2019学业水平考试模拟数学试题

合集下载

山东省潍坊市2019年学业水平考试数学模拟试题(1)及答案

山东省潍坊市2019年学业水平考试数学模拟试题(1)及答案

山东省潍坊市2019年学业水平考试数 学 模 拟 试 题注意事项:本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分.考试时间为120分钟.第Ⅰ卷 选择题 (共36分)一、选择题 (本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来填入题后的括号内,每小题选对得3分.) 1.下列根式中与18是同类二次根式的是( ). A .321B .27C .6D .3 2.抛物线y =2x 2+4x -3的顶点坐标是( ).A .(1,-5)B .(-1,-5)C .(-1,-4)D .(-2,-7)3.国家游泳中心——“水立方”是2019年北京奥运会标志性建筑之一,其工程占地面积为62828平方米,将62828用科学记数法表示是(保留三个有效数字)( ). A .62.8×103B .6.28×104C .6.2828×104D .0.62828×1054.数据0,-1,6,1,x 的众数为-1,则这组数据的方差是(A .2B .534C .2D .5265.如图,⊙O 的直径为10,弦AB 的长为6,M 是弦AB 上的一动点,则线段OM 的长的取值范围是( ). A .3≤OM ≤5 B .4≤OM ≤5 C .3<OM <5 D .4<OM <56.小明随机地在如图所示的正三角形及其内部区域投针,则针扎 到其内切圆(阴影)区域的概率为( ). A .21 B .π63C .π93 D .π33 7.如图,□ABCD 中,对角线AC 和BD 相交于点O , 如果AC =12,BD =10,AB =m ,那么m 的取值范围是( ).A .1<m <11B .2<m <22C .10<m <12D .5<m <6DABCO第7题图第6题图第8题图第5题图第11题图8.如图,P 1、P 2、P 3是双曲线上的三点.过这三点分别 作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O , 设它们的面积分别是S 1、S 2、S 3,则( ). A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 1<S 3<S 2 D .S 1=S 2=S 39.直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式12k x b k x +>的解为( ).A .1x >-B .1x <-C .2x <-D .无法确定10.如图,将ABC △沿DE 折叠,使点A 与BC 边的中点F 重合,下列结论中①EF AB ∥且12EF AB =;②BAF CAF ∠=∠; ③DE AF 21S ADFE ∙=四边形; ④2BDF FEC BAC ∠+∠=∠, 一定正确的个数是( ). A .1B .2C .3D .411.若关于x 的一元二次方程ax 2+2x -5=0的两根中有且仅有一根在0和1 之间(不含0和1),则a 的取值范围是( ).A .a <3B .a >3C .a <-3D .a >-312.如图,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F , 已知∠A = 100°,∠C = 30°,则∠DFE 的度数是 ( ).A .55°B .60°C .65°D .70°第Ⅱ卷 非选择题(共84分)二、填空题(本题共5小题,共15分.只要求填写最后结果,每小题填对得3分.) 13.当m = 时,关于x 的分式方程213x mx +=--无解. 14.已知关于x 的不等式组⎩⎨⎧--≥-0125a >x x 无解,则a 的取值范围是 .15.已知关于的一元二次方程12)1(2=-++x x kk 的取值范围是 .16.如图,梯形ABCD 中,BC AD //,1===AD CD AB ,︒=∠60B直线MN 为梯形ABCD 的对称轴,第16题图x第9题图第12题图P 为MN 上一点,那么PD PC的最小值是 .17.在实数的原有运算法则中我们补充定义新运算“⊕”如下:当a ≥b 时,a ⊕b = b 2;当a <b 时,a ⊕b =a .则当x =2时,(1⊕x )-(3⊕x )的值为 . 三、解答题(本题共7小题,共69分.解答应写出文字说明、证明过程或推演步骤.) 18.(本题满分8分)据《生活报》报道,有关部门要求各中小学要把“每天锻炼一小时”写入课表.为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据.图1是根据这组数据绘制的条形统计图.请结合统计图回答下列问题: (1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢篮球活动的有多少人?占被调查人数的百分比是多少? (3)若该校九年级共有200名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢跳绳活动的人数约为多少?19.(本题满分9分)某公司经销一种绿茶,每千克成本为50元.市场调查发现,在一段时图2图1最喜欢的体育活 动项目的人数/人育活动项目间内,销售量w (千克)随销售单价x (元/千克)的变化而变化,具体关系式为:w =-2x +240.设这种绿茶在这段时间内的销售利润为y (元),解答下列问题: (1)求y 与x 的关系式; (2)当x 取何值时,y 的值最大?(3)如果物价部门规定这种绿茶的销售单价不得高于90元/千克,公司想要在这段时间内获得2250元的销售利润,销售单价应定为多少元?20.(本题满分9分)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得∠ACB=68°.(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈ ); (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.21.(本题满分10分)如图,BD 为圆O 的直径,AB AC =,AD 交BC 于E ,2AE =,4ED =.(1)求证:ABE ADB △∽△,并求AB 的长;(2)延长DB 到F ,使BF BO =,连接FA ,那么直线FA 与⊙O 相切吗?为什么?22.(本题满分10分)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同. (1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元?(2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.23.(本题满分11分)如图,等腰梯形ABCD 中,AD ∥BC ,AB =DC ,AC ⊥BD ,过D 点作DE ∥AC 交BC的延长线于E 点.(1)求证:四边形ACED 是平行四边形; (2)若AD =3,BC =7,求梯形ABCD 的面积.24.(本题满分12分)如图所示,在平面直角坐标系中,⊙M 经过原点O ,且与x 轴、y 轴分别相交于A (-6,0),B (0,-8)两点. (1)请求出直线AB 的函数表达式;(2)若有一抛物线的对称轴平行于y 轴且经过点M ,顶点C 在⊙M 上,开口向下,且经过点B ,求此抛物线的函数表达式;(3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点P ,使得115PDE ABC S S△△?若存在,请求出点P 的坐标;若不存在,请说明理由.数学参考答案一、选择题1.A2.B3.B4.B5.B6.C7.A8.D9.B10.B11.B12.C 二、填空题13.-6 14.a ≥3 15.k >-2,且k ≠-1 16.3 17.-318.解:(1)由图1知:4810181050++++=(名)………2分 答:该校对50名学生进行了抽样调查.(2)本次调查中,最喜欢篮球活动的有18人.………………3分181003650⨯=%%………………………………………….4分 ∴最喜欢篮球活动的人数占被调查人数的36%.(3)1(302624)20-++=%%%% 200201000÷=% (人)…6分8100100016050⨯⨯=% (人) 答:估计全校学生中最喜欢跳绳活动的人数约为160人.………8分 19.解:⑴ y =(x -50)∙ w =(x -50) ∙ (-2x +240)=-2x 2+340x -12000,∴y 与x 的关系式为:y =-2x 2+340x -12000........3分 ⑵ y =-2x 2+340x -12000=-2 (x -85) 2+2450,∴当x =85时,y 的值最大. ……………………………6分 ⑶ 当y =2250时,可得方程 -2 (x -85 )2 +2450=2250. 解这个方程,得 x 1=75,x 2=95. 根据题意,x 2=95不合题意应舍去.∴当销售单价为75元时,可获得销售利润2250元.…………9分20.解:(1)在BAC Rt ∆中, 68=∠ACB ,∴24848.210068tan =⨯≈⋅= AC AB (米)答:所测之处江的宽度约为248米…………………………………3分(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分……………9分 21.(1)证明:AB AC =,ABC C ∴=∠∠,C D =∠∠,ABC D ∴=∠∠.又BAE DAB =∠∠,ABE ADB ∴△∽△.AB AEAD AB∴=. AB 2=AD ·AE=(AE+ED )·AE=(2+4)×2=12.AB ∴=. ……………………………………………………5分(2)直线FA 与⊙O 相切.理由如下: 连接OA .BD 为⊙O 的直径,BD ∴====122BF BO BD ∴===⨯=.2AB =,BF BO AB ∴==.90OAF ∴=∠.∴直线FA 与⊙O 相切. ……………………………………10分22.解:(1)设租用一辆甲型汽车的费用是元,租用一辆乙型汽车的费用是元.由题意得解得答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.……………………………………………………………3分 (2)设租用甲型汽车辆,则租用乙型汽车辆.由题意得解得……………………………………………………6分由题意知,为整数,或或共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.方案一的费用是(元); 方案二的费用是(元); 方案三的费用是(元),所以最低运费是4900元.……………9分答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆; 方案二:租用甲型汽车3辆,租用乙型汽车3辆; 方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.……………………………………………10分 23.证: ⑴∵AD ∥BC ∴AD ∥CE 又∵DE ∥AC∴四边形ACED 是平行四边形……………… 3分 ⑵过D 点作DF ⊥BE 于F 点∵DE ∥AC ,AC ⊥BD ∴DE ⊥BD ,即∠BDE=90° 由⑴知DE=AC ,CE=AD=3 ∵四边形ABCD 是等腰梯形∴AC=DB ………………………………………7分∴DE=DB ……………………………………8分∴△DBE 是等腰直角三角形,∴△DFB 也是等腰直角三角形 ∴DF=BF=21(7-3)+3=5……………………9分 (也可运用:直角三角形斜边上的中线等于斜边的一半)()2553721DF BC)(AD 21S ABCD =⨯+=∙+=梯形……11分 注:⑴过对角线交点O 作OF ⊥BC 于F ,延长FO 交AD 于H ,于是OH ⊥AD由△ABC ≌△DCB ,得到△OBC 是等腰直角三角形,OF=21BC=27同理OH=21AD=23,高HF=52327=+ ⑵过A 作AF ⊥BC 于F ,过D 作DH ⊥BC 于H ,由△AFC ≌△DHB得高AF=FC=21(AD+BC)=5 ⑶DOA COD BOC AOB ABCD S S S S S ∆∆∆∆+++=梯形(进行计算)24. 解:(1)设直线AB 的函数表达式为(0)y kx b k =+≠, ∵直线AB 经过(60)(08)A B --,,,, ∴由此可得60,8.k b b -+=⎧⎨=-⎩解得4,38.k b ⎧=-⎪⎨⎪=-⎩∴直线AB 的函数表达式为483y x =--.……4分(2)在Rt AOB △中,由勾股定理,得10AB ===, ∵圆M 经过O A B ,,三点,且90AOB ∠=°, AB ∴为圆M 的直径,∴半径5MA =,设抛物线的对称轴交x 轴于点N , MN x ⊥∵,∴由垂径定理,得132AN ON OA ===. 在Rt AMN △中,4MN ===,541CN MC MN ∴=-=-=,1()PN∴顶点C 的坐标为(31)-,,设抛物线的表达式为2(3)1y a x =++,它经过(08)B -,,∴把0x =,8y =-代入上式,得28(03)1a -=++,解得1a =-, ∴抛物线的表达式为22(3)168y x x x =-++=---.…………8分(3)如图,连结AC ,BC ,35213521ON MC 21AN MC 21S S S BMC AMC ABC ⨯⨯+⨯⨯=∙+∙=+=∆∆∆ =15 在抛物线268y x x =---中,设0y =, 则2680x x ---=, 解得12x =-,24x =-.D E ∴,的坐标分别是(40)-,,(20)-,,2DE ∴=;设在抛物线上存在点()P x y ,,使得111511515PDE ABC S S =⨯=△△=, 则1y 221y DE 21S PDE =⨯⨯=∙=∆, 1y ∴=±,当1y =时,2681x x ---=,解得123x x ==-,1(31)P ∴-,;当1y =-时,2681x x ---=-,解得13x =-+,23x =-2(3)P ∴--1,3(3)P --1.综上所述,这样的P 点存在,且有三个,1(31)P -,,2(3)P -+-1,3(31)P --.…………………….12分。

