半导体基本测试原理
半导体器件测试原理和方法

然后我们用外加热办法加热DUT,此时压机加热单元温 度计指示着元件的壳温和结温。在外加热时我们可近 似认为壳温和结温相等。待温度稳定时,闭合S1 使直 流IDC仅仅流通10 ms,S1就断开,此时If流过DUT,记 录此时Vf2 ,我们总能找出一个Vf2 = Vf1 时的壳温Tc2 (由于外加热,P2 = 0) 利用公式可算得该元件的结壳热阻。这就是LEM Rth 20 测试原理和方法。这里介绍的是直流,实际可是正弦 半波或矩形波,这里不再介绍,因为样本给出的均是 直流热阻。我们应知道的确是直流热阻最小,矩形波、 正弦波稍大,当矩形波、正弦波导通角越小时其热阻 就越大。
2012-11-30
35
型式试验(周期检验)
2005年KP企业标准(1).XLS 试验分逐批(A组)检验 周期(B组)检验 周期(C组)检验 正常生产的定型产 品每年至少做一批 鉴定(D组)检验 产品定型必做的试 验
2012-11-30 36
LEM测试台简介
•
• • LEM测试台是从瑞士LEM(LEMSYS)公司引进的 一整套硅元件测试设备,下面按设备简单作个介绍。 6.1 LEM4030(LEMSYS8060)tq 该设备可用来检验KK、KP元件的关断时间tq,它检
2. 逆变 —— 把直流电变成交流电
3. 变频 —— 把一种频率的交流电变成另一种频
率的交流电或把一种固定频率的交流电变成可
以连续变化的交流电。例如交流电机用的变频 器。 4. 交流开关 —— 接通或切断交流电路 5. 直流开关 —— 接通或切断直流电路
2012-11-30 3
测试原理及方法
通态电压测试原理图
2012-11-30
8
220V电源经全波可控整流器BR加压在自耦调压器TB原边(只要KP 导通),付边输出电压加在高压变压器B的原边,于是B付边输出 高压,此时波形仍是交流全波。我们利用整流管正向导通反向阻 断特性,正向串入D1,反向串入D2,使a点得到正弦半波电压, 调节TB就可调节此电压峰值,按定义这波形符合VDRM测试要求, 此电压峰值由D3 与电容C组成的峰值保持电路在电容C上就变成 等于电压峰值的直流电压,由表头VP显示。当被试元件二端加上 VDRM时,电阻R1上的电压就反映了流过元件的漏电流,测出R1上 的电压峰值也就测出IDRM,同时将X接示波器X端,Y接Y端,我们 就可看到其断态伏安特性①。断开接触器J1,闭合J2,a点电压就 加在被试晶闸管负端, 此时测得的为VRRM值和相应的 IRRM,其 伏安特性如左图②。线路采用的是转折保护,当元件一旦转折, 漏电流急剧增加,此时脉冲变压器MB原边会产生一电压,付边也 会感应出一电压,此电压使整流桥BR的KP的门阴极短路,KP元 件恢复阻断,220V电源断开,付边高压消失,从而保护了被试元 件。其动作时间为10 ms。
半导体测试原理

半导体测试公司简介Integrated Device Manufacturer (IDM):半导体公司,集成了设计和制造业务。
IBM:(International Business Machines Corporation)国际商业机器公司,总部在美国纽约州阿蒙克市。
Intel:英特尔,全球最大的半导体芯片制造商,总部位于美国加利弗尼亚州圣克拉拉市。
Texas Instruments:简称TI,德州仪器,全球领先的数字信号处理与模拟技术半导体供应商。
总部位于美国得克萨斯州的达拉斯。
Samsung:三星,韩国最大的企业集团,业务涉及多个领域,主要包括半导体、移动电话、显示器、笔记本、电视机、电冰箱、空调、数码摄像机等。
STMicroelectronics:意法半导体,意大利SGS半导体公司和法国Thomson半导体合并后的新企业,公司总部设在瑞士日内瓦。
是全球第五大半导体厂商。
Strategic Outsourcing Model(战略外包模式):一种新的业务模式,使IDM厂商外包前沿的设计,同时保持工艺技术开发Motorola:摩托罗拉。
总部在美国伊利诺斯州。
是全球芯片制造、电子通讯的领导者。
ADI:(Analog Devices, Inc)亚德诺半导体技术公司,公司总部设在美国,高性能模拟集成电路(IC)制造商,产品广泛用于模拟信号和数字信号处理领域。
Fabless:是半导体集成电路行业中无生产线设计公司的简称。
