电力电子技术多电平技术新全面.ppt
电力电子技术概述PPT课件

电力电子技术概述PPT课件•电力电子技术基本概念•电力电子器件•电力电子变换技术•电力电子系统分析与设计•典型应用案例剖析•发展趋势与挑战01电力电子技术基本概念它涉及到电力、电子、控制等多个领域,是现代电力工业的重要组成部分。
电力电子技术的核心是对电能进行高效、可靠、可控的转换,以满足各种用电设备的需求。
电力电子技术是一门研究利用半导体器件对电能进行转换和控制的学科。
电力电子技术定义从早期的整流器、逆变器到现在的高频开关电源、智能电网等,电力电子技术经历了多个发展阶段。
发展历程目前,电力电子技术已经广泛应用于工业、交通、通信、家电等各个领域,成为现代社会不可或缺的一部分。
现状随着新能源、智能电网等技术的不断发展,电力电子技术的应用前景将更加广阔。
未来趋势发展历程及现状工业领域电机驱动、电力系统自动化、工业加热等。
电动汽车、高速铁路、航空航天等。
通信电源、数据中心、云计算等。
变频空调、LED照明、智能家居等。
随着新能源技术的不断发展,电力电子技术在太阳能、风能等领域的应用将更加广泛;同时,智能电网的建设也将为电力电子技术的发展提供新的机遇。
交通领域家电领域前景展望通信领域应用领域与前景02电力电子器件电力二极管(Power Diode)结构简单,工作可靠导通和关断不可控主要用于整流电路晶闸管(Thyristor)四层半导体结构,三个电极导通可控,关断不可控主要用于相控整流电路可关断晶闸管(GTO)通过门极负脉冲可使其关断关断时间较长,需要较大的关断电流主要用于大容量场合电力晶体管(GTR)电流驱动的双极型晶体管导通和关断可控,但驱动电路复杂主要用于中等容量场合电力场效应晶体管(Power MOSFET )电压驱动的单极型晶体管导通电阻小,开关速度快01主要用于中小容量场合02绝缘栅双极型晶体管(IGBT)03结合了MOSFET和GTR的优点01电压驱动,大电流容量,快速开关02目前应用最广泛的电力电子器件之一03电力电子变换技术整流电路的作用整流电路的分类整流电路的工作原理整流电路的应用将交流电转换为直流电。
《电力电子技术》 ppt课件

《电力电子技术》
电力电子技术
《电力电子技术》
引言 电力电子器件 电力电子电路 脉宽调制(PWM)技术和软开关技术
第2页
电力电子技术
《电力电子技术》
➢ 什么是电力电子技术? ➢ 电力电子技术的发展史 ➢ 电力电子技术的应用
第3页
电力电子技术
《电力电子技术》
➢ 电子技术: 信息电子技术 电力电子技术
电力电子技术
IGBT的结构(显示图)
– 图a—N沟道VDMOSFET与GTR组合——N沟道IGBT
(N-IGBT)。 – IGBT比VDMOSFET多一层P+注入区,形成了一个大面
积的P+N结J1。 – ——使IGBT导通时由P+注入区向N基区发射少子,从
而对漂移区电导率进行调制,使得IGBT具有很强的通流 能力。 – 简化等效电路表明,IGBT是GTR与MOSFET组成的达林 顿结构,一个由MOSFET驱动的厚基区PNP晶体管。 – RN为晶体管基区内的调制电阻。
第17页
电力电子技术
《电力电子技术》
1.不可控器件——电力二极管
2.半控型器件——晶闸管 3. 典型全控型器件
(1)门极可关断晶闸管 (2)电力晶体管 (3)电力场效应晶体管 (4)绝缘栅双极晶体管
★
第18页
电力电子技术
《电力电子技术》
1. IGBT的结构和工作原理
三端器件:栅极G、集电极C和发射极E
➢ 全控型器件(复合型器件)
80年代后期开始,以绝缘栅极双极型晶体管(IGBT)为代 表的全控型器件因驱动功率小、开关速度快、载流能力大等得 到迅猛的发展。
★
第10页
电力电子技术
电力电子技术最新ppt课件

0.637Ud
相电压基波有效值:
UUN1
UUN1m 2
0.45Ud
.
