最新集合间的基本关系练习题汇编
集合间的基本关系练习题含答案

集合间的基本关系练习题(1)1. 如图,已知全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},则图中阴影部分所表示的集合是()A.{3, 4}B.{−2, −1, 0}C.{1, 2}D.{2, 3, 4}2. 已知集合A={−1, 0, 1},则含有元素0的A的子集的个数为()A.2B.4C.6D.83. 设集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},则B=()A.{−1}B.{2}C.{−1, 2}D.{1, 2}4. 已知A={−2, 2011, x2−1},B={0, 2011, x2+3x},且A=B,则x的值为()A.1或−1B.0C.−2D.−15. 定义:设A,B是非空的数集,a∈A,b∈B,若a是b的函数且b也是a的函数,则称a与b是“和谐关系”.如等式b=a2,a∈[0, +∞)中a与b是“和谐关系”,则下列等中a与b是“和谐关系”的是()A.b=sin aa ,a∈(0,π2) B.b=a3+52a2+2a+1,a∈(−2,−23)C.(a−2)2+b2=1,a∈[1, 2]D.|a|+|b|=1,a∈[−1, 1]6. 已知集合:①{0};②{⌀};③{x|3m<x<m};④{x|a+2<x<a};⑤{x|x2+ 2x+5=0, x∈R}.其中,一定表示空集的是________(填序号).7. 当a满足________时,集合A={x|3x−a<0, x∈N+}表示集合{1}.8. 已知集合M={1, 2, 3, ..., n}(n>1, n∈N∗),则M的所有非空子集的元素和为________(只需写出数学表达式)=a+2},B={(x,y)|(a2−4)x+(a−2)y=7},若A∩9. 已知集合A={(x,y)|y−2x−1B=⌀,则实数a=________.10. 集合A={1, 2}共有________子集.11. 已知集合A={1,2,3,4}.(1)若M⊆A,且M中至少有一个偶数,则这样的集合M有多少个?(2)若B={x|ax−3=0},且B⊆A,求实数a的取值集合.12. 已知集合A={x|2m−10<x<m−1},B={x|2<x<6}.(1)若m=4,求A∩B;(2)若A⊆B,求m的取值范围.参考答案与试题解析集合间的基本关系练习题(1)一、选择题(本题共计 5 小题,每题 5 分,共计25分)1.【答案】A【考点】Venn图表达集合的关系及运算【解析】由阴影部分可知对应的集合为B∩∁U A,即可得到结论.【解答】解:阴影部分可知对应的集合为B∩(∁U A),∵全集U=Z,集合A={−2, −1, 0, 1, 2},B={1, 2, 3, 4},∴B∩(∁U A)={3, 4},故选A.2.【答案】B【考点】元素与集合关系的判断【解析】由集合子集的定义找出集合A的所有子集可得答案,【解答】已知集合A={−1, 0, 3},则由集合的子集定义可得A集合的所有子集为:⌀,{−1},{1},8},1},1},4,1},则含有元素0的A的子集为{6},{−1,{0,{−2,0,个数为4个,3.【答案】C【考点】集合的包含关系判断及应用【解析】本题的关键是认清集合B的研究对象,利用列举法写出集合B的元素即可.【解答】解:∵集合A={−1, 1, 2},集合B={x|x∈A 且2−x∉A},−1∈A,且2−(−1)=3∉A,故1∈B;1∈A,但2−1=1∈A,不满足题意;2∈A,且2−2=0∉A,故2∈B;故B={−1, 2}.故选C.4.【答案】D【考点】集合的相等【解析】直接应用集合相等则集合中的元素完全相同来解决问题.【解答】解:∵A=B,即A和B中的元素完全相同,∴有{x2−1=0x2+3x=−2,解得:x=−1.故选D.5.【答案】A【考点】元素与集合关系的判断【解析】只要判断所给出的函数单调即可.【解答】解:A.∵a∈(0,π2),则a>sin a,∴b′=a cos a−sin aa2=cos a(a−sin a)a2>0,因此函数b在a∈(0,π2)上单调递增,正确;B.∵a∈(−2,−23),b′=3a2+5a+2=(3a+2)(a+1),∴a∈(−2, −1)时单调递增;a∈(−1, −23)时单调递减,因此不符合题意;C.∵(a−2)2+b2=1,a∈[1, 2],∴b=±√1−(a−2)2,b不是a的函数,舍去;D.∵|a|+|b|=1,a∈[−1, 1],∴b=±(1−|a|),b不是a的函数,舍去.故选:A.二、填空题(本题共计 5 小题,每题 5 分,共计25分)6.【答案】④⑤【考点】空集的定义、性质及运算【解析】利用单元素集、空集的定义直接求解.【解答】①{0}是单元素集;②{⌀}是单元素集;③当m<0时,{x|8m<x<m}不是空集;④{x|a+2<x<a}是空集;⑤{x|x2+7x+5=0, x∈R}是空集.∴一定表示空集的是④⑤.7.【答案】【考点】集合的含义与表示【解析】先解不等式3x−a<0,得,根据已知条件需限制a为:1<≤2,解不等式即得a满足的条件.【解答】解3x−a<0得.根据已知条件知:x=1,∴1<.解得3<a≤6.8.【答案】(n2+n)⋅2n−2【考点】子集与真子集【解析】由题意可知,集合中的元素出现的次数都是相等的,从而确定每个元素出现的次数,从而利用等差数列求和公式求和.【解答】若M={1, 2, 3, ...n},则集合M的所有非空子集中,集合M中的任何一个元素出现的次数都是相等的;考查1出现的次数,可看成集合{2, 3, 4, ...n}的子集个数,故共有2n−1个1,故M的所有非空子集的元素和为2n−1(1+2+3+4+...+n)=(n2+n)⋅2n−29.【答案】【考点】集合关系中的参数取值问题【解析】此题暂无解析【解答】此题暂无解答10.【答案】4【考点】子集与真子集【解析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.【解答】解:集合A有2个元素,故有22=4个子集.故答案为:4.三、 解答题 (本题共计 2 小题 ,每题 5 分 ,共计10分 )11.【答案】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.(2)因为B ⊆A ,所以集合B 有两种可能:B =⌀,B ≠⌀.当B =⌀时,显然a =0,当B ≠⌀时,则a ≠0,得x =3a ,则有3a =1或3a =2或3a =3或3a =4, 解得a =3或a =32或a =1或a =34.综上,实数a 的取值集合是{0,34,1,32,3}.【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:(1)由M ⊆A ,且M 中至少有一个偶数,得满足条件的集合M 为:{2},{1,2},{2,3},{1,2,3},{4},{1,4},{3,4},{1,3,4},{2,4},{1,2,4},{2,3,4},{1,2,3,4},共12个.12.【答案】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.【考点】交集及其运算集合的包含关系判断及应用【解析】(1)当m =3时,化简A ={x 2−3x −10≤0}=[−2, 5],B =(2, 7);从而求交集.(2)讨论当B ≠⌀时,{m −1<2m +1m −1≥−22m +1≤5;当B =⌀时,m −1≥2m +1,从而解得.【解答】解:(1)当m =4时,A ={x|2×4−10<x <4−1}={x|−2<x <3},B ={x|2<x <6},则A ∩B ={x|2<x <3}.(2)∵ A ⊆B ,当A ≠⌀时,{2m −10<m −12m −10≥2m −1≤6;解得,6≤m ≤7;当A =⌀时,由2m −10≥m −1得,m ≥9;故m 的取值范围为{m|m ≥9或6≤m ≤7}.。