山东省2019届数学学业水平考试模拟试卷【含答案及解析】

山东省2019届数学学业水平考试模拟试卷【含答案及解析】

山东省2019届数学学业水平考试模拟试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 下列计算正确的是()A. (-1)0=-1B. (-1)-1=1C. 2a-3=D. (-a3)÷(-a)7=2. 如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =()A. 95°B. 90°C. 135°D. 120°3. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4. 若把分式的x、y同时扩大10倍,则分式的值()A. 扩大为原来的10倍B. 缩小为原来的C. 不变D. 缩小为原来的5. 如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是().A. B. 且 C. D. 且6. 已知:在Rt△ABC中,∠C=900,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC上任一点,连接DE、DF,设EC长为x,则△DEF面积y关于x的函数图象大致为:()A. B. C. D.7. 如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B 运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A. 2B.C.D. 48. 如图,AB是⊙O的直径,AM和BN是它的两条切线,DC切⊙O 于E,交AM于D,交BN 于C.若AD BC=9,则直径AB的长为A. B. 6 C. 9 D.9. 如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是()A. B. 2 C. 4 D.10. 函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2-4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b-1)x+c<0;其中正确的个数是:()A. 1B. 2C. 3D. 411. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是()A. 3B. 9C. 7D. 112. 在平面直角坐标系中,正方形ABCD的顶点坐标分别为 A(1,1),B(1,-1),C (-1,-1),D(-1,1),y轴上有一点 P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称轴P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2016的坐标为()A. (0,2)B. (2,0)C. (0,-2)D. (-2,0)二、填空题13. 分解因式:=____.14. 如图,将四边形纸片ABCD的右下角向内折出△PC′R,其中,,恰使C′P∥AB,RC′∥AD,则.15. 已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为_____________。