4-26
4.2.2 三相电压型逆变电路
例:三相桥式电压型逆变电路,180°导电方式,Ud=200V。试求输出 相电压的基波幅值UUN1m和有效值UUN1、输出线电压的基波幅值 UUV1m和有效值UUV1、输出线电压中7次谐波的有效值UUV7。
4-13
4.2.1 单相电压型逆变电路
返回
图4-6 单相半桥电压型逆变电路及其工作波形
工单作向(原半3理桥):电t3压—逆t4 变电电源路经优V缺2对点负总载结供:电,电流指数规律 ((※桥① ② 接※思答源称为★后12电功上载优缺两单考:反之))反(下了因角压率升电点点个相:当馈为tt4向降解为θ型12较。压::电)——半电负能反=上,决是逆大a负为所容utt桥路载量馈t升负r23这0阻4变时载-c用,幅—一中为提二1。载t一电电感电a怎电/器还值t般的感供极n负电24矛源感负路么压件需ω小u应二性通管载压电盾电经载L。d办为少保,.用极或道。/电为感,压V,?1R。证只在管阻(D压1/经在经.呈?/有22小主感即C为续V单V2感u?1电功要性续uD1d-流向=性1.对d1源率起时流C./续,半,负22电电什,过流电桥,u电载不压路么二程d,流的流.供能的中作极)电指基滞电精一。用管,流数础后,确半?为故指规上电电满,负这数律提压流足并载 些规下出,指。且向二律降了滞数输直极反。单规入流管向负向律端电被全
两个二极管的作用也是提供无功能 量的反馈通道。
图4-8 带中心抽头变压器的逆变电路
在Ud和负载参数相同,变压器匝比为1:1:1情况下,uo和io波 形及幅值与全桥逆变电路完全相同。 与全桥电路的比较:
电力电子技术(完整幻灯片PPT

2.1.1 电力电子器件的概念和特征
电力电子器件的损耗 通态损耗
主要损耗 断态损耗 开关损耗
开通损耗 关断损耗
通态损耗是器件功率损耗的主要成因。
器件开关频率较高时,开关损耗可能成为器件功率损 耗的主要因素。
1-4
2.1.2 应用电力电子器件系统组成
电力电子系统:由控制电路、驱动电路、保护电路
恢复特性的软度:下降时间与
延复迟系时数间,用的S比r表值示tf。/td,或称恢uFFra bibliotek2V0
b) tfr
t
图2-6 电力二极管的动态过程波形
a) 正向偏置转换为反向偏置
b) 零偏置转换为正向偏置
1-17
2.2.2 电力二极管的基本特性
关断过程
IF
diF
dt
trr
须经过一段短暂的时间才能重新获 UF
td
A
G
KK
A A
G
G
P1 N1 P2 N2
J1 J2 J3
K
K G
A
a)
b)
c)
图2-7 晶闸管的外形、结构和电气图形符号
a) 外形 b) 结构 c) 电气图形符号
外形有螺栓型和平板型两种封装。
四层三结三极。
螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便。
平板型晶闸管可由两个散热器将其夹在中间。
电力电子技术(完整幻灯片 PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
(2024年)电力电子技术完整版全套PPT电子课件

实验报告撰写与答辩
讲解实验报告的撰写要求和答辩技巧 ,提高学生的综合素质和能力。
36
08
电力电子技术应用案例
2024/3/26
37
新能源发电系统中电力电子技术应用
光伏发电系统
最大功率点跟踪(MPPT )技术、逆变器并网技术 、孤岛检测与保护技术等 。
2024/3/26
风力发电系统
变桨距控制技术、变速恒 频技术、直驱式永磁风力 发电技术等。
2024/3/26
13
可控整流电路分析与应用
可控整流电路原理
可控整流电路通过控制触发角α的大小,实现对输出电压的调 节。
2024/3/26
可控整流电路应用
可控整流电路广泛应用于直流调速、电力拖动、电解、电镀 等领域。
14
滤波电路原理与设计方法
滤波电路原理
滤波电路是利用电容、电感等元件对交流电的频率特性进行滤波,从而得到平 滑的直流电的电路。
高性能器件选择