集合间的基本关系20题(详解版)

集合间的基本关系20题(详解版)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{|13}A x x =-<<,若B A ⊆,则B 可能是( )A .{1,2}B .{2,3}C .[1,3)-D .(,1)-∞-2.下列六个关系式:⑴(){}{}(){}(){}(){}(){}{,}{,}2,,304005060a b b a a b b a ⊆==∅∈∅∈∅⊆其 中正确的个数为( )A .6个B .5个C .4个D .少于4个 3.已知集合{}3,4,5,6P =,{}5,7Q =,下列结论成立的是( )A .Q P ⊆B .P Q P =UC .P Q Q ⋂=D .P Q Q ⊆I 4.设集合A={1,-}0,1,2,1{|1}B x x =<,则A B I 的真子集个数为( ) A .1 B .3 C .5 D .75.已知集合{1 2 3 4 5}A =,,,,,{0 2 4 6}B =,,,,则集合A B I 的子集共有( ) A .2个 B .4个 C .6个 D .8个6.设集合{}22(,)|2A x y x y =+=,{}(,)|3x B x y y ==,则A B I 的子集的个数是( )A .4B .3C .2D .17.已知集合A ={﹣2,0,1,3},B ={x|﹣52<x <32},则集合A∩B 的子集个数为( ) A .4 B .8 C .16 D .328.若集合{}2|10A x x =-<,{|,R}B x x a a =>∈ , 则(,1)a ∈-∞-是A B ⊆的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 9.若集合{}|0B x x =≥,且A B A =I ,则集合A 可能是( )A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R10.已知集合{}{}0,2,3,,,A B x x a b a b A ===⋅∈,则集合B 的真子集的个数是( )A .3B .4C .15D .16 11.若集合A ={x |x (x -1)<2},且A ∪B =A ,则集合B 可能是( )A .{-1,2}B .{0,2}C .{-1,0}D .{0,1}12.设集合{}2|20170A x x ax =++>,{}2|20180B x x ax =++>,{}2|20170C x x x b =-+>,{}2|20180D x x x b =-+>,其中a ,b R ∈,下列说法正确的是( )A .对a ∀∈R ,A 是B 的子集;对b R ∀∈,C 不是D 的子集B .对a ∀∈R ,A 是B 的子集;b R ∃∈,C 是D 的子集C .a R ∃∈,A 不是B 的子集;对b R ∀∈,C 不是D 的子集D .a R ∃∈,A 不是B 的子集;b R ∃∈,C 是D 的子集二、多选题13.以下四个选项表述正确的有( )A .0∈∅B .{}0∅ÜC .{}{},,a b b a ⊆D .{}0∅∈三、解答题14.已知集合A 为函数()222log 21y x ax a =-+-的定义域,集合{}ln 2lg1000B x e x =≤≤.(1)当1a =-时,求()R A B I ð;(2)若A B A ⋃=,求实数a 的取值范围.15.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B U ;(2)若B A ⊆,求实数m 的取值范围;(3)若A B =∅I ,求实数m 的取值范围.16.已知全集U =R ,集合A ={x |a -1<x <2a +1},B ={x |0<x <1}.(1)若a =12,求A ∩B ; (2)若A ∩B =A ,求实数a 的取值范围.17.已知全集U =R ,非空集合A ={x | x−2x−3<0},B ={x | (x −a)(x −a 2−2)<0} (1)当a =12时,求(C U B)∪A(2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要不充分条件,求实数a 的取值范围。
高中数学教师资格证笔试练题:集合间的基本关系(练习)

1.2 集合间的基本关系一、单选题1.下列各式中:①{}{}00,1,2∈;②{}{}0,1,22,1,0⊆;③{}0,1,2∅⊆;④{}0∅=;⑤{}{}0,1(0,1)=;⑥{}00=.正确的个数是( )A .1B .2C .3D .42.集合{}=1,2,3A 的子集个数为( )A .3B .6C .7D .83.满足条件∅ M ⫋{a ,b ,c }的集合M 共有( )A .3个B .6个C .7个D .8个 4.已知集合{}20,A x x x x R =+=∈,则集合A 的非空子集个数是( )A .1B .2C .3D .45.下列表述正确的有( )①空集没有子集;②任何集合都有至少两个子集;③空集是任何集合的真子集;④若∅是A 的真子集,则A ≠∅.A .0个B .1个C .2个D .3个 6.已知集合{}123,,A a a a =的所有非空真子集的元素之和等于9,则123a a a ++=( ) A .1 B .2 C .3 D .67.设集合A ={-1,1},集合B ={x |x 2-2ax +1=0},若B ≠∅,B ⊆A ,则a 等于( )A .-1B .0C .1D .±1二、多选题8.下列关系式正确的为( )A .{}{},,a b b a ⊆B .{}0=∅C .{}00∈D .{}0∅⊆ 9.下列集合的关系,正确的是( )A .{}∅∅B .{}∅=∅C .{}0⊇∅D .{}∅∈∅10.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 为( )A .{1,2}B .{2,3}C .{1,2,4}D .{2,3,4}11.已知集合{}{2,A x ax B =≤=-,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .0 D .2 12.已知集合{}12A x x =<<,{}232B x a x a =-<<-,下列说法正确的是( ) A .不存在实数a 使得A B =B .当4a =时,A B ⊆C .当04a ≤≤时,B A ⊆D .存在实数a 使得B A ⊆三、填空题13.已知集合{0,1}A =,则集合A 的子集个数为_____________.14.已知集合2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭,则集合A 的真子集的个数为_________ 15.已知集合{1,2,}M m =-,{1,3}N =,若N M ⊆,则实数m 的值为_________. 16.设集合{}|23A x x =-≤,{}|B x x t =<,若A B ⊆,则实数t 的取值范围是_____.17.已知集合212|,,{|1,}33n n A x x n Z B x x n Z +⎧⎫==∈==+∈⎨⎬⎩⎭,则集合A 、B 的关系为A ____(B 从“,,⊆⊇=”选择合适的符号填空).四、解答题18.指出下列各对集合之间的关系:(1)A ={-1,1},B ={(-1,-1),(-1,1),(1,-1),(1,1)};(2)A ={x |x 是等边三角形},B ={x |x 是等腰三角形};(3)A ={x |-1<x <4},B ={x |x -5<0};(4)M ={x |x =2n -1,n ∈N *},N ={x |x =2n +1,n ∈N *}.19.