2019年初中学业水平考试数学模拟试题附答案

2019年初中学业水平考试数学模拟试题附答案

2019年初中学业水平考试数学模拟试题1附答案第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对4分,选错、不选或选出的答案超过一个,均记零分)1. 下列各组数中互为相反数的是 A .12-与(0.5)-- B .13与-0.33 C .124-与 124-- D .-5与152.如图所示的支架(一种小零件)的两个台阶的高度和宽度相等,则它的左视图为( )A. B. C. D.3.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学计数法表示,保留2个有效数字)A. 1.9×1014B. 2.0×1014C. 7.6×1015D. 1.9×1015 4.下列图形中,既是中心对称图形又是轴对称图形的是A. 角B. 等边三角形C. 平行四边形D. 圆 5.如图,若∠A=75°,则要使EB ∥AC 可添加的条件是( )A. ∠C=75°B. ∠DBE=75°C. ∠ABE=75°D. ∠EBC=105°6.(2015•巴彦淖尔)不等式组{2x −3<4x +113(x +3)≤2)的解集在数轴上表示正确的是( )A. B. C.D.7. 如图,AB 为⊙O 的直径,CD 为⊙O 的弦,∠ADC =36°, 则∠CAB 的度数为BA.64°B.54°C.44°D. 36°AB为半径作弧,连接弧的交点得8.(2017•深圳)如图,已知线段AB,分别以A、B为圆心,大于12到直线l,在直线l上取一点C,使得∠CAB=25∘,延长AC至M,求∠BCM的度数为()A. 40∘B. 50∘C. 60∘D. 70∘9.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是()A. 有最小值0,有最大值3B. 有最小值﹣1,有最大值0C. 有最小值﹣1,有最大值3D. 有最小值﹣1,无最大值10.(2017•深圳)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A. 平均数B. 中位数C. 众数D. 方差11.一副三角板按图1所示的位置摆放.将△DEF绕点A(F)逆时针旋转60°后(图2),测得CG=10cm,则两个三角形重叠(阴影)部分的面积为()A. 75cm 2B. (25+25√3)cm 2C. (25+25√33)cm 2 D. (25+50√33)cm 212.如图,正方形ABCD 的边长是 3,BP =CQ ,连接 AQ ,DP 交于点O ,并分别与边 CD ,BC 交于点 F ,E ,连接AE ,下列结论: ①AQ ⊥DP ; ②OA 2=OE ⋅OP ; ③S △AOD =S 四边形OECF ; ④ 当 BP =1 时, tan ∠OAE =1116 ,其中正确结论的个数是( )A. 1B. 2C. 3D. 4第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分)13.分解因式:3x 2-12=________.14.有七张正面分别标有数字﹣1、﹣2、0、1、2、3、4的卡片,除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为m ,则使关于x 的方程 2x−1 + x+m 1−x=2的解为正数,且不等式组 {2x +3>5x −m <0无解的概率是________. 15.(2017•深圳)阅读理解:引入新数 i ,新数 i 满足分配律,结合律,交换律,已知 i 2=−1 ,那么 (1+i)·(1−i)= ________.16.(2017•深圳)如图,在RtΔABC中,∠ABC=90∘,AB=3,BC=4,RtΔMPN,∠MPN=90∘,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.17.春节黄金周期间,重庆两江国际影视城推出“陪都风情”秀,吸引众多游客前来观看民俗表演,体验老重庆的独特魅力.据统计,黄金周前四天,景区共接待游客720000以上.其中720000用科学记数法表示为________.18.用计算器探索规律:请先用计算器计算982,9982,99982,999982,由此猜想________.三、解答题(本大题共7小题,满分78分.解答应写出文字说明、证明过程或演算步骤.)19.(本小题满分8分)化简,再求代数式的值:(a+21−a2−2a+1)÷a1−a,其中a=√3−1.20.(本小题满分10分)(2017•深圳)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.(1)学生共________人,x=________,y=________;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有________人.21.(本小题满分12分)已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.(x>0)交于A(2,4)、B(a,1),22.(本小题满分10分)如图一次函数y=kx+b与反比例函数y=mx与x轴,y轴分别交于点C、D.(x>0)的表达式;(1)直接写出一次函数y=kx+b的表达式和反比例函数y=mx(2)求证:AD=BC.23.(本小题满分12分)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.24.(本小题满分12分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是弧CBD上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE·HF 的值.25.(本小题满分14分)如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y 轴于点C:(1)求抛物线的解析式(用一般式表示).SΔABD,若存在请直接给出点D坐(2)点D为y轴右侧抛物线上一点,是否存在点D使SΔABC=23标;若不存在请说明理由.(3)将直线BC绕点B顺时针旋转45∘,与抛物线交于另一点E,求BE的长.答案解析部分一、选择题1. A2.D3. A4. D5.C6. D7. A8. B9. C 10. B 11. C 12.B 二、填空题 13.3(x +2)(x -2) 14.37 15.2 16.317.7.2×10518.99…9︸n 个9600⋯0︸n 个04三、解答题19.解:原式= === ,当 时,原式=20.(1)120;0.25;0.2(2)解:补全的条形统计图如下:(3)50021.解:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.22.(1)解:将A(2,4)代入y=mx.∴ m=2×4=8.∴反比例函数解析式为y=8x.∴将B(a,1)代入上式得a=8.∴B(8,1).将A(2,4),B(8,1)代入y=kx+b得:{2k+b=48k+b=1.∴{k=−1 2b=5∴一次函数解析式为:y=-12x+5.(2)证明:由(1)知一次函数解析式为y=-12x+5.∴C(10,0),D(0,5).如图,过点A作AE⊥y轴于点E,过B作BF⊥x轴于点F. ∴E(0,4),F(8,0).∴AE=2,DE=1,BF=1,CF=2∴在Rt△ADE和Rt△BCF中,根据勾股定理得:AD=√AE2+DE2=√5,BC=√CF2+BF2=√5.∴AD=BC.23.解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;(Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),因为5500<5800,故收费调整后,此运营商在该校投放A品牌共享单车不能获利.24.(1)解:连接OC,在Rt△COH中,∵CH=4,OH=r-2,OC=r.∴(r-2)2+42=r2.∴ r=5(2)解:∵弦CD与直径AB垂直,∴弧AD=弧AC=12弧CD.∴∠AOC=12∠COD.∴∠CMD=12∠COD.∴∠CMD=∠AOC.∴sin∠CMD=sin∠AOC.在Rt△COH中,∴sin∠AOC=CHOC =4 5 .∴sin∠CMD=45.(3)解:连接AM , ∴∠AMB=90°. 在Rt △AMB 中, ∴∠MAB+∠ABM=90°. 在Rt △EHB 中, ∴∠E+∠ABM=90°. ∴∠MAB=∠E. ∵弧BM=弧BM, ∴∠MNB=∠MAB=∠E. ∵∠EHM=∠NHF. ∴△EHM ∽△NHF ∴HE HN =HM HF.∴HE.HF=HM.HN. ∵AB 与MN 交于点H ,∴HM.HN=HA.HB=HA.(2r-HA )=2×(10-2)=16. ∴HE.HF=16.25.(1)解:依题可得:{a −b +2=016a +4b +2=0解得:{a =−12b =32 ∴y=-12x 2+32x+2.(2)解:依题可得:AB=5,OC=2, ∴S △ABC =12AB×OC=12×2×5=5. ∵S △ABC =23S △ABD. ∴S △ABD =32×5=152.设D (m,-12m 2+32m+2)(m >0).第 11 页 共 11 页 ∵S △ABD =12AB|y D |=152.|12×5×|-12m 2+32m+2|=152.∴m=1或m=2或m=-2(舍去)或m=5∴D 1(1,3),D 2(2,3),D 3(5,-3).(3)解:过C 作CF ⊥BC 交BE 于点F ;过点F 作FH ⊥y 轴于点H. ∵∠CBF=45°,∠BCF=90°.∴CF=CB.∵∠BCF=90°,∠FHC=90°.∴∠HCF+∠BCO=90°,∠HCF+∠HFC=90°∴∠HFC=∠OCB.∵{∠CHF =∠COB∠HFC =∠OCB FC =CB∴△CHF ≌△BOC (AAS ).∴HF=OC=2,HC=BO=4,∴F (2,6).设直线BE 解析式为y=kx+b.∴{2k +b =64k +b =0解得{k =−3b =12∴直线BE 解析式为:y=-3x+12.∴{y =−12x 2+32x +2y =−3x +12解得:x 1=5,x 2=4(舍去)∴E (5,-3).BE=√(5−4)2+(−3−0)2=√10.。