专注于设计与销售应用半导体晶片,将半导体的生产制造外包给专业晶圆代工制造厂商。
一般的fabless公司至少外包百分之七十五的晶圆生产给别的代工厂。
Qualcomm:高通,公司总部在美国。
以CDMA(码分多址)数字技术为基础,开发并提供富于创意的数字无线通信产品和服务。
如今,美国高通公司正积极倡导全球快速部署3G网络、手机及应用。
Broadcom:博通,总部在美国,全球领先的有线和无线通信半导体公司。
半导体的cp测试基本原理

半导体的cp测试基本原理半导体的电荷平衡性测试(CP测试)是一项用于评估半导体器件或集成电路的质量、稳定性和可靠性的重要测试手段。
它通过在不同的电压、电流条件下测量器件的电荷容量和电荷传输特性,来判断半导体器件是否具有良好的性能。
CP测试的基本原理可以归纳为以下几个步骤:1. 差分电荷测量:CP测试常使用差分放大电路来测量半导体器件的电荷。
差分放大电路由两个输入电极和一个输出电极组成,其中一个输入电极接入被测器件,另一个输入电极接入一个参考电极。
测量时,参考电极保持在稳定电位,而测量电极则受到器件的电荷变化影响。
2. 电荷注入:为了测量器件的电荷容量,需要在测量电极与参考电极之间施加一定的电压。
通过向测量电极施加脉冲电压或持续电压,将一定数量的电荷注入到器件中,并观察电容变化。
3. 电荷传输特性测量:通过在不同的电压条件下反复进行电荷注入和读取,可以测量器件的电荷传输特性。
即测量在不同电场下,电荷注入到器件中和从器件中释放的速度。
4. 数据分析与解释:通过分析测量数据,可以得到器件的电荷容量、电荷传输速率等参数。
通过比较这些参数与设计要求或标准值,可以评估器件的性能是否符合要求。
CP测试的关键是保证测量精度和一致性。
为此,在实际应用中,往往需要采取一系列措施来降低干扰和误差。
例如,可以对测量电路和测量设备进行校准和校验,使用差分放大器来提高信噪比,合理选择测量电压和电流范围,以及采取适当的滤波和抗干扰措施等。
需要注意的是,CP测试不仅仅适用于器件的生产过程中,也可以用于研发和故障分析。
通过对器件的电荷容量和传输特性的测量和分析,可以帮助改进设计、优化工艺和提高产品性能。
总之,半导体的CP测试是一项重要的质量评估手段,它通过测量半导体器件的电荷容量和传输特性,来评估器件的性能和可靠性。
通过合理选择测量参数和采取抗干扰措施,可以提高测试精度和一致性,为半导体器件的制造和应用提供可靠的数据支持。
半导体基本测试原理

半导体基本测试原理半导体是一种具有特殊电学特性的材料,在电子、光电子和光电子技术等领域具有广泛的应用。
半导体器件的基本测试主要包括单个器件的电学测试、晶体管的参数测试以及集成电路的功能测试等。
本文将从半导体基本测试的原理、测试方法和测试仪器等方面进行详细介绍。
1.电学测试原理:半导体器件的电学测试主要是通过电压和电流的测量,来判断器件的电学性能。
常见的电学测试有阻抗测量、电流-电压特性测试等。
阻抗测量通常使用交流信号来测试器件的电阻、电感和电容等参数,可以通过测试不同频率下的阻抗来分析器件的频率响应特性。
2.晶体管参数测试原理:晶体管是半导体器件中最常见的器件之一,其参数测试主要包括DC参数测试和AC(交流)参数测试。
DC参数测试主要通过测试器件的电流增益、静态工作点等参数来分析和评估器件的直流工作性能。
AC参数测试主要通过测试器件在射频信号下的增益、带宽等参数来分析和评估其射频性能。
3.功能测试原理:集成电路是半导体器件的一种,其测试主要从功能方面进行。
功能测试主要分为逻辑测试和模拟测试两种。
逻辑测试主要测试器件的逻辑功能是否正常,比如输入输出的逻辑电平是否正确,数据传输是否正确等。
模拟测试主要测试器件的模拟电路部分,比如电压、电流、频率等参数是否在规定范围内。
二、半导体基本测试方法1.电学测试方法:常用的电学测试方法包括直流测试和交流测试。
直流测试主要通过对器件的电流和电压进行测量来分析器件的基本电学性能,如电流增益、电压饱和等。
交流测试主要通过在不同频率下测试器件的阻抗来分析器件的频率响应特性,一般使用网络分析仪等仪器进行测试。
2.参数测试方法:晶体管参数测试主要使用数字万用表等测试仪器来测量器件的电流和电压,并通过计算得到相关参数。
AC参数测试一般使用高频测试仪器,如频谱分析仪、示波器等来测试器件在射频信号下的特性。