已知集合M 满足{}{}1,21,2,3,4,5M ⊆⊆,求所有满足条件的集合M .20.已知集合{}23,21,1A a a a =-++,集合{}0,1,B x =.(1)若3A -∈,求a 的值;(2)是否存在实数a ,x ,使A B =.21.已知集合{|4}A x x a =-=,集合{}1,2,B b =(1)是否存在实数a ,使得对任意实数b 都有A B ⊆成立?若存在,求出对应的a 值;若不存在,说明理由.(2)若A B ⊆成立,写出所有实数对(),a b 构成的集合.参考答案1.B解:①集合之间的关系是包含与不包含,因此{0}{0∈,1,2},不正确,应该为{0}{0,1,2};②{0,1,2}{2⊆,1,0},正确;③{0∅⊆,1,2},正确;④∅不含有元素,因此{0}∅;⑤{0,1}与{(0,1)}的元素形式不一样,因此不正确;⑥元素与集合之间的关系是属于与不属于的关系,应该为0{0}∈,因此不正确. 综上只有:②,③正确.2.D解:由题意得集合A 的子集个数为328=.3.B解:满足条件∅ M ⫋{a ,b ,c }的集合M 有:{a },{b },{c },{a ,b },{a ,c },{b ,c }.共6个,∴满足条件∅⫋M ⫋{a ,b ,c }的集合M 共有6个.4.C{}{}20,1,0A x x x x R =+=∈=-, 所以集合A 的非空子集个数为2213-=,5.B因为∅⊆∅,故①错;∅只有一个子集,即它本身.故②错;空集是任何集合的子集,是任何非空集合的真子集,故③错;空集是任何非空集合的真子集,故④正确,6.C解:集合{}123,,A a a a =的所有非空真子集为:{}{}{}{}{}{}123121323,,,,,,,,a a a a a a a a a ,则所有非空真子集的元素之和为:()12312132312339a a a a a a a a a a a a ++++++++=++=,所以1233a a a .7.D当B ={-1}时,x 2-2ax +1=0有两相等的实根-1,则()()()2224012110a a ⎧∆=--=⎪⎨---+=⎪⎩,解得a =-1; 当B ={1}时,x 2-2ax +1=0有两相等的实根1,则()222401210a a ⎧∆=--=⎪⎨-+=⎪⎩,解得a =1; 当B ={-1,1}时,x 2-2ax +1=0有两个不相等的实根-1,1,则()()()222240*********a a a ⎧∆=-->⎪⎪---+=⎨⎪-+=⎪⎩,无解,.综上:a =±1. 8.ACD解:对于选项A ,由于任何集合是它本身的子集,所以{}{},,a b b a ⊆,故A 正确;对于选项B ,{}0是指元素为0的集合,而∅表示空集,是指不含任何元素的集合,所以{}0≠∅,故B 错误;对于选项C ,{}0是指元素为0的集合,所以{}00∈,故C 正确;对于选项D ,由于空集是任何集合的子集,所以{}0∅⊆,故D 正确.9.ACDA .空集是任意非空集合的真子集,故A 正确;C.空集是任意集合的子集,因为{}0是含有一个元素的集合,所以{}0⊇∅正确;D.空集是空集构成的集合中的元素,满足属于关系,故D 正确,B 中左边是空集,右边是含有一个元素的集合,不相等,B 不正确;10.AC{}{}2320,1,2A x x x x R =-+=∈=∣ {}{05,}1,2,3,4B x x x N =<<∈=∣,A CB ⊆⊆,故四个选项中,{1,2}和{1,2,4}满足题意.11.ABC当0a =时,{}2A x ax R =≤=,显然B A ⊆,所以选项C 符合题意;当0a >时,{}22A x ax x x a ⎧⎫=≤=≤⎨⎬⎩⎭,若B A ⊆2a a ⇒即0a <≤B 符合题意;当0a <时,{}22A x ax x x a ⎧⎫=≤=≥⎨⎬⎩⎭,若B A ⊆,所以有221a a -≥⇒≥-,即10a -≤<,所以选项A 符合题意,故选:ABC12.AD选项A :若集合A B =,则有231,22,a a -=⎧⎨-=⎩,因为此方程组无解,所以不存在实数a 使得集合A B =,故选项A 正确.选项B :当4a =时,{}52B x x =<<=∅,不满足A B ⊆,故选项B 错误.若B A ⊆,则①当B =∅时,有232a a -≥-,1a ≥;②当B ≠∅时,有1,231,22a a a <⎧⎪->⎨⎪-<⎩此方程组无实数解;所以若B A ⊆,则有1a ≥,故选项C 错误,选项D 正确.故选:AD .13.4因为A 中元素个数为2,故其子集的个数为224=,14.15 因为21Z x ∈-,所以x -1是2的因数,即x -1可能是-1,-2,1,2,则2,1A x Z x Z x ⎧⎫=∈∈⎨⎬-⎩⎭={-1,0,2,3},所以真子集的个数为24-1=15.15.3-因为集合{1,2,}M m =-,{1,3}N =,且N M ⊆,所以3m -=,得3m =-,16.(5,)+∞ 由题意,集合{}|23{|15}A x x x x =-≤=-≤≤,又由{}|B x x t =<,且A B ⊆,所以5t >,即实数t 的取值范围是(5,)+∞.17.=解:由集合A 得:1|(21),3A x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, 由集合B 得:1|(23),3B x x n n Z ⎧⎫==+∈⎨⎬⎩⎭, {|21x x n =+,}{|23n Z x x n ∈==+,}n Z ∈, A B ∴=,18.(1)集合A 的代表元素是数,集合B 的代表元素是有序实数对,故A 与B 之间无包含关系. (2)等边三角形是三边相等的三角形,等腰三角形是两边相等的三角形,故A B . (3)集合B ={x |x <5},用数轴表示集合A ,B 如图所示,由图可知A B .(4)由列举法知M ={1,3,5,7,…},N ={3,5,7,9,…},故N M .19.解:①当M 中含有2个元素时,M 为{}1,2;②当M 中含有3个元素时,M 为{}1,2,3,{}1,2,4,{}1,2,5;③当M 中含有4个元素时,M 为{}1,2,3,4,{}1,2,3,5,{}1,2,4,5;④当M 中含有5个元素时,M 为{}1,2,3,4,5.故满足条件的集合M 为{}1,2,{}1,2,3,{}1,2,4,{}1,2,5,{}1,2,3,4,{}1,2,3,5,{}1,2,4,5,{}1,2,3,4,5.20.(1)2a =-;(2)不存在.(1)由题意,33a -=-或213a +=-,解得0a =或2a =-,当0a =时,{}3,1,1A =-,不成立;当2a =-时,{}5,3,5A =--,成立;∴2a =-.(2)由题意,210a +≠,若30a -=,则3a =,{}0,7,10A B =≠,不合题意;若210a +=,则12a =-,750,,24A B ⎧⎫=-≠⎨⎬⎩⎭,不合题意; ∴不存在实数a ,x ,使得A B =.21.(1)不存在,理由见解析;(2){(5,9),(6,10),(3,7),(2,6)}----.解:(1)由题意,集合{|4}A x x a =-={}4,4a a =-+,因为b 是任意实数,要使A B ⊆,必有4142a a -=⎧⎨+=⎩或4241a a -=⎧⎨+=⎩, 两个方程组都没有实数解,所以不存在满足条件的实数a .(2)由(1)知{}4,4A a a =-+,要使A B ⊆,则满足414a a b -=⎧⎨+=⎩或424a a b -=⎧⎨+=⎩或441a b a -=⎧⎨+=⎩或442a b a -=⎧⎨+=⎩, 解得59a b =⎧⎨=⎩或610a b =⎧⎨=⎩或37a b =-⎧⎨=-⎩或26a b =-⎧⎨=-⎩, 所以实数对(),a b 构成的集合为()()()(){}596103726----,,,,,,,.。