选用高性能的功率器件和驱动电路,提高电路的工作频率和可靠性。例如,选用低导通电阻和低栅极电荷的 MOSFET可以降低电路的导通损耗和开关损耗;选用高耐压和高电流的IGBT可以提高电路的带负载能力等 。
系统优化与热设计
对系统进行全面的优化和热设计,确保电路在高负载、高温等恶劣环境下仍能稳定可靠地工作。例如,采用 合理的散热结构和风扇控制策略可以降低电路的工作温度;采用模块化设计可以提高电路的维修性和可扩展 性等。
2024/3/26
功率场效应晶体管(Power MOSFE…
阐述Power MOSFET和IGBT的结构、特点以及在电力电子电路中的 广泛应用。
11
03
整流与滤波技术
2024/3/26
2024版电力电子技术完整版全套PPT电子课件[2]
![2024版电力电子技术完整版全套PPT电子课件[2]](https://img.taocdn.com/s3/m/33e815cc82d049649b6648d7c1c708a1294a0a12.png)
适用于模拟电路和数字电路的仿真,提供多种电力电子器 件模型和虚拟示波器功能。
电力电子技术的实验与仿真案例
整流电路实验与仿真
逆变电路实验与仿真
通过搭建整流电路并对其进行仿真,可以研 究整流器的工作原理、波形分析和性能指标。
利用逆变电路实验和仿真,可以探究逆变器 的调制方式、控制策略和输出特性。
逆变电路
逆变电路的工作原理
01
解释逆变电路的基本工作原理,包括电压型逆变电路和电流型
逆变电路等。
逆变电路的类型
02
详细介绍不同类型的逆变电路,如单相逆变电路、三相逆变电
路和多电平逆变电路等。
逆变电路的应用
03
概述逆变电路在电力电子领域的应用,如不间断电源、变频器
和太阳能发电系统等。
直流-直流变流电路
交通运输应用
电动汽车驱动
电力电子技术在电动汽车 的驱动系统中发挥着重要 作用,实现高效、环保的 驱动方式。
轨道交通牵引
电力电子技术为轨道交通 提供了可靠的牵引系统, 保障列车安全、稳定运行。
飞机电源系统
现代飞机电源系统采用电 力电子技术,为飞机提供 稳定、高效的电力供应。
电力系统应用
高压直流输电
半实物仿真实验
结合实验室搭建电路和虚拟仿真实验,通过接口设备将两者连接起 来,实现实时数据交互和联合仿真。
电力电子技术的仿真工具
MATLAB/Simulin k
提供丰富的电力电子元件库和仿真模型,支持多种控制策 略的实现和性能分析。
PSIM
专注于电力电子系统仿真,具备强大的电路分析功能和丰 富的元件库。
整流电路
整流电路的工作原理
介绍整流电路的基本工作原理,包括 半波整流、全波整流和桥式整流等。
《电力电子技术》PPT课件

可控硅时代
通过控制电流导通角,实现电 压和功率的调节。
现代电力电子时代
以IGBT、MOSFET等为代表 ,实现高效、快速的电能转换
。
电力电子技术的应用领域
电力系统
用于高压直流输电、无 功补偿、有源滤波等, 提高电力系统的稳定性
和效率。
电机驱动
用于电动汽车、电动自 行车、电梯等电机驱动 系统,实现高效、节能
照明控制
通过电力电子技术可实现 对照明设备的调光和调色 ,提高照明质量和节能效 果。
加热与焊接
电力电子技术可用于控制 加热设备的功率和温度, 实现精确控温和高效能焊 接。
交通运输应用
电动汽车驱动
电力电子技术是电动汽车 驱动系统的核心,可实现 高效能、低排放的驱动控 制。
轨道交通牵引
通过电力电子技术可实现 轨道交通车辆的牵引控制 和制动能量回收。
交流-交流变流电路的工作原理
通过电力电子器件的开关作用,改变输入交流电 的电压和频率,得到所需的输出交流电。Fra bibliotekABCD
交流-交流变流电路的分类
变频电路、变压电路等。
交流-交流变流电路的应用
电机调速、风力发电、太阳能发电并网等。
一般工业应用
01
02
03
电机驱动
电力电子技术可用于控制 电机的速度和转矩,提高 电机的效率和性能。
通过求解系统微分方程或差分方程,得到系统输 出与输入之间的关系,进而分析系统性能。
频域分析法
利用傅里叶变换将时域信号转换为频域信号,通 过分析系统频率响应特性来评估系统性能。
