,然后判断哪个选项表示的正确.解答:解:由(1)式x<2,由x>﹣1,所以﹣1<x<2.故选C.点评:本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.7.下列调查中,适宜采用全面调查(普查)方式的是()A.对全国中学生心理健康现状的调查B.对我国首架大型民用飞机零部件的检查C.对我市市民实施低碳生活情况的调查D.对市场上的冰淇淋质量的调查考点:全面调查与抽样调查.分析:本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、对全国中学生心理健康现状的调查,由于人数多,故应当采用抽样调查;B、对我国首架大型民用飞机零部件的检查,由于零部件数量有限,而且是首架民用飞机,每一个零部件都关系到飞行安全,故应当采用全面调查;C、对我市市民实施低碳生活情况的调查,由于人数多,普查耗时长,故应当采用抽样调查;D、对市场上的冰淇淋的调查,由于市场上冰淇淋数量众多,普查耗时长,应当采用抽样调查的方式,故本选项错误.故选B.点评:此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.8.已知y轴上的点P到原点的距离为5,则点P的坐标为()A.(5,0) B.(0,5)或(0,﹣5) C.(0,5) D.(5,0)或(﹣5,0)考点:点的坐标.分析:首先根据点在y轴上,确定点P的横坐标为0,再根据P到原点的距离为5,确定P 点的纵坐标,要注意分两情况考虑才不漏解,P可能在原点上方,也可能在原点下方.解答:解:由题中y轴上的点P得知:P点的横坐标为0;∵点P到原点的距离为5,∴点P的纵坐标为±5,所以点P的坐标为(0,5)或(0,﹣5).故选B.点评:此题主要考查了由点到原点的距离确定点的坐标,要注意点在坐标轴上时,点到原点的距离要分两种情况考虑.9.等式2x﹣y=10变形为﹣4x+2y=﹣20的依据为()A.等式性质1 B.等式性质2C.分数的基本性质 D.乘法分配律考点:等式的性质.分析:根据等式的基本性质解答即可.解答:解:2x﹣y=10,在等式的两边同时乘以﹣2得,﹣4x+2y=﹣40,故根据等式的基本性质2.故选:B.点评:本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.10.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=∠AOC,则∠BOC=()A. 150° B. 140° C. 130° D. 120°考点:垂线;余角和补角.专题:计算题.分析:根据平角、直角及角的和差关系可求出∠AOC+∠EOD=90°,再与已知∠EOD=∠AOC联立,求出∠AOC,利用互补关系求∠BOC.解答:解:∵∠COD=180°,OE⊥AB,∴∠AOC+∠AOE+∠EOD=180°,∠AOE=90°,∴∠AOC+∠EOD=90°,①又∵∠EOD=∠AOC,②由①、②得,∠AOC=60°,∵∠BOC与∠AOC是邻补角,∴∠BOC=180°﹣∠AOC=120°.故选:D.点评:此题主要考查了对顶角、余角、补角的关系.11.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则售价至少按()A.六折 B.七折 C.八折 D.九折考点:一元一次不等式的应用.分析:利润率不低于5%,即利润要大于或等于80×5%元,设打x折,则售价是120x 元.根据利润率不低于5%就可以列出不等式,求出x的范围.解答:解:设打x折,则120×﹣80≥80×5%,解得x≥7,即售价至少按7折.故选:B.点评:本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.已知点(1﹣2a,a﹣4)在第三象限,则整数a的值可以取的个数为()A. 1 B. 2 C. 3 D. 4考点:点的坐标;一元一次不等式组的整数解.分析:根据第三象限横坐标小于0,纵坐标小于0列出不等式组,然后求解即可.解答:解:∵点(1﹣2a,a﹣4)在第三象限,∴解得:<a<4,∴整数a的值可以取1,2,3.故选:B.点评:本题考查了点的坐标,一元一次不等式组的整数解,根据在第三象限列出不等式组是解题的关键.二、填空题(共6小题,每小题4分,满分24分)13.比较﹣与﹣8的大小:﹣>﹣8.考点:实数大小比较.分析:先把﹣8变为64的算术平方根的相反数,再根据“两个负数,绝对值大的反而小”进行比较.解答:解:∵﹣8=﹣,,∴﹣,即>﹣8,故答案为:>.点评:此题主要考查了实数的大小比较.注意两个无理数的比较方法:根据二次根式的性质,把根号外的因数移到根号内,然后比较被开方数的大小.14.点P(3a+6,3﹣a)在x轴上,则a的值为3.考点:点的坐标.分析:点在x轴上的条件是:纵坐标是0.解答:解:∵点P(3a+6,3﹣a)在x轴上.∴3﹣a=0.∴a=3.故答案为:3.点评:解决本题的关键是记住x轴上点的特点为:点的纵坐标为0.15.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= 40°.考点:平行线的性质.专题:计算题.分析:根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.解答:解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.点评:本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.16.若不等式组的解集是﹣1<x<2,则a=﹣1.考点:解一元一次不等式组.专题:计算题.分析:先解不等式组,用含a的代数式表示解集,然后根据题意列方程即可求得a值.解答:解:解不等式组得a<x<2∵﹣1<x<2∴a=﹣1.故答案为:﹣1.点评:主要考查了不等式组的解的定义.此题型一般是把含有字母的不等式组用字母的代数式表示出其解集,然后对照其给出的实际解集列方程求解.17.线段AB两端点的坐标分别为A,B(5,2),若将线段AB平移,使得点B的对应点为点C(3,﹣1).