3.功能测试方法:功能测试一般通过编写测试程序,控制测试仪器进行测试。
逻辑测试的方法主要是通过输入特定的信号序列,对输出结果进行判断,是否与预期的结果相符。
半导体测试理论

半导体测试理论1测量可重复性和可复制性(GR&R)GR&R是用于评估测试设备对相同的测试对象反复测试而能够得到重复读值的能力的参数。
也就是说GR&R是用于描述测试设备的稳定性和一致性的一个指标。
对于半导体测试设备,这一指标尤为重要。
从数学角度来看,GR&R就是指实际测量的偏移度。
测试工程师必须尽可能减少设备的GR&R值,过高的GR&R值表明测试设备或方法的不稳定性。
如同GR&R名字所示,这一指标包含两个方面:可重复性和可复制性。
可重复性指的是相同测试设备在同一个操作员操作下反复得到一致的测试结果的能力。
可复制性是说同一个测试系统在不同操作员反复操作下得到一致的测试结果的能力。
当然,在现实世界里,没有任何测试设备可以反复获得完全一致的测试结果,通常会受到5个因素的影响:1、测试标准2、测试方法3、测试仪器4、测试人员5、环境因素所有这些因素都会影响到每次测试的结果,测试结果的精确度只有在确保以上5个因素的影响控制到最小程度的情况下才能保证。
有很多计算GR&R的方法,下面将介绍其中的一种,这个方法是由Automotive Idustry Action Group(AIAG)推荐的。
首先计算由测试设备和人员造成的偏移,然后由这些参数计算最终GR&R 值。
Equipment Variation (EV):代表测试过程(方法和设备)的可重复性。
它可以通过相同的操作员对测试目标反复测试而得到的结果计算得来。
Appraiser Variation (AV):表示该测试流程的可复制性。
可以通过不同操作员对相同测试设备和流程反复测测试所得数据计算得来。
GR&R的计算则是由上述两个参数综合得来。
必须指出的是测试的偏移不仅仅是由上述两者造成的,同时还受Part Variation(PV)的影响。
PV表示测试目标不同所造成的测试偏差,通常通过测试不同目标得到的数据计算而来。
半导体基本测试原理资料

半导体基本测试原理资料1.测试原理半导体器件的测试原理主要包括以下几个方面:(1)电性能测试:电性能测试主要是通过对器件进行电流-电压(I-V)特性测试来评估器件的电气性能。
通过在不同电压下测量器件的电流来得到I-V曲线,从而确定器件的关键参数,如导通电压、截止电压、饱和电流等。
(2)高频特性测试:高频特性测试主要是通过对器件进行射频(RF)信号测试来评估其在高频工作状态下的性能。
常用的高频特性测试参数包括功率增益、频率响应、噪声系数等。
(3)温度特性测试:温度特性测试主要是通过对器件在不同温度条件下的测试来评估其温度稳定性和性能。
常用的测试方法包括恒流源和恒压源测试。
(4)故障分析测试:故障分析测试主要是通过对器件进行故障分析来确定其故障原因和解决方案。
常用的故障分析测试方法包括失效分析、电子显微镜观察和射线析出测试等。
2.测试方法半导体器件的测试方法主要包括以下几个方面:(1)DC测试:DC测试主要是通过对器件进行直流电流和电压的测试来评估其静态电性能。
常用的测试设备包括直流电源和数字电压表。
(2)RF测试:RF测试主要是通过对器件进行射频信号的测试来评估其高频性能。
常用的测试设备包括频谱分析仪、信号源和功率计。
(3)功能测试:功能测试主要是通过对器件进行各种功能的测试来评估其功能性能。
常用的测试方法包括逻辑分析仪和模拟信号源。
(4)温度测试:温度测试主要是通过对器件在不同温度条件下的测试来评估其温度性能。
常用的测试设备包括热电偶和恒温槽。
3.数据分析半导体器件的测试结果需要进行数据分析和处理,以得到结果的可靠性和准确性。
常用的数据分析方法包括统计分析、故障分析和回归分析等。
(1)统计分析:统计分析主要是通过对测试结果进行统计和分布分析来评估器件的性能和可靠性。
常用的统计方法包括平均值、标准偏差和散点图等。
(2)故障分析:故障分析主要是通过对测试结果中的异常数据进行分析来确定故障原因和解决方案。
半导体物理实验讲义

霍尔系数测量中的几种负效应
a
等位面
M
N
I b
图3 不等势面电位差
(1)由于a、b电极处在不同的等位面,所以a、b之间存在 欧姆压降和霍耳电压;
(2)由于电极a、b和样品是不同材料,形成热电偶,因而 产生电流磁效应和热磁效应。