2019年山东省学业水平考试数学模拟试题一(含答案解析)

2019年山东省学业水平考试数学模拟试题一(含答案解析)
【详解】
由已知解得 ,
所以 ,故选B.
【点睛】
本题考查一元二次不等式的解集、指数函数的值域和集合的交集运算,属于基础题.
9.D
【解析】
【分析】
解一元二次不等式 即可得出结果
【详解】
由 得 其在 上的补集为 ,故选D
【点睛】
本题考查集合的补集,是一道基础题。
10.B
【解析】
【分析】
先将 分母实数化,然后直接求其模。
运用复数的除法的运算法则,求出复数 的表达式,最后求出 的虚部.
【详解】
的虚部为 .
【点睛】
本题考查了复数的除法运算法则和复数的虚部的概念,正确运用复数的除法法则,计算出复数的表达式是解题的关键.
23.
【解析】
【分析】
根据二项展开式通项公式求 的系数.
【详解】
因为 ,
所以令 得 ,系数为
【点睛】
本题考查二项展开式通项公式,考查基本分析求解能力,属基础题.
本小题主要考查平面向量共线的坐标表示,熟练掌握向量共线定理是解题的关键,属于基础题.
3.B
【解析】
【分析】
根据复数的除法运算和复数的共轭复数的概念求得.
【详解】
由已知得 ,
所以 ,
所以
故选B.
【点睛】
本题考查复数的除法运算和复数的共轭复数的概念,属于基础题.
4.B
【解析】
【分析】
根据函数的定义域、值域、单调性和奇偶性的判断解得.
绝密★启用前
2019年山东省学业水平考试数学模拟试题
数学
考试范围:xxx;考试时间:100分钟;命题人:xxx
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息

慈溪市2019年初中生学业模拟考试数学试题答案

慈溪市2019年初中生学业模拟考试数学试题答案

∴CB= 2 ;
又∵OA=2;
∴ SOABC
22
2 2
2 1
;
2
2
第二种情况,C 在 y 轴负半轴,此时 CB 的函数解析式: y x 1;

y

2 x
联立方程组,解得
x1

2,
x2

1
(舍去);
∴B(2,1);
∴CB= 2 2 ;
又∵OA=2;
2 2 2
∴ SOABC
(2)第一种情况: c a2 =4;
第二种情况: b a2 4 .
①若 60°为 a,b 夹角,如图(1),则 c 2 3 ;
②若 60°为 a,c 夹角,如图(2),则 c= 13 1 ;
其余情况不成立.
8分 1 0分 2分 3分
5分 7分
所以 c 4 或 c 2 3 或 13 1 .
题号 1
2
3
4
5
6

7
8
9 10 11 12
答案 A C B B A A D A C C D B
二、填空题(每小题 4 分,共 24 分)
题号
13
14
15
16
17
18
答案
-3
-1
5
2或3 32
5 4
2 2
三、解答题(共 78 分)
注: 1.阅卷时应按步计分,每步只设整分;
2. 如有其它解法,只要正确,都可参照评分标准,各步相应给分.
7
7
∴P

4 7
,0
.
y B
Q
A
OP
D

慈溪市2019年初中学业水平模拟考试数学试题(含答题卡及答案)

慈溪市2019年初中学业水平模拟考试数学试题(含答题卡及答案)