则平移后点A的对应点的坐标为(0,1).考点:坐标与图形变化-平移.专题:动点型.分析:先得到点B的对应规律,依此得到A的坐标即可.解答:解:∵B(5,2),点B的对应点为点C(3,﹣1).∴变化规律是横坐标减2,纵坐标减3,∵A,∴平移后点A的对应点的坐标为(0,1),故答案为(0,1).点评:考查点的平移变换;得到一对对应点的变换规律是解决本题的关键.18.把m个练习本分给n个学生,如果每人分3本,那么余80本;如果每人分5本,那么最后一个同学有练习本但不足5本,n的值为41或42.考点:一元一次不等式的应用;一元一次不等式组的应用.分析:不足5本说明最后一个人分的本数应在0和5之间,但不包括5.解答:解:根据题意得:,解得:40<n<42.5,∵n为整数,∴n的值为41或42.故答案为:41或42.点评:解决本题的关键是读懂题意,找到符合题意的不等关系式组.三、解答题(共6小题,每小题10分,满分60分)19.计算:(1)3+2﹣6|﹣2|++﹣|﹣2|.考点:实数的运算.分析:(1)根据实数运算的运算顺序,从左向右依次计算即可.根据实数运算的运算顺序,首先计算开方,然后从左向右依次计算即可.解答:解:(1)3+2﹣6=5﹣6=﹣;|﹣2|++﹣|﹣2|=2﹣=﹣.点评:此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.某校年七年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长人数为多少人?表示“无所谓”的家长人数为多少人?(3)在扇形统计图中,求“不赞同”的家长部分所对应扇形的圆心角大小.考点:条形统计图;扇形统计图.分析:(1)根据赞同的人数和所占的百分比求出接受这次调查的家长人数;根据表示“无所谓”的家长所占的百分比和总人数,求出接受这次调查的家长人数;(3)360°×百分比=圆心角计算即可.解答:解:(1)由条形统计图和扇形统计图可知,赞同的人数是50人,占25%,50÷25%=200人,接受这次调查的家长人数为200人;200×20%=40,表示“无所谓”的家长人数为40人;(3)90÷200×360°=162°,“不赞同”的家长部分所对应扇形的圆心角162°.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.根据要求,解答下列问题.(1)解方程组:.解下列方程组,只写出最后结果即可:①;②.(3)以上每个方程组的解中,x值与y值有怎样的大小关系?(4)观察以上每个方程组的外形特征,请你构造一个具有此特征的方程组,并用(3)中的结论快速求出其解.考点:解二元一次方程组;二元一次方程组的解.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;分别求出两个方程组的解即可;(3)观察得到x与y的关系即可;(4)写出满足此特征的方程组,把x=y代入任何一个方程求出解即可.解答:解:(1),①×2﹣②得:3y=3,即y=1,把y=1代入①得:x=1,则方程组的解为;①;②;(3)以上每个方程组的解中,x=y;(4)把x=y代入①得:3y+7y=10,即y=1,则方程组的解为.点评:此题考查了解二元一次方程组,以及二元一次方程组的解,熟练掌握运算法则是解本题的关键.22.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C (3,3),D.(1)求线段AB的长;求四边形ABCD的面积.考点:坐标与图形性质;三角形的面积.分析:(1)根据线段的和差即可求出;分别过C、D向x轴作垂线,四边形ABCD的面积分割为过D、C两点的直角三角形和直角梯形.解答:解:(1)AB=OB﹣OA=5﹣1=4;作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF+S△BCE+S梯形CDFE=××4+×(5﹣3)×3+×(3+4)×(3﹣2)=8.5.点评:本题考查了坐标与图形的性质,三角形的面积,梯形的面积,正确的识别图形是解题的关键.23.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过200元后,超出200元的部分按90%收费;在乙商场累计购物超过100元后,超出100元的部分按95%收费,顾客到哪家商场购物花费少?考点:一元一次不等式的应用.分析:先设顾客累计花费x元,根据三种情况进行讨论,当x≤100时,若100<x≤200,若x≥200,分别进行分析,即可得出答案.解答:解:设顾客累计花费x元,根据题意得:(1)当x≤100时,两家商场都不优惠,则花费一样;若100<x≤200,去乙商场享受优惠,花费少;(3)若x≥200,在甲商场花费200+(x﹣200)×90%=0.9x+20(元),在乙商场花费100+(x﹣100)×95%=0.95x+5(元),①到甲商场花费少,则0.9x+20<0.95x+5,解得x>300;②到乙商场花费少,则0.9x+20>0.95x+5,x<300;③到两家商场花费一样多,则0.9x+20=0.95x+5,x=300.点评:此题考查了一元一次不等式的应用,关键是读懂题意,列出不等式,再根据实际情况进行讨论,不要漏项.24.如图,直线AC∥BD,AE、AO、BO分别是∠CAF、∠BAC、∠ABD的平分线.求证:(1)AE∥BO;AE⊥AO.考点:平行线的判定与性质.专题:证明题.分析:(1)根据角平分线的定义和平行线的判定证明即可;根据角平分线的定义和垂直的定义证明即可.解答:证明:(1)∵AC∥BD,∠FAC=∠ABD,∵AE、AO、BO分别是∠CAF、∠BAC、∠ABD的平分线,∴∠FAE=∠FAC,∠ABO=∠ABD,∴∠FAE=∠ABO,∴AE∥BO;∵AE、AO、BO分别是∠CAF、∠BAC、∠ABD的平分线,∴∠FAE=∠EAC,∠CAO=∠OAB,∴∠FAE+∠OAB=∠EAC+∠CAO,∵∠FAE+∠OAB+∠EAC+∠CAO=180°,∴∠EAC+∠CAO=90°,∴AE⊥AO.点评:此题考查平行线的判定,关键是根据角平分线的定义、垂直的定义和平行线的判定证明.。