几种负效应
(1)爱廷豪森效应——电流磁效应
I、B方向如图1,将在y方向产生温度差Ta-Tb∝IB,从而在电极和
E EF EiS EF (Ei qVS )
qVB Ei EF ( p type) qVB Ei EF (n type)
E
qVS
qVB
qVS
k0T
ln
NA ni
E
qVS
qVB
qVS
k0T
ln
NA ni
( p type) (n type)
NSS(VS)转换成NSS(E) 读出C-V特性曲线上电容的最大值,根据:
三、实验方法
为了消除不等势电压降和各种负效应的影响,在测量 时,要顺次改变工作电流和磁场的方向,才能最终得 到霍尔电压
U UH1 UH2 UH3 UH4 4
实验二 高频光电导衰减法测量Si单晶少子寿命
少子寿命是少数载流子的平均生存时间。也表示
非平衡载流子衰减到原来的1/e所经历的时间。
11
1
(1)
CQ Cox CS CSS
1 11
(2)
CH Cox CS
CSS
Cox
Cox
1 CQ 1 Cox
1 CH 1
(3)
根据电容的定义,有:
CSS
dQSS dVS
(4)
令NSS为单位表面积、单位能量间隔内的界面态数(cm-2. eV-1)
半导体材料_实验报告(3篇)

第1篇一、实验目的1. 熟悉半导体材料的性质,掌握半导体材料的制备方法。
2. 学习使用四探针法测量半导体材料的电阻率和薄层电阻。
3. 掌握半导体材料霍尔系数和电导率的测量方法。
4. 了解太阳能电池的工作原理,并进行性能测试。
二、实验原理1. 半导体材料:半导体材料具有介于导体和绝缘体之间的电导率,其电导率受温度、掺杂浓度等因素影响。
本实验所用的半导体材料为硅(Si)。
2. 四探针法:四探针法是一种测量半导体材料电阻率和薄层电阻的常用方法。
通过测量电流在半导体材料中流过时,电压的变化,可以得到材料的电阻率和薄层电阻。
3. 霍尔效应:霍尔效应是一种测量半导体材料霍尔系数和电导率的方法。
当半导体材料中存在磁场时,载流子在运动过程中会受到洛伦兹力的作用,导致载流子在垂直于电流和磁场的方向上产生横向电场,从而产生霍尔电压。
4. 太阳能电池:太阳能电池是一种将光能转化为电能的装置。
本实验所用的太阳能电池为硅太阳能电池,其工作原理是光生电子-空穴对在PN结处分离,产生电流。
三、实验仪器与材料1. 实验仪器:四探针测试仪、霍尔效应测试仪、太阳能电池测试仪、数字多用表、温度计等。
2. 实验材料:硅(Si)半导体材料、太阳能电池等。
四、实验步骤1. 四探针法测量半导体材料电阻率和薄层电阻(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在四探针测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算电阻率和薄层电阻。
2. 霍尔效应测量半导体材料霍尔系数和电导率(1)将硅半导体材料切割成合适尺寸的样品。
(2)将样品放置在霍尔效应测试仪上,按照仪器操作步骤进行测量。
(3)记录实验数据,计算霍尔系数和电导率。
3. 太阳能电池性能测试(1)将硅太阳能电池放置在太阳能电池测试仪上。
(2)按照仪器操作步骤进行测试,记录实验数据。
(3)计算太阳能电池的短路电流、开路电压、填充因子等参数。
五、实验结果与分析1. 四探针法测量半导体材料电阻率和薄层电阻根据实验数据,计算得到硅半导体材料的电阻率和薄层电阻分别为:ρ =0.3Ω·m,Rt = 0.1Ω。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制测试过程,可作为电压或电流源并能对输出的 电压和电流进行测量,并通过测试软件实现测试结 果的分类(bin)、数据的保存和控制、系统校准以 及故障诊断。
CP测试主要过程
1. 将待测Wafer放在cassette中置于探针台(Prober) 的上下片部分,探针台自动上片到承片台( chuck)并被真空吸附在承片台上。
If Vf @ If
Reverse
Voltage Vr
Vr@Ir
Ir
Ir@Vr
Forward Voltage
Reverse Current
VF
1. VF Forward Voltage(正向电压) 二极管在规定的正向电流(IF / IAK)下的正向压降。
对于SBD/FRD测试,以下测试项为VF参数: 1) VF 适用于单管芯及双管芯产品第一个管芯的