第 3 页共 6 页
21.(本小题 8 分)某校九年级部分同学参加了一次内容为“最喜欢的课间餐水果”的调查 活动,收集整理数据以后,老师将水果分为五类,并绘制了图 1、图 2 两个不完整的统 计图,请根据图中信息解答下列问题:
(图 1)
(第 21 题图 )
根据统计图中的信息,解答下列问题:
(图 2)
C. 3 2
D.2
y A
PO B x (第 11 题图)
A
D
E S4 H
S1
S3
F S2 G
B
C
(第 12 题图)
12.如图, ABCD ∽ EFGH ,AB//EF,记四边形 ABFE、四边形 BCGF、四边形 CDHG、
四边形 DAEH 的面积分别 S1, S2, S3, S4 ,若已知 ABCD 和 EFGH 的面积,则不用测
若∠1=117°,则∠2 的度数为
A.27°
B.37°
C.53°
D.63°
(第 8 题图)
9.如图,点 P 是∠ABC 的 BC 边上一点,作以点 P 为圆心,且与 AC 边相切的圆,下列四
种作法中错误的是
B
A.
A
D
P
C
B
B.
A
D
P
C
A D
B EP
C
C.
10.在平面直角坐标系中,点 P( 2 m , m2 2m )不可能在
慈溪市 2019 年初中毕业生学业水平模拟考试
数学试题
考试须知:
1. 全卷分试题卷Ⅰ、试题卷Ⅱ和答题卷.试卷共 6 页,有三个大题,26 个小题,满分为 150 分,考试时间为 120 分钟. 2. 请将学校、姓名、准考证号等信息分别填写在答题卷的规定位置上. 3. 答题时,把试卷Ⅰ的答案写在答题卷一上对应的选项位置用 2B 铅笔涂黑、涂满.将试 卷Ⅱ的答案用黑色字迹钢笔或签字笔书写,答案必须按照题号顺序在答题卷二、三各题目规 定区域内作答,做在试题卷上或超出答题卷区域书写的答案无效. 4. 不允许使用计算器,没有近似要求的计算,结果不能用近似值表示.

天津市2019年九年级学业水平第一次模拟考试数学试题(附解析)

天津市2019年九年级学业水平第一次模拟考试数学试题(附解析)