集合间的基本关系(经典练习及答案详解)

集合间的基本关系1.(2020年福建高一期中)现有四个判断:2⊆{1,2};∅∈{0};{ 5 }⊆Q ;∅{0}.其中正确的个数是( )A .2B .1C .4D .3 【答案】B 【解析】元素与集合之间不能用包含关系,故2⊆{1,2}错误;∅与{0}是集合之间的关系,不能用“∈”,故∅∈{0}错误;因为 5 ∉Q ,所以{5}⊆Q 错误;空集是任何非空集合的真子集,故∅{0}正确.故选B .2.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅【答案】B 【解析】因为A ⊇B ,所以⎩⎪⎨⎪⎧ a -1≤3,a +2≥5.所以3≤a ≤4. 3.(2021年北京期末)下列正确表示集合M ={x |x 2-x =0}和N ={-1,0,1}关系的Venn 图是( )A BC D 【答案】D 【解析】由x 2-x =0,解得x =0或1,所以M N .故选D .4.(2020年铜仁高一期中)设集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ,则集合B 的子集个数为( ) A .3B .4C .8D .16【答案】D 【解析】根据题意,集合B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪ 62+x ∈N ={-1,0,1,4},有4个元素,其子集有24=16个.故选D .5.(2021年昆明期中)下列各式中,正确的个数是( )①{0}∈{0,2,4};②{0,2,4}⊆{4,2,0};③∅⊆{0,2,4};④∅={0};⑤{0,2}={(0,2)};⑥0={0}.A.1 B.2C.3 D.4【答案】B【解析】对于①,是集合与集合的关系,应为{0}{0,2,4};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,2}是含有两个元素0与2的集合,而{(0,2)}是以有序数组(0,2)为元素的单元素集合,所以{0,2}与{(0,2)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③正确.6.用符号“∈”或“⊆”填空:若A={2,4,6},则4______A,{2,6}______A.【答案】∈⊆【解析】因为集合A中有4这个元素,所以4∈A,因为2∈A,6∈A,所以{2,6}⊆A.故答案为∈,⊆.7.已知集合A⊆{0,1,2},且集合A中至少含有一个偶数,则这样的集合A的个数为________.【答案】6【解析】集合{0,1,2}的子集为:∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2},其中含有偶数的集合有6个.8.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.【答案】m≥3【解析】将数集A在数轴上表示出来,如图所示,要满足A⊆B,表示数m的点必须在表示3的点处或在其右边,故m≥3.9.设集合A={1,3,a},B={1,a2-a+1},且B⊆A,求a的值.解:因为B⊆A,所以a2-a+1=3或a2-a+1=a.当a2-a+1=3时,解得a=-1或a=2.经检验,满足题意.当a2-a+1=a时,解得a=1,此时集合A中的元素1重复,故a=1不合题意.综上所述,a=-1或a=2.B级——能力提升练10.(多选)图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,则()A.A为小说B.B为文学作品C .C 为散文D .D 为叙事散文【答案】AB 【解析】由Venn 图可得A B ,C D B ,A 与D 之间无包含关系,A 与C 之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A 为小说,B 为文学作品,C 为叙事散文,D 为散文.11.已知集合A ={x |x =3k ,k ∈Z },B ={x |x =6k ,k ∈Z },则A 与B 之间的关系是( )A .A ⊆BB .A =BC .A BD .A B【答案】D 【解析】对于x =3k (k ∈Z ),当k =2m (m ∈Z )时,x =6m (m ∈Z );当k =2m -1(m ∈Z )时,x =6m -3(m ∈Z ).由此可知A B .12.(2020年太原高一期中)设集合A ={a ,b },B ={0,a 2,-b 2},若A ⊆B ,则a -b =( )A .-2B .2C .-2或2D .0【答案】C 【解析】因为集合A ={a ,b },B ={0,a 2,-b 2},且A ⊆B ,易知a ≠0且b ≠0.当 ⎩⎪⎨⎪⎧ a =a 2,b =-b 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧ a =1,b =-1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =2;当⎩⎪⎨⎪⎧ a =-b 2,b =a 2时,因为a ≠0且b ≠0,所以⎩⎪⎨⎪⎧a =-1,b =1,此时集合A ={1,-1},集合B ={0,1,-1},符合题意,所以a -b =-2.综上所求,a -b =2或-2.故选C .13.(2020年宁波高一期中)已知集合A =⎩⎨⎧⎭⎬⎫x ∈N |y =12x +3∈Z ,则列举法表示集合A =________,集合A 的真子集有________个.【答案】{0,1,3,9} 15 【解析】因为集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈N ⎪⎪ y =12x +3∈Z ,所以列举法表示集合A ={0,1,3,9},集合A 的真子集有24-1=15个.故答案为{0,1,3,9},15.14.(2020年安康高一期中)定义集合运算:A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },设A ={0,1},B ={2,3},则集合A ⊗B 的真子集的个数为________.【答案】7 【解析】因为A ⊗B ={z |z =x +y ,x ∈A ,y ∈B },A ={0,1},B ={2,3},所以集合A ⊗B ={2,3,4},所以集合A ⊗B 的真子集的个数为23-1=7.15.已知集合A ={x |1≤x ≤2},B ={x |1≤x ≤a ,a ≥1}.(1)若A B ,求a 的取值范围;(2)若B ⊆A ,求a 的取值范围.解:(1)若A B ,由图可知a >2.故a 的取值范围为{a |a >2}.(2)若B ⊆A ,由图可知1≤a ≤2.故a 的取值范围为{a |1≤a ≤2}.C 级——探究创新练16.已知集合P ={x |x 2-3x +b =0},Q ={x |(x +1)(x 2+3x -4)=0}.(1)若b =4,是否存在集合M 使得PM ⊆Q ?若存在,求出所有符合题意的集合M ,若不存在,请说明理由;(2)P 能否成为Q 的一个子集?若能,求出b 的值或取值范围,若不能,请说明理由. 解:(1)因为集合Q ={x |(x +1)(x 2+3x -4)=0}={x |(x +1)(x +4)(x -1)=0}={-1,1,-4}, 当b =4时,集合P =∅,再由 P M ⊆Q 可得,M 是Q 的非空子集,共有 23-1=7 个,分别为{-1},{1},{-4},{-1,1},{-1,4},{1,4},{-1,1,-4}.(2)因为P ⊆Q ,对于方程x 2-3x +b =0,当P =∅,Δ=9-4b <0时,有b >94. 当P ≠∅,Δ=9-4b ≥0时,方程x 2-3x +b =0有实数根,且实数根是-1,1,-4中的数, 若-1是方程x 2-3x +b =0的实数根,则有b =-4,此时P ={-1,4},不满足P ⊆Q ,故舍去;若1是方程x 2-3x +b =0的实数根,则有b =2,此时P ={1,2},不满足P ⊆Q ,故舍去; 若-4是方程x 2-3x +b =0的实数根,则有b =-28,此时P ={-4,7},不满足P ⊆Q ,故舍去.综上可得,实数b 的取值范围为⎩⎨⎧⎭⎬⎫b ⎪⎪b >94.。