IDSS - Drain to Source Leakage Current
ISGS - Gate to Source Leakage Current
Vth
- Gate to Source Threshold Voltage
RDON - Drain to Source On-Resistance
正向电压测试;
2) VFBC 适用于双管芯产品第二个管芯的正向电压 测试。
VF
IAK
VF
VFBC
IAK IB
VR(VZ) 2. VR(VZ) Reverse Voltage(反向电压)
二极管在规定的反向电流(IR / IKA)下的电压值。
对于SBD/FRD测试,以下测试项为VR参数:
1) VZ 适用于单管芯及双管芯产品第一个管芯的 反向电压测试;
2. 承片台吸附wafer进行自动对准定位,以使探针 卡/探针与wafer测试区域接触良好。
3. 测试机(tester)将电信号通过探针卡加载在待测 die上,对产品进行测试,,以使不良管芯 可以在封装之前被识别并废弃。
测试的评判标准--良率(yield)
2. *.jdf.xls :*.jdf自动转化的excel文档, 用于查看各参数测试具体数据。
3. *_Counter.xls :计数文件,用于查看 wafer整体良率情况及各bin的统计。
测试数据文件介绍(STATEC)
STATEC机台测试数据文件:STATEC测试机 测试数据文件主要有:
1. *.log2 :原始测试数据,必须由 STATEC 自带软件“Atos”打开查看并转 换为excel文档,原始测试数据不能编辑 或更改。
VFSD - Drain to Source Forward Voltage
二极管(SBD/FRD等)基本测试参数
VF
-Forward Voltage
VR(VZ)
-Reverse Voltage
IR
-Reverse Current(I)
SBD特性曲线:
SBD特性曲线
Forward Current
2) BVCBO 适用于双管芯产品第二个管芯的反向电压 测试。
VZ IKA
VZ
BVCBO
IKA IC
IR
3. IR Reverse Current(I)(反向电流)
二极管在规定的反向电压(VR / VCE / VCB)下的 电流值。
对于SBD/FRD测试,以下测试项为IR参数:
1) IR
适用于单管芯及双管芯产品第一个管芯的
• 电学测试数据根据每个硅片上失效的芯片 数目把硅片分为通过(Pass)和失效(Fail )两类,其中合格芯片所占的百分比称为 良率。
产品良率(Yield)=合格芯片数(good die) / 总芯片数( gross die)
测试的基本参数及其测试原理
VDMOS基本测试参数
BVDSS - Drain to Source Breakdown Voltage
2. *.sum :每片的计数文件,用于查看各 片wafer的良率情况及各bin统计。
3. *.wfs :整批的计数文件,用于查看该 批wafer整体良率情况及各bin的统计。
End
基本测试原理
基本测试原理
半导体产品的不同阶段电学测试
测试种类 生产阶段
测试描述
IC设计验证
生产前
描述、调试和检验新的芯片 设计,保证符合规格要求
在线参数测试 Wafer制造 为了监控工艺,在制作过程
(PCM)
过程中 的早期进行产品工艺检验测
试
硅片拣选测试 Wafer制造 产品电性测试,验证每个芯
(CP测试) 后
反向电流测试;
2) ICBO 适用于双管芯产品第二个管芯的反向电流 测试。
IR
IR
ICBO
VCE
VCE
VCB
测试数据文件介绍(JUNO)
Juno机台测试数据文件:Juno测试机测试 数据文件主要有:
1. *.jdf :原始测试数据,必须由Juno自 带软件“DfOpener”打开查看,且测试数 据不能编辑或更改
片是否符合产品规格
终测(FT) 封装后
使用产品规格进行的产品功 能测试
CP测试主要设备
1. 探针卡(probe card)
探针卡是自动测试机与待测器件(DUT)之间的接 口,在电学测试中通过探针传递进出wafer的电流。
2. 探针台(prober)
主要提供wafer的自动上下片、找中心、对准、定位 以及按照设置的步距移动Wafer的功能,以使探针卡 上的探针总是能对准硅片相应位置进行测试。