天津市2019年九年级学业水平第一次模拟考试数学试题一.选择题(每题3分,满分36分)1.如果两个数的和为正数,那么()A.这两个加数都是正数B.一个数为正,另一个为0C.两个数一正一负,且正数绝对值大D.必属于上面三种之一2.已知∠A为锐角,且sin A=,那么∠A等于()A.15°B.30°C.45°D.60°3.世界文化遗产长城总长约670000米,将数670000用科学记数法可表示为()A.6.7×104B.6.7×105C.6.7×106D.67×1044.篆字保存着古代象形文字的明显特点,下列几个篆字中,是中心对称图形的是()A.B.C.D.5.下面四个立体图形,从正面、左面、上面看都不可能看到长方形的是()A.B.C.D.6.估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间7.下列约分正确的是()A.=x3B.=0C.=D.=8.已知是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣59.一次函数y=kx+2k与反比例函数y=(k≠0)在同一直角坐标系内的图象可能是()A.B.C.D.10.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E,那么∠AED等于()A.80°B.60°C.40°D.30°11.如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=4cm,△ADC 的周长为15cm,则BC的长()A.8cm B.11cm C.13cm D.19cm12.函数y=﹣x2﹣4x﹣3图象顶点坐标是()A.(2,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)二.填空题(满分18分,每小题3分)13.计算:(﹣2)2019×0.52018=.14.计算:=.15.在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.16.若直线y=﹣2x+3b+2经过第一、二、四象限,则b的取值范围是.17.已知等边三角形ABC中,AB=4,点D是边AB的中点,点E是边BC上的动点,连接DE,将△BDE沿直线DE翻折,点B的对应点为B′,当直线B′E与直线AC的夹角为30°时,BE的长度是.18.如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AB的长度等于(Ⅱ)请你在图中找到一个点P,使得AB是∠PAC的角平分线请在如图所示的网格中,用无刻度的直尺,画出点P,并简要说明点P的位置是如何找到的(不要求证明)三.解答题(共9小题,满分76分)19.(8分)解不等式组,并把不等式组的解在数轴上表示出来.20.(8分)为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求户外活动时间的众数和中位数是多少?(4)本次调查中学生参加户外活动的平均时间是否符合要求?说明理由.21.(10分)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.(1)求证:DC=BD;(2)求证:DE为⊙O的切线.22.(10分)如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°,AC=10米,又测得∠BDA=45°.已知斜坡CD的坡度为i=1:,求旗杆AB的高度(,结果精确到个位).23.(10分)《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表累进计算:(纳税款=应纳税所得额×对应税率)(1)设某甲的月工资、薪金所得为x元(1300<x<2800),需缴交的所得税款为y元,试写出y与x的函数关系式;(2)若某乙一月份应缴所得税款95元,那么他一月份的工资、薪金是多少元?24.(10分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图象交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动.两点同时出发,速度均为每秒1个单位,设从出发起运动了ts.(1)求点D的坐标;(2)若PQ∥OD,求此时t的值?(3)是否存在某个时刻t,使S△DOP=S△PCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,△DPQ是以DQ为腰的等腰三角形?25.(10分)如图,边长为4的正方形ABCD中,动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,动点Q同时以每秒4个单位的速度从点A出发沿正方形的边AD﹣DC﹣CB方向顺时针做折线运动,当点P与点Q相遇时停止运动,设点P的运动时间为t秒.(1)当点P在BC上运动时,PB=;(用含t的代数式表示)(2)当点Q在AD上运动时,AQ=;(用含t的代数式表示)(3)当点Q在DC上运动时,DQ=,QC=;(用含t的代数式表示)(4)当t等于多少时,点Q运动到DC的中点?(5)当t等于多少时,点P与点Q相遇?26.(10分)已知抛物线y=ax2﹣2ax﹣2(a≠0).(1)当抛物线经过点P(4,﹣6)时,求抛物线的顶点坐标;(2)若该抛物线开口向上,当﹣1≤x≤5时,抛物线的最高点为M,最低点为N,点M的纵坐标为,求点M和点N的横坐标;(3)点A(x1,y1)、B(x2,y2)为抛物线上的两点,设t≤x1≤t+1,当x≥3时,均有y≥y2,求t的取值范围.127.如图,在平面直角坐标系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),二次函数y=+bx﹣2的图象经过C点.(1)求二次函数的解析式;(2)平移该二次函数图象的对称轴所在直线l,若直线l恰好将△ABC的面积分为1:2两部分,请求出此时直线l与x轴的交点坐标;(3)将△ABC以AC所在直线为对称轴翻折180°,得到△AB′C,那么在二次函数图象上是否存在点P,使△PB′C是以B′C为直角边的直角三角形?若存在,请求出P 点坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、设这两个数都是正数,根据有理数加法法则:同号相加,取相同符号,并把绝对值相加,则结果肯定是正数;B、设一个数为正数,另一个为0,根据有理数加法法则:一个数同0相加,仍得这个数,则结果肯定是正数;C、设两个数一正一负,且正数绝对值大,根据有理数加法法则:绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值,则结果肯定是正数.D、综上所述,以上三种情况都有可能.故选:D.2.解:∵sin A=,∠A为锐角,∴∠A=30°.故选:B.3.解:670000=6.7×105.故选:B.4.解:根据中心对称图形的概念可知,选项A、C、D都不是中心对称图形,而选项B是中心对称图形.故选:B.5.【解答】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.6.解:∵32=9,42=16,∴,∴+1在4到5之间.故选:C.7.解:A、=x4,故本选项错误;B、=1,故本选项错误;C、=,故本选项正确;D、=,故本选项错误;故选:C.8.解:把代入方程得:﹣2k+4=﹣2,解得:k=3,故选:B.9.解:①当k>0时,y=kx+2k过一、二、三象限;y=过一、三象限;②当k<0时,y=kx+2k二、三、四象象限;y=过二、四象限.观察图形可知只有D符合②.故选:D.10.解:根据折叠的性质可得BD=DE,AB=AE.