集合间的基本关系试题(含答案)

集合间的基本关系试题(含答案)1.“A⊆B”不成立的含义是A中至少有一个元素不属于B,因此选C。
2.根据xy>0知x与y同号,又x+y<0,因此x与y同为负数,等价于M=P,因此选C。
3.A={-1,1},B={0,1,2,3},A⊆C,B⊆C,因此集合C中必含有A与B的所有元素-1,0,1,2,3,故C中至少有5个元素,因此选C。
4.由于B⊆A,因此x2∈A,又x2≠1,因此x2=3或x2=x,因此x=±3或x=0,因此满足条件的实数x的个数是3,因此选C。
5.由于两集合代表元素不同,因此M与P互不包含,因此选D。
6.由于A⊆B,A⊆C,因此集合A中的元素只能由a或b构成,因此这样的集合共有22=4个,即A=∅,或A={a},或A={b}或A={a,b},因此选C。
7.M={x|x=2k+4,k∈Z},N={x|x=4k+2,k∈Z},因为2k+4=2(k+2)和4k+2=2(2k+1)都是偶数,因此M和N都是偶数的集合,但M和N不相等,因为M中的元素都比N中的元素大2,因此选B。
1b,b∈Z},则A与B的交集为________.答案]空集或∅解析]A的元素形如x=a+6a∈Z,而B的元素形如x=231b,b∈Z,所以A与B的交集为空集或∅.15.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∩B=________.答案][1,2)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∩B=[1,2).16.集合A={x|x2-5x+6<0},B={x|2x-1≥0},则A∩B=________.答案][1,2)∪(3,+∞)解析]x2-5x+6<0得x∈(2,3),2x-1≥0得x≥12故A∩B=[1,2)∪(3,+∞).17.集合A={x|2x+1<5},B={x|x2-3x+2≥0},则A∪B=________.答案](-∞,1]∪[2,+∞)解析]2x+1<5得x<2,x2-3x+2≥0得x≤1或x≥2,故A∪B=(-∞,1]∪[2,+∞).18.集合A={x|x<2},B={x|x>1},则A×B=________.答案]{(x,y)|x<2,y>1}解析]A×B={(x,y)|x∈A,y∈B}={(x,y)|x<2,y>1}.16.已知 $A=\{x\in R|x5\}$,$B=\{x\in R|a\leq x<a+4\}$,求 $A,B$ 的关系并求实数 $a$ 的取值范围。
新人教版高中数学必修一《集合间的基本关系》同步练习(含答案)

集合间的基本关系1.下列说法:①空集没有子集;②任何集合至少有两个子集; ③空集是任何集合的真子集; ④若∅⊂≠A ,则A ≠∅, 其中正确的个数是( )¥A .0B .1C .2D .32.已知集合A ={x |ax 2+2x +a =0,a ∈R },若集合A 有且仅有2个子集,则a 的取值 是( ) A .1 B .-1 C .0,1 D .-1,0,1 3.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A,4.下列五个写法:①{0}∈{0,1};②∅⊂≠{0};③{0,-1,1}{-1,0,1};④0∈∅;⑤ {(0,0)}={0},其中写法错误的个数是( )A .2B .3C .4D .5 5.}0352|{2=--=x x x M ,}1|{==mx x N ,若M N ≠⊂,则m 的取值集合为( )A.{2}-B.13⎧⎫⎨⎬⎩⎭ C.12,3⎧⎫-⎨⎬⎩⎭D.12,0,3⎧⎫-⎨⎬⎩⎭6. 满足{1,2,3}{1,2,3,4,5,6}M ⊂⊂≠≠的集合的个数为( )》二、填空题(本大题共3小题,每小题6分,共18分) 7.满足{1}A {1,2,3}的集合A 的个数是________.8.已知集合A ={x |x =a +16,a ∈Z },B ={x |x =b 2-13,b ∈Z },C ={x |x =c 2+16,c ∈Z },则A 、 B 、C之间的关系是________.9.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.三、解答题(本大题共3小题,共46分)`10.(14分)下面的Venn图中反映的是四边形、梯形、平行四边形、菱形、正方形这五种几何图形之间的关系,问集合A,B,C,D,分别是哪种图形的集合*11.(15分)已知集合A={x|x2-3x-10≤0},(1)若B⊆A,B={x|m+1≤x≤2m-1},求实数m的取值范围;(2)若A⊆B,B={x|m-6≤x≤2m-1},求实数m的取值范围;(3)若A=B,B={x|m-6≤x≤2m-1},求实数m的取值范围.~12.(17分)设集合A={x|x2-5x+6=0},B={x|x2-(2a+1)x+a2+a=0},若B⊆A,求a的值[一、选择题解析:空集只有一个子集,就是它本身,空集是任何非空集合的真子集,故仅④是正确的.解析:因为集合A 有且仅有2个子集,所以A 仅有一个元素,即方程ax 2+2x +a =0(a ∈)仅有一个根或两个相等的根.(1)当a =0时,方程为2x =0,此时A ={0},符合题意. (2)当a ≠0时,由Δ=22-4·a ·a =0,即a 2=1, ∴a =±1. ;此时A ={-1}或A ={1},符合题意. ∴a =0或a =±1.3. D 解析:∵B 的子集为{1},{2},{1,2},,∴A ={x |x ⊆B }={{1},{2},{1,2},},∴B ∈A . 4. B 解析:只有②③正确.5. D 解析: 1{,3},2M =-(1)0,N m =∅⇒=(2)1{}2,2N m =-⇒=-(3)1{3},3N m =⇒=∴ 的取值集合为12,0,.3⎧⎫-⎨⎬⎩⎭~6. B 解析:集合M 真包含集合}3,2,1{,M 中一定有元素1,2,3且除此之外至少还有一个元素. 又集合M 真包含于集合}6,5,4,3,2,1{,所以M 中最少有4个元素,最多有5个元素,集合M 的个数等于集合}6,5,4{非空真子集的个数,即6223=-. 二、填空题7. 3 解析:A 中一定有元素1,所以A 可以为{1,2},{1,3},{1,2,3}. 8. AB =C 解析:用列举法寻找规律.9. 1 解析:∵BA ,∴m 2=2m -1,即(m -1)2=0,∴ m =1.当m =1时,A ={-1,3,1},B ={3,1},满足BA . 三、解答题10.解:观察Venn 图,得B 、C 、D 、E 均是A 的子集,且有E D ,D C .#梯形、平行四边形、菱形、正方形都是四边形, 故A ={四边形};梯形不是平行四边形,而菱形、正方形是平行四边形, 故B ={梯形},C ={平行四边形};正方形是菱形,故D ={菱形},E ={正方形}.11.