3
状态空间分析法
通过建立系统状态空间模型,分析系统状态变量 的变化规律,从而研究系统的稳定性和动态性能 。
电力电子技术(ppt)

把直流电变换成频率、电 压固定或可调的交流电 。
交流输出接电网
无源逆变
交流输出接负载
无源逆变装置的输出
恒频电源 不间断供电电源 变频电源
返回 上页 下页
第一章电力电子技术的发展
用于各种变频电源、中频感应加热和交流电动机 的变频调速等场合。
直流电源
+ -
无源(有源) 阻抗
交流负载
返回 上页 下页
返回 上页 下页
第一章电力电子技术的发展
四大类电力电子功率变换设备
1.AC /DC变换 AC /DC变换
把交流电压变换成固定 或可调的直流电压。
整流
整流器
把交流电压变换成固定或 可调的直流电压的装置。
交流电源
非线性电阻
i u
直流负载
返回 上页 下页
第一章电力电子技术的发展
2.DC /AC变换 DC /AC变换
功率调节器
返回 上页 下页
变流技术
第一章电力电子技术的发展
电力——交流和直流两种
从公用电网直接得到的是交流,从蓄电池和干电池 得到的是直流。
电力变换四大类
交流变直流、直流变交流、直流变直流、交流变交流
表1 电力变换的种类
输入
输出
直流
交流
交流
整流
交流电力控制 变频、变相
直流
直流斩波
逆变
进行电力变换的技术称为 变流技术。
返回 上页 下页
补充:王兆安教材
电子技术
信息电子技术
电力电子技术
模拟电子技术 数字电子技术
信息电子技术——信息处理 电力电子技术——电力变换
电子技术一般即指信息 电子技术,广义而言,也包 括电力电子技术。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新.课件
19最新.课件20源自二极管箝位型逆变器的优点二极管箝位结构的显著优点:就是利用二
极管箝位解决了功率器件串联的均压问题,适 于高电压场合。
由于没有两电平逆变器中两个串联器件同
时导通和同时关断的问题,所以该拓扑对器件
的动态性能要求低,器件受到的电压应力小,
系统可靠性有所提高。在输出性能上也拥有多
最新.课件
16
最新.课件
17
最新.课件
18
若要得到更多电平数,如N电平,只需将 直流分压电容改为(N-1)个串联,每桥臂主开关 器件改为2(N-1)个串联,每桥臂的箝位二极管 数量改为(N-1)(N-2)个,每(N-1)个串联后分别 跨接在正负半桥臂对应开关器件之间进行箝位, 再根据与三电平类似的控制方法进行控制即可。
最新.课件
6
1多电平变换器研究的背景及意义
随着社会工农业生产规模的不断扩大,对
能源的需求量也越来越大,对于现有的有限能 源,如何合理利用,是各国政府关心的问题。 我国政府制定的“十二五”规划,把节能减排 定为规划纲要,以保证我国经济和社会的可持 续发展。
电动机作为工业、农业、市政等领域的主
动力源,是能源消耗的大户,根据国家权威部 门统计,我国的发电量有60%左右被电动机消 耗,而其中的90%被交流电动机消耗。
1977年德国学者Holtz首次提出了利用 开关管来辅助中点箝位的三电平逆变器 主电路。
1980年日本的A Nabae等人对其进行了 发展,提出了二极管箝位式逆变电路。
最新.课件
13
图1为单相二极管箱位逆变电路,它 具有2个电容,能输出3电平的电压。
最新.课件
14
Bhagwat和Stefanovic在1983年进一步将三电 平推广到多电平的结构。二极管箝位式多电平 变换电路的特点是采用多个二极管对相应的开 关器件进行箝位,同时利用不同的开关组合输 出所需的不同电平。
它能够输出较多的电平,从而使输出电压向正
弦波靠近。
最新.课件
2
2/47
多重逆变电路
■二重单相电压型逆变电路 ◆两个单相全桥逆变电路组成,输出通过变
压器T1和T2串联起来。 ◆输出波形
☞两个单相的输出u1和u2是180°矩形波。
☞u1和u2相位错开=60°,其中的3次谐波就
错开了3×60°=180,变压器串联合成后,3次 谐波互相抵消,总输出电压中不含3次谐波。