∵AC=AE+EC,AB+BD=AC,∴DE=EC.∴∠EDC=∠C=20°,∴∠AED=∠EDC+∠C=40°.故选:C.11.解:∵将△ABC沿直线DE折叠后,使得点B与点A重合,∴AD=BD,∵AC=4cm,△ADC的周长为15cm,∴AD+CD=BC=15﹣4=11(cm).故选:B.12.解:∵y=﹣x2﹣4x﹣3=﹣(x2+4x+4﹣4+3)=﹣(x+2)2+1∴顶点坐标为(﹣2,1);故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:(﹣2)2019×0.52018=(﹣2×0.5)2018×(﹣2)=﹣2.故答案为:﹣2.14.解:原式===2.故答案为2.15.解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.16.解:∵直线y=﹣2x+3b+2经过第一、二、四象限,∴3b+2>0,∴b>﹣.故答案为:b>﹣.17.解:如图所示,直线B′E与直线AC的交点在线段AC上时,∠CGE=30°,∵∠C=60°,∴∠CEG=90°,由折叠可得,∠DEB=∠BEG=45°,过D作DH⊥BC于H,则∠BDH=30°,∴BH=BD=1,DH==HE,∴BE=BH+HE=1+;如图所示,直线B′E与直线AC的交点在线段AC延长线上时,∠CGE=30°,∴∠CEB=∠ACB﹣∠G=30°,由折叠可得,∠EB'D=∠B=60°,∴∠EHB'=90°,∴∠BDH=30°,∴BH=BD=1,DH==HE,又∵DB'=DB=2,∴HB'=2﹣,∴R t△EB'H中,EH=2﹣3,∴BE=BH﹣EH=1﹣(2﹣3)=4﹣2,故答案为:1+或4﹣2.18.解:(I)AB==2;故答案为:2;(II)如图所示:AP即为所求.三.解答题(共9小题,满分76分)19.解:,解①得x>﹣;解②得x<4,把不等式的解集表示在数轴上:,所以不等式组的解集为﹣<x<4.20.解:(1)根据题意得:=50(名),答:在这次调查中共调查了50名学生;(2)户外活动时间为1.5小时的人数是:50×24%=12(人),(3)∵1小时出现的次数最多,∴众数是1;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是:(1+1)÷2=1;(4)∵本次调查中学生参加户外活动的平均时间是:=1.18>1,∴本次调查中学生参加户外活动的平均时间符合要求.21.证明:(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)连接半径OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.22.解:延长BD,AC交于点E,过点D作DF⊥AE于点F.∵i=tan∠DCF==,∴∠DCF=30°.又∵∠DAC=15°,∴∠ADC=15°.∴CD=AC=10.在Rt△DCF中,DF=CD•sin30°=10×=5(米),CF=CD•cos30°=10×=5,∠CDF=60°.∴∠BDF=45°+15°+60°=120°,∴∠E=120°﹣90°=30°,在Rt△DFE中,EF===5∴AE=10+5+5=10+10.在Rt△BAE中,BA=AE•tan E=(10+10)×=10+≈16(米).答:旗杆AB的高度约为16米.23.解:由题意(1)∵甲得到的月工资、薪金所得为1300~2800元,则对应的纳税范围为:1300﹣800=500;2800﹣800=2000,即对应的纳税款区间为:超过500元至2000元的部分∴y=500×5%+(x﹣1300)×10%=0.1x﹣105故y与x的函数关系式为:y=0.1x+105(2)某乙一月份应缴所得税款95元,由(1)关系式可知,令y=95.得95=0.1x+105,解得x=2000,满足所对应的纳税区间.即他一月份的工资、薪金是2000元.24.解:(1)由题意知点D的纵坐标为4,在y=2x中y=4时,x=2,∴点D坐标为(2,4);(2)如图1,由题意知BD=3,BC=4,∴CD=5,∵CP=DQ=t,∴CQ=5﹣t,∵PQ∥OD,∴△CPQ∽△COD,∴=,即=,解得t=;(3)存在,如图2,分别过点Q、D作QE⊥OC,DF⊥OC交OC与点E、F,∵∠DCF=∠QCE,∠DFC=∠QEC=90°,∴△CQE∽△CDF,∴=,即=,∴QE=,则S△CPQ=×t×(5﹣t)=t(5﹣t)=﹣t2+2t,S=×4×(5﹣t)=2(5﹣t),△ODP∵S△DOP=S△PCQ,∴2(5﹣t)=×(﹣t2+2t),解得t=2或t=5(此时Q与C重合,不能构成三角形,舍去).(4)∵△CQE∽△CDF,∴CE=(5﹣t),PE=t﹣(5﹣t)=t﹣3,∴根据勾股定理得:PQ2=+(t﹣3)2=t2﹣16t+25,DP2=42+(3﹣t)2,DQ=t,①当DQ=DP时,42+(3﹣t)2=t2,解得t=;②当DQ=PQ时,t2﹣16t+25=t2,解得:t=5(舍)或t=;答:当t=或t=时,△DPQ是一个以DQ为腰的等腰三角形.25.解:(1)∵动点P以每秒1个单位的速度从点B出发沿线段BC方向运动,∴BP=1×t=t,故答案为:t,(2)∵动点Q同时以每秒4个单位的速度从点A出发,∴AQ=4×t=4t,故答案为:4t,(3)∵DQ=4t﹣AD∴DQ=4t﹣4,∵QC=CD﹣DQ∴QC=4﹣(4t﹣4)=8﹣4t故答案为:4t﹣4,8﹣4t(4)根据题意可得:4t=4+2t=1.5答:当t等于1.5时,点Q运动到DC的中点.(5)根据题意可得:4t+t=4×3t=答:当t等于时,点P与点Q相遇.26.解:(1)该二次函数图象的对称轴是x==1;(2)∵该二次函数的图象开口向上,对称轴为直线x=1,﹣1≤x≤5,∴当x=5时,y的值最大,即M(5,).把M(5,)代入y=ax2﹣2ax﹣2,解得a=,∴该二次函数的表达式为y=x2﹣2x﹣2,当x=1时,y=,∴N(1,﹣);(3)当a>0时,该函数的图象开口向上,对称轴为直线x=1,∵t≤x1≤t+1,当x2≥3时,具有y1≥y2,点A(x1,y1)B(x2,y2)在该函数图象上,∴t≥3或t+1≤1﹣(3﹣1),解得,t≥3或t≤﹣2;当a<0时,该函数的图象开口向下,对称轴为直线x=1,∵t≤x1≤t+1,当x2≥3时,具有y1≥y2,点A(x1,y1)B(x2,y2)在该函数图象上,∴,∴﹣1≤t≤2.t的取值范围﹣1≤t≤2.27.解:(1)过点C作KC⊥x轴交于点K,∵∠BAO+∠CAK=90°,∠BAO+∠CAK=90°,∴∠CAK=∠OBA,又∠AOB=∠AKC=90°,AB=AC,∴△ABO≌△CAK(AAS),∴OB=AK=2,AO=CK=1,故点C的坐标为(3,1),将点C的坐标代入二次函数表达式得:1=+3b﹣2,解得:b=﹣,故二次函数表达式为:y=﹣x﹣2…①;(2)设若直线l与直线BC、AC分别交于点M、N,把点B、C的坐标代入一次函数表达式:y=kx+2得:1=3k+2,解得:k=﹣,即直线BC的表达式为:y=﹣x+2,同理可得直线AC的表达式为:y=x﹣,直线AB的表达式为:y=﹣2x+2,设点M的坐标为(x,﹣x+2)、点N坐标为(x,﹣x﹣2),直线l恰好将△ABC的面积分为1:2两部分,设:S△CMN=S△ACB,即:×(3﹣x)(﹣x+2﹣+x+2)=××,解得x=1或3﹣,即:直线l与x轴的交点坐标为(1,0)或(3﹣,0);(3)将△ABC以AC所在直线为对称轴翻折180°,点B′的坐标为(2,﹣2),①当∠PCB′=90°时,∵∠BCB′=90°,故点P为直线BC与抛物线的另外一个交点,直线BC的方程为:y=﹣…②,联立①②解得:x=3或,故点P的坐标为(﹣,);②当∠CPB′=90°时,同理可得:点P的坐标为(﹣1,﹣1)或(,﹣),故:点P的坐标为:(﹣,)或(﹣1,﹣1)或(,﹣).。