解:由A ={x |x 2-3x -10≤0},得A ={x |-2≤x ≤5},(1)∵B ⊆A ,∴①若B =,则m +1>2m -1,即m <2,此时满足B ⊆A .,②若B ≠,则⎩⎪⎨⎪⎧m +1≤2m -1,-2≤m +1,2m -1≤5.解得2≤m ≤3.由①②得,m 的取值范围是(-∞,3].(2)若A ⊆B ,则依题意应有⎩⎪⎨⎪⎧ 2m -1>m -6,m -6≤-2,2m -1≥5.解得⎩⎪⎨⎪⎧m >-5,m ≤4,m ≥3.故3≤m ≤4,∴m 的取值范围是[3,4].(3)若A =B ,则必有⎩⎪⎨⎪⎧m -6=-2,2m -1=5,解得m ∈,即不存在m 值使得A =B .12.解:(方法一) A ={x |x 2-5x +6=0}={2,3}, 由B ⊆A ,得B =,或B ={2},或B ={3},或B ={2,3}. 因为Δ=(2a +1)2-4a 2-4a =1>0, 所以B 必有两个元素.则B ={2,3},需2a +1=5和a 2+a =6同时成立,所以a =2. 综上所述:a =2.(方法二) A ={x |x 2-5x +6=0}={2,3},B ={x |x 2-(2a +1)x +a 2+a =0}={x |(x -a )(x -a -1)=0}={a ,a +1}, 因为a ≠a +1,所以当B ⊆A 时,只有a =2且a +1=3.所以a =2。
高中数学必修一人教A版1.2 集合间的基本关系-单选专项练习(含解析)

1.2 集合间的基本关系一、单选题1.集合{|1}P x y x ==-,集合{|1}Q y y x ==-,则P 与Q 的关系是A .P =QB .P QC .P QD .P∩Q=Æ 答案:C详解:试题分析:∵,{}{}|1|0Q y y x y y ==-=≥,所以P Q . 考点:集合之间的基本关系与运算.2.已知集合(){|ln 1}A x y x ==-,{|1}B x y x ==-,则( )A .AB =B .A B ⊆C .A B =∅D .A B R =答案:B解析:令10x ->,10x -≥可对两个集合进行化简,即可选出正确答案.详解:解:令10x ->,解得1x >,即{|1}A x x =>;令10x -≥,解得1≥x ,即{|1}B x x =≥.所以A B ≠,A 错误;A B ⊆,B 正确;()1,A B =+∞≠∅,C 错误;[)1,A B R =+∞≠,D 错误.故选:B.点睛:本题考查了集合的运算,考查了集合的关系,考查了函数的定义域的求解.本题的关键是对两个集合进行正确化简.3.设集合1|,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1|,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .MN B .M N C .M N ⊃≠D .M N ⋂=∅答案:B 解析:对集合M 和N 中的代数式化为统一的形式,再进行比较.详解:对于集合M :121244kk x +=+=,k∈Z,对于集合N :12424kk x +=+=,k∈Z, ∵2k+1是奇数集,k+2是整数集,∴MN故选:B .点睛: 本题考查了集合间的关系,以及转化思想,是基础题.4.已知集合{}1A a =,,集合{}123B =,, ,则有( ) A .若 3a =则B A ⊆ B .若A B ⊆则3a = C .若3a =则A B ⊆D .若A B ⊆则2a =答案:C 解析:当3a =时,可检验A 、C 选项的正误,当A B ⊆时,可解出a 的值,即可判断B 、D 正误,即可得答案.详解:当3a =时,集合{}13A =,,所以AB ⊆,故A 错误,C 正确; 当A B ⊆时,2a =或3a =,故B 、D 错误;故选:C点睛:本题考查集合的包含关系,属基础题.5.对于集合A ,B ,“A B ⊆”不成立的含义是( )A .B 是A 的子集B .A 中的元素都不是B 的元素C .A 中至少有一个元素不属于BD .B 中至少有一个元素不属于A答案:C解析:根据子集的定义可知,“A B ⊆”不成立即A 中至少有一个元素不在集合B 中. 详解:“A B ⊆”成立的含义是集合A 中的任何一个元素都是B 的元素,∴不成立的含义是A 中至少有一个元素不属于B ,故选C .点睛:本题考查集合的包含关系,考查命题的否定,属于基础题.6.|,42k M k Z ππαα⎧⎫==+∈⎨⎬⎩⎭,|,24k N k Z ππββ⎧⎫==+∈⎨⎬⎩⎭,则有 A .MN B .M N ⊆ C .N M ⊆ D .M N ∈答案:C解析:对两个集合进行整理化简,统一形式,即可得到两集合之间的关系.详解:对集合M :()24k πα=+⨯, 对集合N :()214k πβ=+⨯ 因为2k Z +∈,21k +是奇数,故可得N M ⊆.故选:C.点睛:本题考查角度集合之间的关系,属基础题;本题也可以用列举法进行判断.7.下列结论正确的是( )A .A ⊂∅≠B .{}0∅∈C .{1,2}Z ≠⊂D .{}{}00,1∈答案:C解析:根据集合与集合的关系,真子集的概念,对四个选项注意分析,由此得出正确结论. 详解:对于A 选项,空集是任何非空集合的真子集,但集合A 无法确定是不是空集,故A 选项错误.对于B 选项,集合与集合之间是包含关系,故B 选项错误.对于C 选项,根据真子集的概念可知,C 选项正确.对于D 选项,集合与集合之间是包含关系,故D 选项错误.综上所述,本小题选C.点睛:本小题主要考查集合与集合的关系,考查真子集的概念,属于基础题.8.若集合{}0,1,2A =,则下列结论正确的是( )A .{}0A ∈B .0A ∉C .{}0,1,1,2A -⊆D .A ∅⊆答案:D解析:根据元素与集合,集合与集合之间的关系判断.详解:由已知A 中含有元素0,1,2,因此{0}A ⊆,A 、B 均错,集合{0,1,1,2}-中比集合A 多一个元素1-,因此应有{0,1,1,2}A ⊆-,C 错,由空集是任何集合子集知D 正确. 故选:D.点睛:本题考查元素与集合,集合与集合之间的关系及表示方法,属于基础题.9.设集合2{|230}M x x x =+-=,2{|10}N x x x =-+=,则,M N 的关系是( )A .M NB .M N ⊆C .N MD .N M答案:C解析:求出集合,M N ,即可发现它们之间的关系.详解:解:由题意可得{3,1}M =-,集合N 为空集,由于空集是任意非空集合的真子集,故选C .点睛:本题考查集合之间的关系,是基础题.10.已知,集合.若,则的值是A .5B .4C .25D .10 答案:A详解: ,,且及集合中元素的互异性知:,即,此时应有而,从而在集合B 中, 由,得由(2)(3)解得,代入(1)式知也满足(1)式.11.已知集合{}|1A x ax ==,{}2|10B x x =-=,若A B ⊆,则a 的取值构成的集合是( )A .{}1-B .{}1C .{}1,1-D .{}1,0,1-答案:D解析:本题先求出{}1,1B =-,再分A φ=、{1}A =-、{1}A =、{1,1}A =-四种情况求a 的取值,最后求a 的取值构成的集合.详解:解:因为{}2|10B x x =-=,所以{}1,1B =-,因为A B ⊆,所以A φ=,{1}A =-,{1}A =,{1,1}A =-当A φ=时,因为{}|1A x ax ==,则0a =;当{1}A =-时,因为{}|1A x ax ==,则1a =-;当{1}A =时,因为{}|1A x ax ==,则1a =;当{1,1}A =-时,因为{}|1A x ax ==,则无解;所以a 的取值构成的集合是:{}1,0,1-故选:D点睛:本题考查集合的表示方法、利用集合的基本关系求参数,是中档题.12.