电平逆变器所固有的优点,如电压畸变小,
du/dt小,对电机负载的冲击小等。
最新.课件
21
二极管箝位型逆变器的缺点
但是二极管箝位型多电平逆变器拓扑结构 仍然有其固有不足:虽然开关器件被箝位在 E/(N-1)电压上,但是二极管却要承受不同倍数 的反向耐压;如果使二极管的反向耐压与开关 器件相同,则需要多管串联,当串联数目很大 时,增加了实际系统实现的难度。当逆变器传 输有功功率时,由于各个电容的充电时间不同, 将形成不平衡的电容电压。
最新.课件
8
多电平变换器研究的背景及意义
变调速领域,即使是采用功率器件直接串联 的两电平逆变器,也存在动、静均压问题, 并且dv/dt较大,会产生难以处理的电磁干扰 问题。
为此,有学者提出一种多电平功率变换
技术,旨在解决功率开关耐压不足与高压大 功率驱动之间的矛盾,并且可以有效减小 dv/dt,降低输出电压的谐波含量,已成为 高压大功率驱动场合的发展趋势。
对于N电平三相二极管箝位型电路,直流侧 需N-1个电容,能输出N电平的相电压,线电压 为(2N-1)电平。显然输出电平越多、其输出电 压和输出电流的总谐波畸变率越小。
最新.课件
15
在图1中,通过两个串联的大电容C1和C2将直 流母线电压分成三个电平,即,E/2,0和E/2(以两个电容的中点定义为中性点)。稍加分 析就可以发现,不论在表1的哪一种工况,二极 管D1,D2都将每个开关器件的电压箝位到直流母 线电压的一半。例如,当S1,S2同为导通时,二 极管D2平衡了开关器件S1,S2上的电压分配。
最新.课件
9
2 多电平逆变器研究现状
多电平逆变器作为一种新型的高压大功率 逆变器从电路拓扑结构入手,在得到高质量的 输出波形的同时,克服两电平电路的诸多缺点: 无需输出变压器和动态均压电路,开关频率低, 因而开关器件应力小,系统效率高,对电网污染 少等。
最新.课件
10
多电平逆变器研究现状
多电平逆变器的思想从提出至今,出 现了很多拓扑,但归纳起来主要有三种:
多电平逆变变换器 Multilevel Converter
最新.课件
1
多重逆变电路和多电平逆变电路
■电压型逆变电路的输出电压是矩形波,电流型 逆变电路的输出电流是矩形波,矩形波中含有 较多的谐波,对负载会产生不利影响。
■常常采用多重逆变电路把几个矩形波组合起来, 使之成为接近正弦波的波形。
■也可以改变电路结构,构成多电平逆变电路,
最新.课件
4
u1
三次谐波
O
t
180°
u
2
60°
三次谐波
O
t
u
o
120°
O
t
最新.课件
5
目录
1 多电平变换器研究的背景及意义 2 多电平逆变器研究现状
2.1 二极管箝位型多电平逆变器 2.2 飞跨电容型多电平逆变器 2.3 级联型多电平逆变器
3 多电平调制策略 4 H桥级联型逆变器仿真
(1) 二极管箝位型逆变器
(2) 飞跨电容型逆变器
(3) 具有独立电源的级联型逆变器
最新.课件
11
多电平逆变器研究现状
这三种结构具有共同的优点: (1) 电平数越高,输出电压谐波含量越低;
(2) 器件开关频率低,开关损耗小;
(3) 器件应力小,无需动态均压。
最新.课件
12
二极管箝位型多电平逆变器
☞ uo波形是120°矩形波,含6k±1次谐波,
3k次谐波都被抵消。
最新.课件
3 3/47
■由此得出的一些结论
◆把若干个逆变电路的输出按一定的相位差 组合起来,使它们所含的某些主要谐波分量相 互抵消,就可以得到较为接近正弦波的波形。
◆多重逆变电路有串联多重和并联多重两种 方式,电压型逆变电路多用串联多重方式,电 流型逆变电路多用并联多重方式。
最新.课件
7
1多电平变换器研究的背景及意义
因此,对于交流电动机的变频调速研究, 存在着巨大的节能空间。广泛应用的高压大功 率风机、泵类的高压电机,由于传统的工作方 式为电网电压直接驱动,存在电机转速不能根 据实际工况进行有效地调节,造成了很大的电 能损失。
而高压变频技术正是能够解决这个问题的 关键技术,但现有功率开关受耐压等级的制约, 传统的两电平逆变器无法有效应用于高压