山东省2019届数学学业水平考试模拟试卷【含答案及解析】

山东省2019届数学学业水平考试模拟试卷【含答案及解析】

山东省2019届数学学业水平考试模拟试卷【含答案及解析】姓名___________ 班级____________ 分数__________题号一二三总分得分一、单选题1. 下列计算正确的是()A. (-1)0=-1B. (-1)-1=1C. 2a-3=D. (-a3)÷(-a)7=2. 如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =()A. 95°B. 90°C. 135°D. 120°3. 下列图形中,既是中心对称图形又是轴对称图形的是()A. B. C. D.4. 若把分式的x、y同时扩大10倍,则分式的值()A. 扩大为原来的10倍B. 缩小为原来的C. 不变D. 缩小为原来的5. 如果关于的一元二次方程有两个不相等的实数根,那么的取值范围是().A. B. 且 C. D. 且6. 已知:在Rt△ABC中,∠C=900,AC=6,BC=8,点E是边AC上一动点,过点E作EF∥BC,交AB边于点F,点D为BC上任一点,连接DE、DF,设EC长为x,则△DEF面积y关于x的函数图象大致为:()A. B. C. D.7. 如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B 运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A. 2B.C.D. 48. 如图,AB是⊙O的直径,AM和BN是它的两条切线,DC切⊙O 于E,交AM于D,交BN 于C.若AD BC=9,则直径AB的长为A. B. 6 C. 9 D.9. 如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是()A. B. 2 C. 4 D.-4c>0;②b+c+1=0;10. 函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2③3b+c+6=0;④当1<x<3时,x2+(b-1)x+c<0;其中正确的个数是:()A. 1B. 2C. 3D. 411. 观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,…,通过观察,用你所发现的规律确定32014的个位数字是()A. 3B. 9C. 7D. 112. 在平面直角坐标系中,正方形ABCD的顶点坐标分别为 A(1,1),B(1,-1),C (-1,-1),D(-1,1),y轴上有一点 P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称轴P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2016的坐标为()A. (0,2)B. (2,0)C. (0,-2)D. (-2,0)二、填空题13. 分解因式:=____.14. 如图,将四边形纸片ABCD的右下角向内折出△PC′R,其中,,恰使C′P∥AB,RC′∥AD,则.15. 已知平面直角坐标系中,O为坐标原点,点A坐标为(0,8),点B坐标为(4,0),点E是直线y=x+4上的一个动点,若∠EAB=∠ABO,则点E的坐标为_____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019学业水平考试模拟数学试题
(考试时间:120分钟 满分:120分)
真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!
本试题共有24道题.1—8题为选择题,共24分;9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题纸上作答,在本卷上作答无效.
一、选择题:(本题满分24分,共有8道小题,每小题3分)
下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.2018-的值是( )
20181.
A 2018.
B 2018
1
.-C 2018.-D 2.在以下永环保、绿色食品,节能,绿色环保四个标志中,是轴对称图形是( )
3.在”创文明城,迎省运会”合唱比赛中,10位评委会给某队的评分如下表所示,则下列说法正确的是( )
成绩(分) 9.2 9.3 9.4 9.5 9.6 人数 3
2
3
1
1
A. 中位数是9.35 B .中位数是9.4 C .众数是3和1 D .众数是9.4分 4.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色......,不断重复上述过程,小明共摸了100次,其中20次摸到黑球,根据上述数据,小明可估计口袋中的白球大约有( )
A.18个 B .15个 C .12个 D .10个
5. 如图,把图①中的ABC ∆经过一定的变换得到图②中的C B A '''∆,如果图①中ABC ∆上点P 的坐标为(a ,b ),那么这个点在图②中的对应点P '的坐标为( )
()3,2.--b a A ()2,3.--b a B ()3,2.++b a C ()2,3.++b a D
6. 如图,AB 是⊙O 的切线,A 为切点,连接OB 交⊙O 于点C ,若OA=3,tan 3:1=∠AOB ,则BC 的长为( )
A .2 B.3 C .4 D .5
7. 如图,在ABC ∆中,o
90=∠C o 30,=∠B ,以A 为圆心, 任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以 M 、N 为圆心,大于
MN 2
1
的长为半径画弧,两弧交于点P , 连结AP 并延长交BC 于点D ,则下列说法中正确的个数是 ( )
①AD 是BAC ∠的平分线;o
60=∠ADC ; ③点D 在AB 的中垂线上;④3:1:=∆∆ABC DAC S S A.1 B.2 C.3 D.4
8.下列四个函数图象中,当x>0时,y 随x 增大而增大的是( )
二、填空题:(本题满分24分,共有8道小题,每小题3分)
9.计算:1
328--=__________.
10.2017年7月27日上映的国产电影《战狼2》,风靡全国,剧中
“犯我中华者,虽远必诛”鼓舞人心,彰显了祖国的强大实力与影 响力,累计票房56.8亿元,将56.8亿元用科学记数法表示为 ________元.
11. 如图,已知AB 是⊙O 的直径,C,D 是圆上两点,,1,45o ==∠AC CDB 则AB 的长为_______.
12. 如图,正比例函数x k y 11=和反比例函数x
k
y 22=的图象 交于()()2,1.2,1.--B A 、两
点,若21y y <,则x 的取值范围是________________.
13. 如图,P 是正三角形ABC 内的一点,且PA=6, PB=10,PC=10.若将PAC ∆绕点A 逆时针旋转后,得到AB P '∆,则点P 与点P ' 之间的距离为_______,o
___=∠APB .
14. 正方形2332122111,,C C B A C C B A O C AB ...按如图方式放置,点...,,321A A A 和点
321,,C C C ...分别在直线1+-=x y 和x 轴上,则点n A 的坐标是________________.
三、作图题:(本题满分4分用尺规作图,不写作法,但要保留作图痕迹.)
15.如图,将一块三角形材料)(ABC ∆,请你画出一个半圆,使得圆心在直线AC 上,且与AB 、BC 相切.
结论:
四、解答题:(本题满分 74分,共有9道小题) 16. (本题满分8分,每小题4分)
(1)化简;
⎪⎭⎫ ⎝⎛
+-÷++111122
a a a a (2)解不等式组:
()⎩
⎨⎧+-≥+-<+,2
711513x
x x x
17.(本小题满分6分)
中华文明,源远流长,中华汉字寓意深广,为了传承优秀文化,某校九年级组织600名学生参加了一次“汉子听写”大赛,赛后发现所有学生的成绩均不低于60分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩为样本,成绩如下: 90,92,81,82,78,95,85,88,71,66,62,68,89,85,93,97,100,73,70,80 77,81,80,89,82,75,81,68,71,98,90,97,100,81,87,73,65,92,96,60
对上述成绩(成绩x 取整数,总分100分)进行了整理,得到下列不完整的统计图表:
成绩x/分频数频率
60≤x<70 6 0.15
70≤x<80 8 0.2
80≤x<90 a b
90<x<100 c d
(1)a=________,b=_______.c=________,d=________。

(2)请补全频数分布直方图;
(3)若成绩在90分以上(包括90分)的为“优”等,请你估计参加这次比赛的600名学生中成绩“优”等的约有多少人?
18.(本小题满分6分)
小莉的爸爸买了去看中国篮球职业联赛总决赛的一张门票,她和个个两人都想去观看,可是门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张扑克牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.
(1)请用列表的方法求小莉去看中国篮球职业联赛总决赛的概率;
(2)哥哥设计的游戏规则公平吗?若公平,请说明理由;若不公平,请你设计一种公平的游戏规则.
19. (本小题满分6分)
2018年2月17日上午10点34分,我国自主研制的第二架C919大型客机在上海浦东国际机场进行首次飞行,这意味着C919大型客机逐步拉开全面试验试飞的新征程,这大大激发了同学们对航空科技的兴趣,如图是某校航模兴趣小组获得的一张数据不完整的航模飞机机翼图纸,图中AB//CD,AM//BN//ED,DE AE ⊥,请根据图中数据,求出线段BE
和CD 的长.(,,,75.037tan 80.037cos 60.037sin o
o
o
≈≈≈结果保留小数点后一位)
20.(本小题满分6分)
5月13日是母亲节,为了迎接母亲节的到来,利客来商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一种乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利w(元)与甲种玩具进货量m (件)之间的函数关系式,并求出最大利润为多少?
21.(本小题满分8分)
如图,将□ABCD 沿EF 折叠,恰好使点C 与点A 重合,点D 落在点G 处,连接AC 、CF. (1)求证:AGF ABE ∆≅∆.
(2)请判断四边形ABCF 的形状,并说明理由.
22.(本小题满分10分)
我市红领服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了围棋30天的跟踪调查,其中实体商店的日销售量1y (百件)与时间t (t 为整数,单位:天)的部分对应值如下表所示:
时间t (天) 0 5 10 15 20 25 30 日销售量1y (百件)
25
40
45
40
25
(1)请你在一次函数,二次函数和反比例函数中,选择合适的函数能反映1y 与t 的变化规律,并求出1y 与t 的函数关系式及自变量t 的取值范围.
(2)网上商店的日销售量
y(百件)与t(t为整数,单位:天)的关系如下图所示,并求
2

y与t的函数关系式及自变量t的取值范围.
2
(3)在跟踪调查的30天中,设实体店和网上商店的日销售总量为y(百件),求y与t的函数关系式,当t为何值时,日销售量y达到最大,并求出此时的最大值.。

相关文档
最新文档