已知集合A ⊆0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为A .6B .5C .4D .3答案:A详解:试题分析:根据已知中集合A 满足A ⊆0,1,2},且集合A 中至少含有一个偶数,逐一列举出满足条件的集合A ,可得答案.解:∵集合A ⊆0,1,2},且集合A 中至少含有一个偶数,∴满足条件的集合A 可以为:0},2},0,1},1,2},0,2},0,1,2},共6个,故选A .考点:子集与真子集.13.设集合{}1,1M =-,{}240N x x =-<,则下列结论正确的是 A .N M ⊆B .N M =∅C .M N ⊆D .M N =R答案:C详解: 集合{}1,1M =-,{}240{|22}N x x x x =-<=-<<,1,1N -∈,所以M N ⊆.故选C.14.已知集合{}*3A x N x =∈<∣,则集合A 的子集个数为( )A .3B .4C .5D .6答案:B解析:先化简集合A ,再求得其子集即可.详解:因为集合{}{}*31,2A x N x =∈<=∣, 所以集合A 的子集为{}{}{},1,2,1,2∅,所以集合A 的子集个数为4,故选:B15.设{}|26A x x =≤≤,{}|23B x a x a =≤≤+,若B A ⊆,则实数a 的取值范围是A .[]1,3B .[3,)+∞C .[1,)+∞D .()1,3答案:C解析:由B A ⊆,可对集合B 分类:是∅或不是∅,然后计算得到结果.详解:因为B A ⊆,当B =∅时,符合要求,则有:23a a >+,即3a >;当B ≠∅时,则有:232236a a a a ≤+⎧⎪≥⎨⎪+≤⎩,解得13a ≤≤; 则a 的取值范围是:[)1,+∞,故选C.点睛:本题考查利用子集关系求解参数范围问题,难度较易.利用子集关系求解问题时,注意集合是否可能是空集.16.设集合{|11},{|0}A x x B x x a .若A B ⊆,则实数a 的取值范围是A .{|1}a aB .{|1}a aC .{|1}a aD .{|1}a a答案:D解析:求出B 后利用数轴可得实数a 的取值范围.详解:化简得集合B 为{|}x x a ,结合数轴可知,要使A B ⊆,则只要1a ≤-即可,即a 的取值范围是{|1}a a,故选D.点睛: 本题考查集合间的包含关系,可利用数轴、韦恩图等帮助考虑包含关系,注意根据包含关系得到的不等式(不等式组)的等号是否可取.17.已知非空集合{}220A x N x x ⊆∈--<,则满足条件的集合A 的个数是( ) A .1B .2C .3D .4答案:C 解析:由题意可知,集合A 为集合{}220x N x x ∈--<的子集,求出集合{}220x N xx ∈--<,利用集合的子集个数公式可求得结果. 详解: {}{}{}220120,1A x N x x x N x ⊆∈--<=∈-<<=, 所以满足条件的集合A 可以为{}{}{}0,1,0,1,共3个,故选:C.点睛:本题考查集合子集个数的计算,考查计算能力,属于基础题.18.已知集合(){}22,1,,A x y x y x Z y Z =+≤∈∈,则A 的子集个数为( )A .32B .31C .16D .5答案:A 解析:利用列举法表示集合A ,可得出集合A 中的元素个数,然后利用子集个数公式可得出集合A 的子集个数.详解:(){}()()()()(){}22,1,,0,0,1,0,0,1,1,0,0,1A x y x y x Z y Z =+≤∈∈=--, 则集合A 中有5个元素,因此,集合A 的子集个数为5232=.故选:A.点睛:本题考查有限集子集个数的计算,解题的关键就是确定出集合的元素个数,考查计算能力,属于基础题.19.如果{}2|10A x ax ax =-+<=∅,则实数的取值范围为( )A .04a <<B .04a ≤≤C .04a <≤D .04a ≤<答案:B 解析:可分为0a =,0a ≠两种情况具体讨论详解:{}2|10A x ax ax =-+<=∅,当0a =时,A =∅;当0a ≠时,需满足对应的0∆≤,即240a a -≤,解得(]0,4a ∈,综上所述,04a ≤≤故选:B点睛:本题考查根据空集情况求解参数,属于基础题20.已知集合A=x|x 2–x –2≤0,x∈Z},则集合A 非空子集的个数为A .14B .15C .16D .17答案:B解析:先化简集合A=–1,0,1,2},由于元素有4个,所以集合A 非空子集的个数为:24–1。
第1章 1.1.2 集合间的基本关系(解析版)

第1章 1.1.2 集合间的基本关系一.选择题1.已知集合{|6A x x =<且*}x N ∈,则A 的非空真子集的个数为A .30B .31C .62D .63【答案】A 【解析】集合{|6A x x =<且*}{1x N ∈=,2,3,4,5},故A 的子集个数为5232=,非空真子集个数为30.故选A .2.集合{|22}A x Z x =∈-<<的子集个数为A .4B .6C .7D .8【答案】D【解析】{|22}{1A x Z x =∈-<<=-,0,1}, ∴集合A 的子集个数为328=个,故选D .3.已知集合{0A =,1},{B m =,1,2},若A B ⊆,则实数m 的值为A .2B .0C .0或2D .1【答案】B 【解析】集合{0A =,1},{B m =,1,2},A B ⊆,0m ∴=, 故实数m 的值为0.故选B .4.设集合{|21M x x k ==+,}k Z ∈,{|2N x x k ==+,}k Z ∈,则A .M NB .M N =C .N MD .M N =∅【答案】A 【解析】集合{|21M x x k ==+,}{k Z ∈=奇数},{|2N x x k ==+,}{k Z ∈=整数},M N ∴.故选A .5.设a ,b R ∈,集合{1,a b +,}{0a =,b a ,}b ,则b a -= A .1B .1-C .2D .2- 【答案】C 【解析】根据题意,集合{1,,}{0,,}b a b a b a +=, 又0a ≠,0a b ∴+=,即a b =-, ∴1b a=-, 1b =;故1a =-,1b =,则2b a -=,故选C .6.已知集合22{(,)|3A x y x y =+,x N ∈,}y Z ∈,则A 中元素的个数为A .9B .8C .7D .6【答案】D【解析】x N ∈, 0x ∴=时,1y =-,0,11x =时,1y =-,0,11x >时,不存在实数解x∴共有6种故选D .7.已知集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈,则集合B 所含元素个数为A .3B .6C .8D .10 【答案】D 【解析】集合{1A =,2,3,4,5},{(,)|B x y x A =∈,y A ∈,}y A x∈, {(1,2)B ∴=,(1,3),(1,4),(1,5),(2,4),(1,1),(2,2),(3,3),(4,4),(5,5)}, ∴集合B 所含元素个数为10.故选D .8.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ∅,则A ≠∅.其中正确的个数是A .0B .1C .2D .3 【答案】B【解析】在①中,空集的子集是空集,故①错误; 在②中,空集只有一个子集,还是空集,故②错误; 在③中,空集是任何非空集合的真子集,故③错误; 在④中,若A ∅,则A ≠∅,故④正确.故选B .9.已知集合{2A =-,3,1},集合{3B =,2}m ,若B A ⊆,则实数m 的取值集合为A .{1}B .C .{1,1}-D . 【答案】C【解析】{2A =-,3,1},{3B =,2}m , 若B A ⊆,则21m =1m ∴=或1m =-实数m 的取值集合为{1,1}-故选C .10.满足{1}{1X ⊆⊂,2,3,4,5}的集合X 有A .15个B .16个C .18个D .31个【答案】A 【解析】根据子集的定义,可得集合X 必定含有1这个元素,可能含有2、3、4、5,但不能是{1,2,3,4,5}.因此,满足条件的集合X 有:42115-=个. 故选A .二.填空题11.已知集合{0A =,2,3},{|B x x a b ==,a ,}b A ∈,则集合B 的子集个数为 .【答案】16【解析】{0A =,2,3},{|B x x a b ==,a ,}b A ∈, {0B ∴=,4,6,9}.所以集合B 中的子集个数为4216=个.故答案为:16.12.已知集合{|13}A x x =-<<,{|}B x m x m =-<<,若B A ⊆,则m 的取值范围为 .【答案】(-∞,1]【解析】集合{|13}A x x =-<<,{|}B x m x m =-<<, 若B A ⊆,则A 集合应含有集合B 的所有元素, 讨论B 集合:(1)当B =∅时,m m -,即:0m ,(2)当B ≠∅时,则由数形结合可知:需B 集合的端点a 满足: ①m m -<,②1m --,③3m ,三个条件同时成立. 解得:01m <综上由(1)(2)可得实数m 的取值范围为:1m 即:(-∞,1]故答案为:(-∞,1]13.设集合{1A =-,}a ,{2B =,}b ,若A B =,则a b += .【答案】1【解析】根据已知条件得:2a =,1b =-,1a b ∴+=; 故答案为:1.14.设{1M =,2,3,⋯,1995},A 是M 的子集且满足条件:当x A ∈时,15x A ∉,则A 中元素的个数最多是 .【答案】1870【解析】199515133=⨯.故取出所有不是15的倍数的数,共1862个, 这些数均符合要求.在所有15的倍数的数中,215的倍数有8个,这些数又可以取出,这样共取出了1870个.即||1870A .又{k ,15}(9k k =,10,11,⋯,133)中的两个元素不能同时取出, 故||199513381870A -+=.故答案为:1870.15.设集合{|32}A x x =-,{|2121}B x k x k =-+,且A B ⊇,则实数k 的取值范围是 . 【答案】112k - 【解析】2121k k -+恒成立,B ∴≠∅, 因为A B ⊇,∴213212k k --⎧⎨+⎩, 解得112k - 故答案为:112k-. 三.解答题16.(1)已知集合2{|310A x ax x =-+=,}a R ∈,若A 中只有一个元素,求a 的取值范围.(2)集合2{|650}A x x x =-+<,{|3243}C x a x a =-<<-,若C A ⊆,求a 的取值范围.【答案】(1)0a =或94a =;(2)2a【解析】(1)若A 中只有一个元素,则方程2310ax x -+=有且只有一个实根当0a =时方程为一元一次方程,满足条件 当0a ≠,此时△940a =-=,解得:94a =0a ∴=或94a =; (2)2{|650}{|15}A x x x x x =-+<=<<, C A ⊆,当C =∅时,3243a a ->-,解得1a <;当C ≠∅时∴321435a a -⎧⎨-⎩ 解得:2a .17.已知集合2{|40}A x x =-=,集合{|20}B x ax =-=,若B A ⊆,求实数a 的取值集合.【答案】{1,1-,0}【解析】2402x x -=⇒=±,则{2A =,2}-, 若B A ⊆,则B 可能的情况有B =∅,{2}B =或{2}B =-, 若B =∅,20ax -=无解,此时0a =,若{2}B =,20ax -=的解为2x =,有220a -=,解可得1a =,若{2}B =-,20ax -=的解为2x =-,有220a --=,解可得1a =-,综合可得a 的值为1,1-,0;则实数a 的取值集合为{1,1-,0}.18.已知集合2{|3100}A x x x =--.(Ⅰ)若{|621}B x m x m =--,A B ⊆,求实数m 的取值范围; (Ⅱ)若{|121}B x m x m =+-,B A ⊆,求实数m 的取值范围.【答案】(Ⅰ)[3,4];(Ⅱ)(-∞,3].【解析】集合2{|3100}{|25}A x x x x x =--=-, (Ⅰ)A B ⊆,∴62215m m --⎧⎨-⎩,解得:34m ,∴实数m的取值范围为:[3,4];(Ⅱ)B A⊆,①当B=∅时,121m m+>-,即2m<,②当B≠∅时,12112215m mmm+-⎧⎪+-⎨⎪-⎩,解得:23m,综上所述,实数m的取值范围为:(-∞,3].。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合间的基本关系
一、 选择题
1.集合}{Z x x x A ∈<≤=且30的真子集的个数为 ( )
A.5
B.6
C.7
D.8
2.已知集合}{{x B x x A =<<-=,21}1
0<<x ,则 ( ) A.B A > B. B A ⊆ C. A
B D. B A 3.已知}13,2,1{2--=a a M ,}3,1{=N ,若a M N M 则且,3⊄∈的取值为 ( )
A.1
B.4
C.-1或-3
D.-4或1
4.已知集合⎭⎬⎫∈⎩⎨⎧
==Z k k x x A ,3,=B ⎭
⎬⎫∈⎩⎨⎧=Z k k x x ,6,则 ( ) A. A B B. B A C.B A = D. A 与B 关系不确定
5.满足M a ⊆}{的集合},,,{d c b a M 共有 ( )
A.6个
B.7个
C.8个
D.15个
6.已知集{}}{a x x B x x A <=<<=,21,满足A B ,则 ( )
A.2≥a
B. 1≤a
C.1≥a
D. 2≤a
二、 填空题
1.集合A 中有m 个元素,若在A 中增加一个元素,则它的子集增加的个数为____
2.设}1,1{},,3,1{2+-==a a B a A 若B
A ,则a 的取值为____________. 3.已知集合{}12==x x P ,集合{
x Q =}1=ax ,若P Q ⊆,则a 的取值______. 4设{}===∈B x y y x A R y x ,),(,,⎭
⎬⎫=⎩⎨⎧
1),(x y y x ,则B A 间的关系为____ 5.已知集合}{{x
B x x x A =>-<=,51或}4+<≤a x a ,若B A ,则实数a 的取值范围是
____________
三、 解答题 1.设集合}{{
ax x x B x x A -==-=2,01}02=-,若B A ⊆,求a 的值.
2.若集合{}==-+=N x x x M ,062}{0))(2(=--a x x x ,且N M ⊆,求实数a 的值.
3.设集合}{22+<<-=a x a x A ,=B }{32<<-x x .
(1.)若A B ,求实数a 的取值范围.
(2).是否存在数a 使A B ⊆?
4.已知集合}{41>-<=x x x A 或,=B }{32+≤≤a x a x ,若A B ⊆,求实数a 的取值范围.
5.已知集合{}=≤≤=B x x A ,21}{1,1≥≤≤a a x x
(1)若A B ,求实数a 的取值范围;
(2)若A B ⊆,求实数a 的取值范围.
5.已知{}9
5,4,2,,2+-=∈x x A R x a , {}a ax x B ++=2,3,{+=2x C }1,3)1(-+x a .求:
(1).使,2B ∈B
A 的x a ,的值;
(2).使的值的x a C B , .。